

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance

Dietrich Roscher

[D. Roscher, J. Braun, J.-W. Chen, J.E. Drut arXiv:1306.0798]

Advances in quantum Monte Carlo techniques for non-relativistic many-body systems INT Program INT-13-2a

Institut für Kernphysik / Technische Universität Darmstadt

July 26, 2013

Why we should care about physics of cold gases:

"Simple" systems compared to e.g. QCD or nuclear physics, but similar behaviour in certain regimes (e.g. HIC) [e.g. A. Adams et al. '12]

Why we should care about physics of cold gases:

- "Simple" systems compared to e.g. QCD or nuclear physics, but similar behaviour in certain regimes (e.g. HIC) [e.g. A. Adams et al. '12]
- Abundance of interesting phenomena: BEC/BCS crossover, (un)conventional superfluidity, topological order...

Why we should care about physics of cold gases:

- "Simple" systems compared to e.g. QCD or nuclear physics, but similar behaviour in certain regimes (e.g. HIC) [e.g. A. Adams et al. '12]
- Abundance of interesting phenomena: BEC/BCS crossover, (un)conventional superfluidity, topological order...
- Excellent experimental access: precise control in optical traps, tuning of interactions by Feshbach resonances

S. Jochim, Uni Heidelberg

[M. Randeria, E. Taylor '08]

Why we should care about physics of cold gases:

- "Simple" systems compared to e.g. QCD or nuclear physics, but similar behaviour in certain regimes (e.g. HIC) [e.g. A. Adams et al. '12]
- Abundance of interesting phenomena: BEC/BCS crossover, (un)conventional superfluidity, topological order...
- Excellent experimental access: precise control in optical traps, tuning of interactions by Feshbach resonances
- Why "simple" does not mean "easy":
	- Lack of small parameter in strongly interacting regimes invalidates naïve perturbation theory

Why we should care about physics of cold gases:

- "Simple" systems compared to e.g. QCD or nuclear physics, but similar behaviour in certain regimes (e.g. HIC) [e.g. A. Adams et al. '12]
- Abundance of interesting phenomena: BEC/BCS crossover, (un)conventional superfluidity, topological order...
- Excellent experimental access: precise control in optical traps, tuning of interactions by Feshbach resonances
- Why "simple" does not mean "easy":
	- Lack of small parameter in strongly interacting regimes invalidates naïve perturbation theory
	- Monte Carlo calculations often severely hampered by sign problems

Idea of the Talk

How to get rid of (some) sign problems:

- **I** Identify problematic quantity x_s and change into $i \cdot x_s$
- Do an Auxiliary Field Quantum Monte Carlo calculation without sign problem
- • Analytically continue results from $i \cdot x_s$ to physical value x_s

Idea of the Talk

How to get rid of (some) sign problems:

- Identify problematic quantity x_s and change into $i \cdot x_s$
- Do an Auxiliary Field Quantum Monte Carlo calculation without sign problem
- Analytically continue results from $i \cdot x_s$ to physical value x_s

This idea has been proposed for lattice QCD at finite chemical potential some time ago. [M. Alford, A.Kapustin, F.Wilczek '98; P. de Forcrand, O. Philipsen '02] Adapting this approach to imbalanced ultracold Fermi gases will be the main subject of this talk.

Describing the Unitary Fermi Gas

Action of a two component 3D Fermi gas with contact interaction:

$$
S[\psi_{\uparrow}, \psi_{\downarrow}] = \int_0^{\beta} d\tau \int d^3x \left\{ \sum_{\sigma = \uparrow, \downarrow} \psi_{\sigma}^* \left(\partial_{\tau} - \frac{\nabla^2}{2m} - \mu \right) \psi_{\sigma} + \bar{g} \psi_{\uparrow}^* \psi_{\downarrow}^* \psi_{\downarrow} \psi_{\uparrow} \right\}
$$

Describing the Unitary Fermi Gas

Action of a two component 3D Fermi gas with contact interaction:

$$
S[\psi_{\uparrow},\psi_{\downarrow}]=\int_{0}^{\beta}\mathrm{d}\tau\int\mathrm{d}^{3}x\left\{\sum_{\sigma=\uparrow,\downarrow}\psi_{\sigma}^{*}\left(\partial_{\tau}-\frac{\nabla^{2}}{2m}-\mu\right)\psi_{\sigma}+\bar{g}\psi_{\uparrow}^{*}\psi_{\downarrow}^{*}\psi_{\downarrow}\psi_{\uparrow}\right\}
$$

The bare coupling \bar{g} is given by

$$
\bar{g}^{-1} = \Lambda g^{-1} = \frac{1}{8\pi} \left(a_s^{-1} - c_{\text{reg}} \Lambda \right)
$$

with UV-cutoff Λ and two-body scattering length $a_s.$

Unitary regime:
$$
a_5^{-1} \rightarrow 0
$$

 \mathcal{L} \mathcal{L} $\left\vert \right\vert$

Symmetry and Spontaneous Symmetry Breaking $S[\psi_{\uparrow}, \psi_{\downarrow}] = \int_0^{\beta}$ d $\tau \int d^3x$ $\sqrt{ }$ Į \mathcal{L} \sum *ψ* ∗ *σ* $\left(\partial_\tau - \frac{\nabla^2}{2m}\right)$ $\left(\frac{\nabla^2}{2m} - \mu\right)\psi_\sigma + \bar{g}\psi_\uparrow^*\psi_\downarrow^*\psi_\downarrow\psi_\uparrow$

σ=↑*,*↓

 $U(1)$ -Symmetry of the action:

$$
\psi_{\uparrow,\downarrow} \longrightarrow e^{i\alpha} \psi_{\uparrow,\downarrow}; \qquad \psi_{\uparrow,\downarrow}^* \longrightarrow \psi_{\uparrow,\downarrow}^* e^{-i\alpha}
$$

Spontaneously broken if $\langle \psi_{\perp} \psi_{\uparrow} \rangle \neq 0$

Symmetry and Spontaneous Symmetry Breaking $S[\psi_{\uparrow}, \psi_{\downarrow}] = \int_0^{\beta}$ d $\tau \int d^3x$ $\sqrt{ }$ Į \mathcal{L} \sum *σ*=↑*,*↓ *ψ* ∗ *σ* $\left(\partial_\tau - \frac{\nabla^2}{2m}\right)$ $\left(\frac{\nabla^2}{2m} - \mu\right)\psi_\sigma + \bar{g}\psi_\uparrow^*\psi_\downarrow^*\psi_\downarrow\psi_\uparrow$ \mathcal{L} \mathcal{L} $\left\vert \right\vert$

 $U(1)$ -Symmetry of the action:

$$
\psi_{\uparrow,\downarrow} \longrightarrow e^{i\alpha} \psi_{\uparrow,\downarrow}; \qquad \psi
$$

Spontaneously broken if $\langle \psi_{\perp} \psi_{\uparrow} \rangle \neq 0$

Condensation of bound states

[C.A.R Sa de Melo, '08]

Partition Function and Observables

Partition function and observables from the path integral:

$$
\mathcal{Z} = \int \mathcal{D}\psi_{\uparrow} \mathcal{D}\psi_{\downarrow} e^{-S[\psi_{\uparrow}, \psi_{\downarrow}]} \quad \Rightarrow \quad \langle \hat{\mathcal{O}} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\psi_{\uparrow} \mathcal{D}\psi_{\downarrow} \mathcal{O} e^{-S[\psi_{\uparrow}, \psi_{\downarrow}]}
$$

Partition Function and Observables

Partition function and observables from the path integral:

$$
\mathcal{Z} = \int \mathcal{D}\psi_{\uparrow} \mathcal{D}\psi_{\downarrow} e^{-S[\psi_{\uparrow}, \psi_{\downarrow}]} \quad \Rightarrow \quad \langle \hat{\mathcal{O}} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\psi_{\uparrow} \mathcal{D}\psi_{\downarrow} \mathcal{O} e^{-S[\psi_{\uparrow}, \psi_{\downarrow}]}
$$

Hubbard-Stratonovich transformation and integration of fermion fields:

$$
1 = \mathcal{N} \int \mathcal{D} \varphi \mathcal{D} \varphi^* e^{-\int d\tau \int d^3x \; m_\varphi^2 \varphi \varphi^*}, \qquad \varphi \; \longrightarrow \; \varphi - \frac{\mathcal{g}_\varphi}{m_\varphi^2} \psi_\uparrow \psi_\downarrow
$$

Partition Function and Observables

Partition function and observables from the path integral:

$$
\mathcal{Z} = \int \mathcal{D}\psi_{\uparrow}\mathcal{D}\psi_{\downarrow}e^{-S[\psi_{\uparrow},\psi_{\downarrow}]} \quad \Rightarrow \quad \langle \hat{\mathcal{O}} \rangle = \frac{1}{\mathcal{Z}}\int \mathcal{D}\psi_{\uparrow}\mathcal{D}\psi_{\downarrow}\mathcal{O}e^{-S[\psi_{\uparrow},\psi_{\downarrow}]}
$$

Hubbard-Stratonovich transformation and integration of fermion fields:

$$
1 = \mathcal{N} \int \mathcal{D}\varphi \mathcal{D}\varphi^* e^{-\int d\tau \int d^3x \; m_\varphi^2 \varphi \varphi^*}, \qquad \varphi \; \longrightarrow \; \varphi - \frac{\mathbf{g}_\varphi}{m_\varphi^2} \psi_\uparrow \psi_\downarrow
$$

$$
\mathcal{Z} = \int \mathcal{D}\varphi \mathcal{D}\varphi^* \det \left[\hat{\mathcal{G}}^{-1} + \hat{\Phi} \right] e^{-\int d\tau \int d^3x \ m_{\varphi}^2 \varphi \varphi^*}
$$

$$
\hat{\mathcal{G}}^{-1} = \begin{pmatrix} -i\omega_n - \frac{\nabla^2}{2m} - \mu & 0\\ 0 & i\omega_n - \frac{\nabla^2}{2m} - \mu \end{pmatrix}, \qquad \hat{\Phi} = \begin{pmatrix} 0 & g_{\varphi}\varphi\\ -g_{\varphi}\varphi^* & 0 \end{pmatrix}
$$

 \Rightarrow Starting point for actual computations \Leftarrow

Positivity of the Fermion Determinant

$$
\mathcal{Z} = \int \mathcal{D}\varphi \mathcal{D}\varphi^* \text{det} \left[\hat{\mathcal{G}}^{-1} + \hat{\Phi} \right] e^{-\int d\tau \int d^3x \; m_{\varphi}^2 \varphi \varphi^*}
$$

If the fermion determinant is positive for all admissible $\varphi(x)$, a positive definite probability measure can be defined for Monte Carlo calculations there is no sign problem.

$$
\det \hat{\mathcal{G}}^{-1} \sim \det \begin{Bmatrix} \hat{A} & 0 \\ 0 & \hat{A}^* \end{Bmatrix} = \det \left[\hat{A} \hat{A}^* \right] \geq 0
$$

Since the interaction does not break the symmetry between ↑ and ↓ fermions, the symmetry of the eigenvalue distribution is conserved for finite *ϕ*.

Thus, the fermion determinant is positive for all $\varphi(x)$.

Introducing Imbalance

$$
S[\psi_{\uparrow},\psi_{\downarrow}]=\int_0^{\beta}\mathrm{d}\tau\int\mathrm{d}^3x\left\{\sum_{\sigma=\uparrow,\downarrow}\psi_{\sigma}^*\left(\partial_{\tau}-\frac{\nabla^2}{2m_{\sigma}}-\mu_{\sigma}\right)\psi_{\sigma}+\bar{g}\psi_{\uparrow}^*\psi_{\downarrow}\psi_{\downarrow}\psi_{\uparrow}\right\}
$$

Introducing Imbalance

$$
S[\psi_{\uparrow},\psi_{\downarrow}]=\int_{0}^{\beta}\mathrm{d}\tau\int\mathrm{d}^{3}x\left\{\sum_{\sigma=\uparrow,\downarrow}\psi_{\sigma}^{*}\left(\partial_{\tau}-\frac{\nabla^{2}}{2m_{\sigma}}-\mu_{\sigma}\right)\psi_{\sigma}+\bar{g}\psi_{\uparrow}^{*}\psi_{\downarrow}^{*}\psi_{\downarrow}\psi_{\uparrow}\right\}
$$

Experimental relevance:

- Population imbalance (μ_{σ}) : Tuning of the species relative population via a magnetic field h [e.g. Zwierlein et al. '06, Partidge et al. '06]
- **■** Mass imbalance (*m_σ*): Mixtures of different elements, e.g. ⁶Li and ^{40}K [e.g. A. Gezerlis, S. Gandolfi, K.E. Schmidt, J. Carlson '09 ;K.B. Gubbels, J.E. Baarsma, H.T.C. Stoof '09]

BUT

Introducing Imbalance

$$
S[\psi_{\uparrow}, \psi_{\downarrow}] = \int_0^{\beta} d\tau \int d^3x \left\{ \sum_{\sigma=\uparrow, \downarrow} \psi_{\sigma}^* \left(\partial_{\tau} - \frac{\nabla^2}{2m_{\sigma}} - \mu_{\sigma} \right) \psi_{\sigma} + \bar{g} \psi_{\uparrow}^* \psi_{\downarrow}^* \psi_{\downarrow} \psi_{\uparrow} \right\}
$$

Population- and/or mass-imbalance destroy the symmetry between \uparrow and \downarrow particles and thus also the positivity of the fermion determinant:

$$
\hat{\mathcal{G}}^{-1} = \begin{pmatrix} -i\omega_n - \frac{\nabla^2}{m_+} - \frac{\nabla^2}{m_-} - \bar{\mu} - h & 0\\ 0 & i\omega_n - \frac{\nabla^2}{m_+} + \frac{\nabla^2}{m_-} - \bar{\mu} + h \end{pmatrix}
$$

with

$$
\bar{\mu} = \frac{\mu_{\uparrow} + \mu_{\downarrow}}{2}, \qquad h = \frac{\mu_{\uparrow} - \mu_{\downarrow}}{2}
$$

$$
m_{+} = \frac{4m_{\uparrow}m_{\downarrow}}{m_{\downarrow} + m_{\uparrow}}, \qquad m_{-} = \frac{4m_{\uparrow}m_{\downarrow}}{m_{\downarrow} - m_{\uparrow}}
$$

Sign Problem!

The sign problem could be resolved, if the $\uparrow - \downarrow$ symmetry was reinstated. Define complex-valued particle masses $m_\sigma^\mathbb{C}$ and chemical potentials $\mu_{\sigma}^{\mathbb{C}}$ such that:

$$
h = ih_I, \quad h_I \in \mathbb{R}, \qquad \qquad \bar{m} \equiv \frac{m_+^{\mathbb{C}}}{m_-^{\mathbb{C}}} = i \bar{m}_I, \quad \bar{m}_I \in \mathbb{R}
$$

The blocks of $\hat {\mathcal G}^{-1}_{\mathbb C}$ are again complex conjugates of each other:

$$
\hat{\mathcal{G}}_{\mathbb{C}}^{-1} = \begin{pmatrix} -i\omega_n - \frac{\nabla^2}{m_+} - i\bar{m}_I \nabla^2 - \bar{\mu} - ih_I & 0\\ 0 & i\omega_n - \frac{\nabla^2}{m_+} + i\bar{m}_I \nabla^2 - \bar{\mu} + ih_I \end{pmatrix}
$$

The sign problem could be resolved, if the $\uparrow - \downarrow$ symmetry was reinstated. Define complex-valued particle masses $m_\sigma^\mathbb{C}$ and chemical potentials $\mu_{\sigma}^{\mathbb{C}}$ such that:

$$
h = ih_I, \quad h_I \in \mathbb{R}, \qquad \qquad \bar{m} \equiv \frac{m_+^{\mathbb{C}}}{m_-^{\mathbb{C}}} = i \bar{m}_I, \quad \bar{m}_I \in \mathbb{R}
$$

The blocks of $\hat {\mathcal G}^{-1}_{\mathbb C}$ are again complex conjugates of each other:

$$
\hat{\mathcal{G}}_{\mathbb{C}}^{-1} = \begin{pmatrix} -i\omega_n - \frac{\nabla^2}{m_+} - i\bar{m}_I \nabla^2 - \bar{\mu} - ih_I & 0\\ 0 & i\omega_n - \frac{\nabla^2}{m_+} + i\bar{m}_I \nabla^2 - \bar{\mu} + ih_I \end{pmatrix}
$$

Population- and mass-imbalance behave quiet differently. For population imbalance, see

[J. Braun, J.-W. Chen, J. Deng, J. Drut, B. Friman, C.-T. Ma, Y.-D. Tsai '12] For a large part of the talk: purely mass imbalanced case $(h = 0)$

The sign could be resolved, if the $\uparrow - \downarrow$ symmetry was reinstated. Define $\mathsf{complex}\text{-}\mathsf{valued}$ particle masses $m_\sigma^\mathbb{C}$ and chemical potentials $\mu_\sigma^\mathbb{C}$ such that:

$$
h = ih_I, \quad h_I \in \mathbb{R}, \qquad \qquad \bar{m} \equiv \frac{m_+^{\mathbb{C}}}{m_-^{\mathbb{C}}} = i \bar{m}_I, \quad \bar{m}_I \in \mathbb{R}
$$

The blocks of $\hat {\mathcal G}^{-1}_{\mathbb C}$ are then complex conjugates of each other:

$$
\hat{\mathcal{G}}_{\mathbb{C}}^{-1} = \begin{pmatrix} -i\omega_n - \frac{\nabla^2}{m_+} - i\bar{m}_I \nabla^2 - \bar{\mu} - ih_I & 0\\ 0 & i\omega_n - \frac{\nabla^2}{m_+} + i\bar{m}_I \nabla^2 - \bar{\mu} + ih_I \end{pmatrix}
$$

Sign Problem Circumvented!!

The sign could be resolved, if the $\uparrow - \downarrow$ symmetry was reinstated. Define $\mathsf{complex}\text{-}\mathsf{valued}$ particle masses $m_\sigma^\mathbb{C}$ and chemical potentials $\mu_\sigma^\mathbb{C}$ such that:

$$
h = ih_I, \quad h_I \in \mathbb{R}, \qquad \qquad \bar{m} \equiv \frac{m_+^{\mathbb{C}}}{m_-^{\mathbb{C}}} = i \bar{m}_I, \quad \bar{m}_I \in \mathbb{R}
$$

The blocks of $\hat {\mathcal G}^{-1}_{\mathbb C}$ are then complex conjugates of each other:

$$
\hat{\mathcal{G}}_{\mathbb{C}}^{-1} = \begin{pmatrix} -i\omega_n - \frac{\nabla^2}{m_+} - i\bar{m}_I \nabla^2 - \bar{\mu} - ih_I & 0\\ 0 & i\omega_n - \frac{\nabla^2}{m_+} + i\bar{m}_I \nabla^2 - \bar{\mu} + ih_I \end{pmatrix}
$$

Sign Problem Circumvented!! But...

How to get back to real (physical) imbalance?

Physical Results from Imaginary Calculations

Suppose, some observable has been computed for imaginary mass-imbalance. Then fit the data points with, e.g., some polynomial $\langle \hat{O}^{\mathbb{C}} \rangle \sim \sum_{n=0}^{N_{\rm max}} \mathcal{C}_{\mathcal{O}}^{(n)} \bar{m}_{I}^{2n}$ and analytically continue $\bar{m}_{I} \to -i \bar{m}$.

Schematically:

Physical Results from Imaginary Calculations

Suppose, some observable has been computed for imaginary mass-imbalance. Then fit the data points with, e.g., some polynomial $\langle \hat{O}^{\mathbb{C}} \rangle \sim \sum_{n=0}^{N_{\rm max}} \mathcal{C}_{\mathcal{O}}^{(n)} \bar{m}_{I}^{2n}$ and analytically continue $\bar{m}_{I} \to -i \bar{m}$.

Schematically:

Are there any limits to the method, once Monte Carlo data is available?

Analytic Limits for the Method

Meaningful results can only be expected, if the series representation for $\langle \hat{\mathcal{O}}^{\mathbb{C}} \rangle$ converges in the complex \bar{m} -plane:

$$
\langle \hat{\mathcal{O}}^{\mathbb{C}} \rangle (-i \bar{m}_l) = \langle \hat{\mathcal{O}} \rangle (\bar{m}) \Leftrightarrow \bar{m}_l \leq r_{\bar{m}}
$$

The radius of convergence is determined by the closest singularity.

Analytic Limits for the Method

Meaningful results can only be expected, if the series representation for $\langle \hat{\mathcal{O}}^{\mathbb{C}} \rangle$ converges in the complex \bar{m} -plane:

$$
\langle \hat{\mathcal{O}}^{\mathbb{C}} \rangle (-i \bar{m}_l) = \langle \hat{\mathcal{O}} \rangle (\bar{m}) \Leftrightarrow \bar{m}_l \leq r_{\bar{m}}
$$

The radius of convergence is determined by the closest singularity.

Knowledge of $r_{\bar{m}}$ (the singularity structure) is crucial to ascertain reliability of the results, see also examples below.

 \Rightarrow Analytical pre-treatment is required

How can $r_{\bar{m}}$ be obtained?

Plan:

- **■** Perform fully analytical calculation φ =const mean-field case
- Investigate convergence properties
- Get an idea of the analytic structure of the theory and see what can be used for actual MC data

How can $r_{\bar{m}}$ be obtained?

Plan:

- **■** Perform fully analytical calculation φ =const mean-field case
- Investigate convergence properties
- Get an idea of the analytic structure of the theory and see what can be used for actual MC data

Mean-field theory:

Reduce
$$
Z = \int \mathcal{D}\varphi \mathcal{D}\varphi^* e^{-\Gamma[\varphi,\varphi^*]} \text{ to } \mathcal{Z}_{\text{MF}} = e^{-\Gamma[\varphi_0,\varphi_0^*]} \text{ and } \Gamma[\varphi_0,\varphi_0^*] \stackrel{!}{=} \text{min}
$$

How can $r_{\bar{m}}$ be obtained?

Plan:

- **■** Perform fully analytical calculation φ =const mean-field case
- Investigate convergence properties
- Get an idea of the analytic structure of the theory and see what can be used for actual MC data

Mean-field theory:

$$
\text{Reduce } \mathcal{Z} = \int \mathcal{D}\varphi \mathcal{D}\varphi^* e^{-\Gamma[\varphi,\varphi^*]}\text{ to }\mathcal{Z}_{\text{MF}} = e^{-\Gamma[\varphi_0,\varphi_0^*]}\text{ and }\Gamma[\varphi_0,\varphi_0^*] \stackrel{!}{=} \text{min}
$$

The grand canonical potential is then just given by

$$
\Omega_{\rm MF}=-\frac{1}{\beta}\ln \mathcal{Z}_{\rm MF}=\frac{1}{\beta}\mathsf{\Gamma}[\varphi_0,\varphi_0^*]
$$

Ω_{MF} and the Gap Equation

For $\varphi=$ const, det $\left|\hat{\mathcal{G}}^{-1}+\hat{\Phi}\right|$ can be computed analytically by performing a Bogoliubov transformation and the Matsubara sum.

Result ($m_+ = 1$, regularizing terms dropped):

$$
\Omega_{\rm MF}\left[|\varphi|^2\right]=\int\frac{\mathrm{d}^3q}{(2\pi)^3}\left\{\frac{\mathcal{E}_\varphi^2|\varphi|^2}{2q^2}-\frac{1}{\beta}\ln\left[\cosh\left(\beta\bar{m}q^2\right)+\cosh\left(\beta\sqrt{(q^2-\bar{\mu}^2)^2+\mathcal{E}_\varphi^2|\varphi|^2})\right]\right\}
$$

$\Omega_{\rm MF}$ and the Gap Equation

For $\varphi=$ const, det $\left|\hat{\mathcal{G}}^{-1}+\hat{\Phi}\right|$ can be computed analytically by performing a Bogoliubov transformation and the Matsubara sum.

Result ($m_+ = 1$, regularizing terms dropped):

$$
\Omega_{\rm MF}\left[|\varphi|^2\right]=\int\frac{\mathrm{d}^3q}{(2\pi)^3}\left\{\frac{\mathcal{g}_{\varphi}^2|\varphi|^2}{2q^2}-\frac{1}{\beta}\ln\left[\cosh\left(\beta\bar{m}q^2\right)+\cosh\left(\beta\sqrt{(q^2-\bar{\mu}^2)^2+\mathcal{g}_{\varphi}^2|\varphi|^2})\right]\right\}
$$

Gap equation with $\frac{g_{\varphi}^2 |\varphi_0|^2}{\bar{\mu}^2}$ $\frac{|\varphi_0|^2}{\bar{\mu}^2}\equiv \bar{\Delta}$:

$$
0 \stackrel{\cdot}{=} \int dq \left\{ \frac{1}{2} + \frac{q^2}{2\sqrt{(q^2-1)^2+\bar{\Delta}}} \left(\frac{1}{1+e^{\beta \bar{\mu} \left(q^2 \bar{m} + \sqrt{(q^2-1)^2+\bar{\Delta}}\right)}} - \frac{1}{1+e^{\beta \bar{\mu} \left(q^2 \bar{m} - \sqrt{(q^2-1)^2+\bar{\Delta}}\right)}} \right) \right\}
$$

Mean-Field Phase Diagram for the Mass-Imbalanced Unitary Fermi Gas

Comparing Phase Diagrams for \bar{m} and \bar{m}

Since the functional form of Ω_{MF} is known analytically, both phase diagrams can be determined directly:

- No critical point/1st order transition for \bar{m}_I
- Analytic continuation of phase boundary will not reproduce result for all $\bar{m} \Rightarrow$ radius of convergence $r_{\bar{m}}$?

Quantitative bounds on $r_{\bar{m}}$

Functional form of $\Omega_{\text{MF}}(\bar{m})$ not explicitly known due to integration:

$$
\Omega_{\rm MF}\left(\bar{m}\right)=\int\frac{\text{d}^3q}{(2\pi)^3}\left\{\frac{\text{g}_{\varphi}^2\left|\varphi\right|^2}{2q^2}-\frac{1}{\beta}\text{ln}\left[\cosh\left(\beta\bar{m}q^2\right)+\cosh\left(\beta\sqrt{(q^2-\bar{\mu}^2)^2+\text{g}_{\varphi}^2\left|\varphi\right|^2}\right)\right]\right\}
$$

Complex analysis: $r_{\bar{m}}$ bounded from below by singularity structure of the integrand, i.e. the log term.

Quantitative bounds on $r_{\bar{m}}$

Functional form of $\Omega_{\text{MF}}(\bar{m})$ not explicitly known due to integration:

$$
\Omega_{\rm MF}\left(\bar{m}\right)=\int\frac{\text{d}^3q}{(2\pi)^3}\left\{\frac{\text{g}_{\varphi}^2\left|\varphi\right|^2}{2q^2}-\frac{1}{\beta}\text{ln}\left[\cosh\left(\beta\bar{m}q^2\right)+\cosh\left(\beta\sqrt{(q^2-\bar{\mu}^2)^2+\text{g}_{\varphi}^2\left|\varphi\right|^2}\right)\right]\right\}
$$

Complex analysis: $r_{\bar{m}}$ bounded from below by singularity structure of the *integrand*, i.e. the log term. With $\Phi = g_{\varphi} \varphi$

$$
\Rightarrow \boxed{r_{\bar{m}} \ge r_{\min} = \sqrt{\frac{\beta^2 |\Phi|^2 + \pi^2}{\beta^2 |\Phi|^2 + \pi^2 + \beta^2 \bar{\mu}^2}}
$$

Properties and Usefulness of r_{\min}

$$
r_{\min} = \sqrt{\frac{\beta^2 |\Phi|^2 + \pi^2}{\beta^2 |\Phi|^2 + \pi^2 + \beta^2 \bar{\mu}^2}}
$$

Limiting cases:

• $r_{min}|_{T\rightarrow\infty}=1$, i.e. access to all possible \bar{m} for high temperatures $r_{min}|_{T\rightarrow 0} = \sqrt{\frac{|\Phi|^2}{|\Phi|^2 + r}}$ $\frac{|\Psi|^2}{|\Phi|^2 + \bar{\mu}^2}$, i.e. (partial) access to symmetry broken phases at $T = 0$

Properties and Usefulness of r_{\min}

$$
r_{\min} = \sqrt{\frac{\beta^2 |\Phi|^2 + \pi^2}{\beta^2 |\Phi|^2 + \pi^2 + \beta^2 \bar{\mu}^2}}
$$

Limiting cases:

• $r_{min}|_{T\rightarrow\infty}=1$, i.e. access to all possible \bar{m} for high temperatures $r_{min}|_{T\rightarrow 0} = \sqrt{\frac{|\Phi|^2}{|\Phi|^2 + r}}$ $\frac{|\Psi|^2}{|\Phi|^2 + \bar{\mu}^2}$, i.e. (partial) access to symmetry broken phases at $T = 0$

Applicability:

- If $\Omega^{\mathbb{C}}$ itself is computed for certain (\bar{m}_I, T) , T fixed, it can be continued to Ω inside the interval $[0, r_{\min}(T)]$ Physical observables can then be obtained from Ω .
- Additional expansions of $\Omega^{\mathbb{C}}$ around some $\bar{m}>0$ may vastly extend regime of applicability [F. Karbstein, M. Thies '07]

Properties and Usefulness of r_{\min}

$$
r_{\min} = \sqrt{\frac{\beta^2 |\Phi|^2 + \pi^2}{\beta^2 |\Phi|^2 + \pi^2 + \beta^2 \bar{\mu}^2}}
$$

Limiting cases:

• $r_{min}|_{T\rightarrow\infty}=1$, i.e. access to all possible \bar{m} for high temperatures $r_{min}|_{T\rightarrow 0} = \sqrt{\frac{|\Phi|^2}{|\Phi|^2 + r}}$ $\frac{|\Psi|^2}{|\Phi|^2 + \bar{\mu}^2}$, i.e. (partial) access to symmetry broken phases at $T = 0$

Applicability:

- If $\Omega^{\mathbb{C}}$ itself is computed for certain (\bar{m}_I, T) , T fixed, it can be continued to Ω inside the interval $[0, r_{\min}(T)]$ Physical observables can then be obtained from Ω .
- Additional expansions of $\Omega^{\mathbb{C}}$ around some $\bar{m}>0$ may vastly extend regime of applicability [F. Karbstein, M. Thies '07]
- \bullet If observables $\langle \hat{\mathcal{O}}^{\mathbb{C}} \rangle$ are computed directly, as it is most often the case with Monte Carlo, things get a little more complicated...

Application I: Phase Boundary

Information provided by Ω:

- \bullet Boundary $T_c(\bar{m})$ of phase with broken symmetry is defined for every \bar{m} by the lowest T with $\bar{\Delta} = 0$
- Locally smooth manifold up to critical point, global properties not accessible due to implicit form

Application I: Phase Boundary

Information provided by Ω:

- Boundary $T_c(\bar{m})$ of phase with broken symmetry is defined for every \bar{m} by the lowest T with $\Delta = 0$
- Locally smooth manifold up to critical point, global properties not accessible due to implicit form
- Analytic continuation of boundary is meaningful if

$$
\Omega[T_c(\bar{m}),\bar{m},\bar{\Delta}=0] \text{ is convergent} \Rightarrow r_{\min}(|\Phi|^2=0) = \sqrt{\frac{T^2\pi^2}{T^2\pi^2+\bar{\mu}^2}}
$$

Application I: Phase Boundary

Information provided by Ω:

- Boundary $T_c(\bar{m})$ of phase with broken symmetry is defined for every \bar{m} by the lowest T with $\Delta = 0$
- Locally smooth manifold up to critical point, global properties not accessible due to implicit form
- Analytic continuation of boundary is meaningful if

$$
\Omega[T_c(\bar{m}), \bar{m}, \bar{\Delta} = 0] \text{ is convergent} \Rightarrow r_{\min}(|\Phi|^2 = 0) = \sqrt{\frac{T^2 \pi^2}{T^2 \pi^2 + \bar{\mu}^2}}
$$

Phase Boundary from \bar{m}_I

Continuation of the \bar{m}_I data yields:

Fair reproduction of phase boundary up to the critical point • Non-analytic behaviour of $T_c(\bar{m})$ itself limits applicability

Phase Boundary from \bar{m}_l

Continuation of the \bar{m}_I data yields:

- Fair reproduction of phase boundary up to the critical point
- Non-analytic behaviour of $T_c(\bar{m})$ itself limits applicability
- • Way out: computation & continuation of Ω itself, critical point should then be within reach

Application II: Bertsch Parameter $ξ_{T=0}$

Definition:

$$
\xi = \frac{\bar{\mu}}{\epsilon_F}, \qquad \qquad \xi^{\mathrm{Free}}_{\mathcal{T}=0} = 1 \quad \forall \bar{m} \in [0,1)
$$

Application II: Bertsch Parameter *ξ*T=⁰

- Smooth observable implicitly depends on ∆¯
- By complex analysis: r*^ξ* ≤ min[rmin*,*r∆]
- First order phase transition is expected to limit continuation of *ξ* C

- Good reproduction of *ξ* up to the ∆¯ discontinuity
- ■ Smooth observables indeed limited by r_{min} or r_{Δ}

Detour: Population-Imbalance

[J. Braun, J.-W. Chen, J. Deng, J. Drut, B. Friman, C.-T. Ma, Y.-D. Tsai '12]

$$
\mathcal{G}_{\uparrow}^{-1} = -i\omega_n - \frac{\nabla^2}{m_+} - i\bar{m}_I \nabla^2 - \bar{\mu} - i h_I, \qquad \omega_n = (2n+1)\pi \, \mathcal{T}
$$

Due to interference with Matsubara frequencies: $h_I \stackrel{!}{<} \pi\,T$ • Continuation of $\xi_{T=0}$ not possible for population imbalanced case Structurally similar to finite *µ* problem in lattice QCD

Remarks on r_{\min} for Monte Carlo

Schematic structure of the grand canonical potential from Monte Carlo:

$$
\Omega_{MC} \sim \ln \left\{ \sum_{\{\varphi(x)\}} \det \left[\hat{\mathcal{G}}^{-1} + \hat{\Phi}\right] e^{-\int m_{\varphi}^2 |\varphi(x)|^2} \right\}
$$

Rigorous statements:

- For every fixed configuration *ϕ*(x), the corresponding analytical calculation would correspond to the above mean-field procedure
- **○** Overall radius of convergence: $r_{\text{MC}} \geq \min_{\{\varphi(x)\}}[r_{\min}]$
- **■** Problem: no easy way to calculate r_{\min} for general $\varphi(x)$

Remarks on r_{\min} for Monte Carlo

Schematic structure of the grand canonical potential from Monte Carlo:

$$
\Omega_{MC} \sim \ln \left\{ \sum_{\{\varphi(x)\}} \det \left[\hat{\mathcal{G}}^{-1} + \hat{\Phi} \right] e^{-\int m_{\varphi}^2 |\varphi(x)|^2} \right\}
$$

Rigorous statements:

- For every fixed configuration *ϕ*(x), the corresponding analytical calculation would correspond to the above mean-field procedure
- **○** Overall radius of convergence: $r_{\text{MC}} \geq \min_{\{\varphi(x)\}}[r_{\min}]$
- **■** Problem: no easy way to calculate r_{\min} for general $\varphi(x)$

First practical estimate: $r_{\text{MC}} \ge r_{\text{min}}(\varphi = 0)$

Summary

- Imbalanced strongly interacting Fermi gases are tough systems to compute with Monte Carlo methods due to a sign problem
- Imaginary imbalance parameters remove the sign problem
	- Physical observables may be extracted by analytic continuation
	- Large parts of the phase diagram of the 3D unitary Fermi gas are in reach
- Extraction of physical results is limited by convergence issues
	- Radius of convergence of the grand potential Ω
	- Analyticity of the observables and dependencies
	- Type of imbalance
- Analytic structure at mean-field level provides hints for treatment of genuine Monte Carlo data

Outlook

- Extend investigation of convergence properties of observables
- Make connection to Monte Carlo more rigorous, ideally provide rigorous quantitative bounds
- Apply method in an actual Monte Carlo study

 \Rightarrow Work in progress by Joaquín Drut \Leftarrow