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Physics and Versatility of Ultracold Fermi Gases

Why we should care about physics of cold gases:

o "Simple” systems compared to e.g. QCD or nuclear physics, but
similar behaviour in certain regimes (e.g. HIC) [e.s. A. Adams et al. '12]
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similar behaviour in certain regimes (e.g. HIC) [e.g. A. Adams et al. '12]
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o Excellent experimental access: precise control in optical traps, tuning
of interactions by Feshbach resonances

Scattering length

Potential depth V,

S. Jochim, Uni Heidelberg

[M. Randeria, E. Taylor '08]



Mass-Imbalanced Fermi Gases
Introduction

Physics and Versatility of Ultracold Fermi Gases

Why we should care about physics of cold gases:

o "Simple"” systems compared to e.g. QCD or nuclear physics, but
similar behaviour in certain regimes (e.g. HIC) [e.s. A. Adams et al. '12]

o Abundance of interesting phenomena: BEC/BCS crossover,
(un)conventional superfluidity, topological order...

o Excellent experimental access: precise control in optical traps, tuning
of interactions by Feshbach resonances

Why “simple” does not mean “easy":

o Lack of small parameter in strongly interacting regimes invalidates
naive perturbation theory




Mass-Imbalanced Fermi Gases
Introduction

Physics and Versatility of Ultracold Fermi Gases

Why we should care about physics of cold gases:

o "Simple"” systems compared to e.g. QCD or nuclear physics, but
similar behaviour in certain regimes (e.g. HIC) [e.s. A. Adams et al. '12]

o Abundance of interesting phenomena: BEC/BCS crossover,
(un)conventional superfluidity, topological order...

o Excellent experimental access: precise control in optical traps, tuning
of interactions by Feshbach resonances

Why “simple” does not mean “easy":

o Lack of small parameter in strongly interacting regimes invalidates
naive perturbation theory

o Monte Carlo calculations often severely hampered by sign problems




Idea of the Talk

How to get rid of (some) sign problems:
o Identify problematic quantity xs and change into i - xs

o Do an Auxiliary Field Quantum Monte Carlo calculation without sign
problem

o Analytically continue results from i - xs to physical value xg



Idea of the Talk

How to get rid of (some) sign problems:
o Identify problematic quantity xs and change into i - xs

o Do an Auxiliary Field Quantum Monte Carlo calculation without sign
problem

o Analytically continue results from i - xs to physical value xg

This idea has been proposed for lattice QCD at finite chemical potential
some time ago. [M. Alford, A.Kapustin, F.Wilczek '98; P. de Forcrand, O. Philipsen '02]
Adapting this approach to imbalanced ultracold Fermi gases will be the
main subject of this talk.



Describing the Unitary Fermi Gas

Action of a two component 3D Fermi gas with contact interaction:
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Describing the Unitary Fermi Gas

Action of a two component 3D Fermi gas with contact interaction:
B 3 v2 — ok [k
Storvd = [ ar [@x3 X vz (0 5 - u) e+ 2iviv,
0 o=t

The bare coupling g is given by

__ _ 1,
g I:Ag 128_7_(_(351_Creg/\)

with UV-cutoff A and two-body scattering length a;.

Unitary regime: a;l —0



Symmetry and Spontaneous Symmetry Breaking
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U(1)-Symmetry of the action:
Py — €y wr > Yy eT
Spontaneously broken if (1 ¢1) # 0



Symmetry and Spontaneous Symmetry Breaking

B V2
ool = [ o [@xd 3 vz (0 5 —u) v+ 2iviv,
o=",4
U(1)-Symmetry of the action:
Yry — €y wr > Yy eT
Spontaneously broken if (1 ¢1) # 0

= Condensation of bound
states
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Partition Function and Observables

Partition function and observables from the path integral:

A 1
Z= / DYy Dipe Sl = (0) = Z / Dipy Dip OS]
Hubbard-Stratonovich transformation and integration of fermion fields:

1=N [ DpDgre™ /o[ Pxmee L
mg

zZ= /D(p'Dgo* det [g“l n <T>] o= Jdr [ dx mieet

. v?
G (e S (L0 5
0 Wy — 2= — —8p®¥ 0

2m

= Starting point for actual computations <



Mass-Imbalanced Fermi Gases
The Sign Problem

Positivity of the Fermion Determinant

Z — /D(,ODQD*dEt |:g/\71 +d\>j|e—fd7'fd3x mi,tp‘P*

If the fermion determinant is positive for all admissible ¢(x), a positive
definite probability measure can be defined for Monte Carlo calculations -
there is no sign problem.

R A 0 ”n
det G~ ~ det ~ o =det {AA*} >0

g {O A*} -
Since the interaction does not break the symmetry between 1 and |
fermions, the symmetry of the eigenvalue distribution is conserved for

finite ¢.

Thus, the fermion determinant is positive for all ¢(x).



Introducing Imbalance
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Introducing Imbalance

2
5[¢T,¢¢] :/ dT/d3 Z Qﬁ <8 - V_ _/J/o') ¢a+g¢1*wl,¢i'¢1‘
=T}

Experimental relevance:

o Population imbalance (i, ): Tuning of the species relative population
Via a magnetic fleld h [e.g. Zwierlein et al. '06, Partidge et al. '06]

o Mass imbalance (m,): Mixtures of different elements, e.g. ®Li and

0 K [e.g. A. Gezerlis, S. Gandolfi, K.E. Schmidt, J. Carlson '09 ;K.B. Gubbels, J.E. Baarsma, H.T.C. Stoof '09]

BUT



Introducing Imbalance

B 2
Storid = [ o [@xq 8 vz (0 g e ) o+ @0TTRL

o=t Mo

Population- and/or mass-imbalance destroy the symmetry between 1 and
J particles and thus also the positivity of the fermion determinant:

. 2 2 _
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Sign Problem!



The Sign Problem and Imaginary Imbalance

The sign problem could be resolved, if the 1 — | symmetry was
reinstated. Define complex-valued particle masses mf and chemical
potentials u& such that:

h=ih;, h €R, m=—F=im, meER

The blocks of C;q;l are again complex conjugates of each other:

(—iw,, — ¥ imV2 — fiihy 0 )

gA(El = ™ 2
0 fwn — %+im,v2 — fitih
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The Sign Problem and Imaginary Imbalance

The sign problem could be resolved, if the 1 — | symmetry was
reinstated. Define complex-valued particle masses m%’ and chemical
potentials u& such that:

3
fa

h=ih;, h €R, m= =im, meR

3
e

The blocks of QAél are again complex conjugates of each other:

gA_l N 7/0},, - Zfi*iﬁ‘uvz - ﬂ*ih/ O
© 0 itwn — iy V2 — fitihy

Population- and mass-imbalance behave quiet differently. For population
imbalance, see

[J. Braun, J.-W. Chen, J. Deng, J. Drut, B. Friman, C.-T. Ma, Y.-D. Tsai '12]

For a large part of the talk: purely mass imbalanced case (h = 0)



The Sign Problem and Imaginary Imbalance
The sign could be resolved, if the T — | symmetry was reinstated. Define

complex-valued particle masses m® and chemical potentials 4~ such
that:

=im;, meR
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The Sign Problem and Imaginary Imbalance

The sign could be resolved, if the T — | symmetry was reinstated. Define
complex-valued particle masses m® and chemical potentials 4~ such
that:

=im;, meR

|3@|+3@

h=ih, hER, =

The blocks of QA(El are then complex conjugates of each other:

g [ien N iV = fi—ihy 0
© 0 itwn — i V2 — fitihy

Sign Problem Circumvented!! gut...

How to get back to real (physical) imbalance?



Physical Results from Imaginary Calculations

Suppose, some observable has been computed for imaginary
mass-imbalance. Then fit the data points with, e.g., some polynomial
(OF) ~ ZHN‘Z“S" C((Q")ﬁﬁ" and analytically continue m; — —im.

Schematically:
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Physical Results from Imaginary Calculations

Suppose, some observable has been computed for imaginary
mass-imbalance. Then fit the data points with, e.g., some polynomial

(OF) ~ ZnN‘z“g" C((Q")ﬁﬁ" and analytically continue m; — —im.

Schematically:
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Are there any limits to the method, once Monte Carlo data is available?



Analytic Limits for the Method

Meaningful results can only be expected,
if the series representation for (O") con-
verges in the complex m-plane:

(OF)(=imy) = (O)(m) & i < rn

3

Tm
The radius of convergence is determined
by the closest singularity.




Analytic Limits for the Method

Meaningful results can only be expected,
if the series representation for (Ov) con-
verges in the complex m-plane:

(O) (i) = (O)(m) & i < ra

The radius of convergence is determined
by the closest singularity.

3

T

Knowledge of rz (the singularity structure) is crucial to ascertain
reliability of the results, see also examples below.

= Analytical pre-treatment is required



How can r5 be obtained?

Plan:
o Perform fully analytical calculation ¢ =const mean-field case
o Investigate convergence properties

o Get an idea of the analytic structure of the theory and see what can
be used for actual MC data
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How can r5 be obtained?

Plan:
o Perform fully analytical calculation ¢ =const mean-field case
o Investigate convergence properties
o Get an idea of the analytic structure of the theory and see what can

be used for actual MC data
Mean-field theory:
Reduce Z = /D(ngo*e_r[‘P""*] to Zyp = e 9% and Mo, p3] = min

The grand canonical potential is then just given by

1 1
Qur = 3 In Zmp = Er[wo,%]



Quir and the Gap Equation

For ¢ =const, det |G~* + @} can be computed analytically by
performing a Bogoliubov transformation and the Matsubara sum.

Result (m;. = 1,regularizing terms dropped):

e 1] = [ oo { S = Yoo (990) + o o/ 7 21 |




Quir and the Gap Equation

For ¢ =const, det [Q‘l + @} can be computed analytically by
performing a Bogoliubov transformation and the Matsubara sum.

Result (m;. = 1,regularizing terms dropped):

2
e 1] = [ oo { S = Yoo (990) + o o/ 7 21 |

g(,,ILPtJI2 —

Gap equation with =25

ol/dq{

1

A:
+ —
_ 1)2 TA 2mi/(@-1745) - eﬁn(#m—«(#—nhé)
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Mean-Field Phase Diagram for the Mass-Imbalanced
Unitary Fermi Gas

T
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Position of the critical point: %, f_ncp) ~ (0.47,0.37)



Comparing Phase Diagrams for m and m;

Since the functional form of Qpr is known analytically, both phase
diagrams can be determined directly:
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o No critical point/1st order transition for m;

o Analytic continuation of phase boundary will not reproduce result for
all m = radius of convergence rz?



Quantitative bounds on r5

Functional form of Qyr (/M) not explicitly known due to integration:

d3 2 2
QMF(rn)=/(2W;’3 {g“;';zl —%In [cosh (8mg”) + cosh (5 (q2—ﬁ2)2+g3,|w2)]}

Complex analysis: rz bounded from below by singularity structure of the
integrand, i.e. the log term.




Quantitative bounds on r5

Functional form of Qyr (/M) not explicitly known due to integration:

d3 2 2
QMF(rn)=/(2W;’3 {g“;';' —%In [cosh (8mg”) + cosh (5 (q2—ﬁ2)2+g3,|¢>2)]}

Complex analysis: rz bounded from below by singularity structure of the
integrand, i.e. the log term. With ® = g

FloP +
= |rm > I'min = =
m = \/ﬂ2|¢|2+ﬂ.2+ﬁ2M2




Properties and Usefulness of ryin

[
min = ﬂ2|¢|2+71'2 +,82,1_L2

Limiting cases:
O FminlT—00 =1, i.e. access to all possible m for high temperatures
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Properties and Usefulness of ryin

[ pepie
min = ﬂ2|¢|2 + 71-2 _’_ﬂ2ﬁ2

O FminlT—00 =1, i.e. access to all possible m for high temperatures

2
O FminlT—0 = ’/\JI?——LFLZ’ i.e. (partial) access to symmetry broken
phases at T =0

Limiting cases:

Applicability:
o If Q¥ itself is computed for certain (my, T), T fixed, it can be
continued to 2 inside the interval [0, fmin(T)[
Physical observables can then be obtained from Q.

o Additional expansions of Q¥ around some m > 0 may vastly extend
regime of applicability [F. Karbstein, M. Thies '07]



Mass-Imbalanced Fermi Gases
Mean-Field Results

Properties and Usefulness of ry;y,

A /6’2|¢|2+7r2
min = 52|¢|2+7r2+ﬂ2ﬂ2

© Imin|T—oo = 1, i.e. access to all possible m for high temperatures

2
O Fmin|T—0 = ,/Mfﬁ, i.e. (partial) access to symmetry broken
phases at T =0

Limiting cases:

Applicability:

o If Q¥ itself is computed for certain (my, T), T fixed, it can be
continued to Q inside the interval [0, finin(T)[
Physical observables can then be obtained from Q.

o Additional expansions of Q¥ around some m > 0 may vastly extend
regime of applicability [F. Karbstein, M. Thies '07]

o If observables (O€) are computed directly, as it is most often the
case with Monte Carlo, things get a little more complicated...
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o Boundary T.(m) of phase with broken symmetry is defined for every
m by the lowest T with A =0
o Locally smooth manifold up to critical point, global properties not
accessible due to implicit form
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Information provided by :
o Boundary T.(m) of phase with broken symmetry is defined for every
m by the lowest T with A =0
o Locally smooth manifold up to critical point, global properties not
accessible due to implicit form
o Analytic continuation of boundary is meaningful if

Q[T.(m), m, A = 0] is convergent = ryin(|®> = 0) = ,/T;ﬂzz%;
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Application |: Phase Boundary

Information provided by :
o Boundary T.(m) of phase with broken symmetry is defined for every
m by the lowest T with A =0
o Locally smooth manifold up to critical point, global properties not
accessible due to implicit form
o Analytic continuation of boundary is meaningful if

Q[T.(m), m, A = 0] is convergent = ryin(|®> = 0) = ,/T;;z%;
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Phase Boundary from m;

Continuation of the m; data yields:
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o Fair reproduction of phase boundary up to the critical point
o Non-analytic behaviour of T (/) itself limits applicability



Phase Boundary from m;

Continuation of the m; data yields:
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0 0.2 0.4 0.6 0.8 1 0
m 0 01 02 03 04 05 06

o Fair reproduction of phase boundary up to the critical point
o Non-analytic behaviour of T (/) itself limits applicability

o Way out: computation & continuation of  itself, critical point
should then be within reach
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Application |I: Bertsch Parameter £7-¢

Definition: _
= £ fee =1 vime 0,1
f - ) ET:O - me [ ’ )
€F
1.1 T T T T T T
1t A discontinuous !
wp

0 0.1 02 03 04 05 06

o Smooth observable implicitly depends on A
o By complex analysis: re < min[rmin, ra]

o First order phase transition is expected to limit continuation of ¢©



Bertsch Parameter from m;

3
cocoo
W

0 0.1 02 03 04 05 06

o Good reproduction of ¢ up to the A discontinuity
o Smooth observables indeed limited by ryi, or ra



Detour: Population-Imbalance
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[J. Braun, J.-W. Chen, J. Deng, J. Drut, B. Friman, C.-T. Ma, Y.-D. Tsai '12]

2
Q{lzfiw,,—v——iﬁqlvz—ﬁ—ih,, wp=02n+ 7T
my

|
o Due to interference with Matsubara frequencies: hy <« T

o Continuation of £7—¢ not possible for population imbalanced case
o Structurally similar to finite p problem in lattice QCD



Remarks on ry;, for Monte Carlo

Schematic structure of the grand canonical potential from Monte Carlo:

Quc~In{ S det [Q—l " @} LA
{20}

Rigorous statements:

o For every fixed configuration ¢(x), the corresponding analytical
calculation would correspond to the above mean-field procedure

o Overall radius of convergence: rvyc > Mingy(x)3[fmin]
o Problem: no easy way to calculate ry, for general ¢(x)



Remarks on ry;, for Monte Carlo

Schematic structure of the grand canonical potential from Monte Carlo:

Que ~Ind Y det |G+ ] o= J mletar?
{e(x)}
Rigorous statements:

o For every fixed configuration ¢(x), the corresponding analytical
calculation would correspond to the above mean-field procedure

o Overall radius of convergence: rvyc > Mingy(x)3[fmin]
o Problem: no easy way to calculate ry, for general ¢(x)

First practical estimate: ryc > fmin( = 0)
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Summary and Outlook

Summary

Imbalanced strongly interacting Fermi gases are tough systems to
compute with Monte Carlo methods due to a sign problem

©

©

Imaginary imbalance parameters remove the sign problem
o Physical observables may be extracted by analytic continuation
o Large parts of the phase diagram of the 3D unitary Fermi gas are in
reach
o Extraction of physical results is limited by convergence issues
o Radius of convergence of the grand potential Q
o Analyticity of the observables and dependencies
o Type of imbalance

©

Analytic structure at mean-field level provides hints for treatment of
genuine Monte Carlo data



Outlook

o Extend investigation of convergence properties of observables

o Make connection to Monte Carlo more rigorous, ideally provide
rigorous quantitative bounds

o Apply method in an actual Monte Carlo study

= Work in progress by Joaquin Drut <
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