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Mass-Imbalanced Fermi Gases
Introduction

Idea of the Talk
How to get rid of (some) sign problems:

Identify problematic quantity xs and change into i · xs

Do an Auxiliary Field Quantum Monte Carlo calculation without sign
problem
Analytically continue results from i · xs to physical value xs

This idea has been proposed for lattice QCD at finite chemical potential
some time ago. [M. Alford, A.Kapustin, F.Wilczek ’98; P. de Forcrand, O. Philipsen ’02]
Adapting this approach to imbalanced ultracold Fermi gases will be the
main subject of this talk.
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The Sign Problem

Describing the Unitary Fermi Gas
Action of a two component 3D Fermi gas with contact interaction:

S[ψ↑, ψ↓] =

∫ β

0
dτ
∫

d3x

∑
σ=↑,↓

ψ∗σ

(
∂τ −

∇2

2m − µ
)
ψσ + ḡψ∗↑ψ∗↓ψ↓ψ↑



The bare coupling ḡ is given by

ḡ−1 = Λg−1 =
1
8π
(
a−1s − cregΛ

)
with UV-cutoff Λ and two-body scattering length as .

Unitary regime: a−1S → 0
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Symmetry and Spontaneous Symmetry Breaking

S[ψ↑, ψ↓] =

∫ β

0
dτ
∫

d3x
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σ=↑,↓

ψ∗σ

(
∂τ −

∇2

2m − µ
)
ψσ + ḡψ∗↑ψ∗↓ψ↓ψ↑


U(1)-Symmetry of the action:

ψ↑,↓ −→ e iαψ↑,↓; ψ∗↑,↓ −→ ψ∗↑,↓e−iα

Spontaneously broken if 〈ψ↓ψ↑〉 6= 0

⇒ Condensation of bound
states
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Mass-Imbalanced Fermi Gases
The Sign Problem

Partition Function and Observables
Partition function and observables from the path integral:

Z =

∫
Dψ↑Dψ↓e−S[ψ↑,ψ↓] ⇒ 〈Ô〉 =

1
Z

∫
Dψ↑Dψ↓Oe−S[ψ↑,ψ↓]

Hubbard-Stratonovich transformation and integration of fermion fields:

1 = N
∫
DϕDϕ∗e−

∫
dτ
∫

d3x m2
ϕϕϕ

∗
, ϕ −→ ϕ− gϕ

m2
ϕ

ψ↑ψ↓

Z =

∫
DϕDϕ∗ det

[
Ĝ−1 + Φ̂

]
e−
∫

dτ
∫

d3x m2
ϕϕϕ

∗

Ĝ−1 =

(
−iωn − ∇

2

2m − µ 0
0 iωn − ∇

2

2m − µ

)
, Φ̂ =

(
0 gϕϕ

−gϕϕ∗ 0

)
⇒ Starting point for actual computations ⇐



Mass-Imbalanced Fermi Gases
The Sign Problem

Partition Function and Observables
Partition function and observables from the path integral:

Z =

∫
Dψ↑Dψ↓e−S[ψ↑,ψ↓] ⇒ 〈Ô〉 =
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Ĝ−1 + Φ̂

]
e−
∫

dτ
∫

d3x m2
ϕϕϕ

∗
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The Sign Problem

Positivity of the Fermion Determinant

Z =

∫
DϕDϕ∗det

[
Ĝ−1 + Φ̂

]
e−
∫

dτ
∫

d3x m2
ϕϕϕ

∗

If the fermion determinant is positive for all admissible ϕ(x), a positive
definite probability measure can be defined for Monte Carlo calculations -
there is no sign problem.

det Ĝ−1 ∼ det
{

Â 0
0 Â∗

}
= det

[
ÂÂ∗

]
≥ 0

Since the interaction does not break the symmetry between ↑ and ↓
fermions, the symmetry of the eigenvalue distribution is conserved for
finite ϕ.

Thus, the fermion determinant is positive for all ϕ(x).
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Introducing Imbalance

S[ψ↑, ψ↓] =

∫ β

0
dτ
∫

d3x

∑
σ=↑,↓

ψ∗σ

(
∂τ −

∇2

2mσ
− µσ

)
ψσ + ḡψ∗↑ψ∗↓ψ↓ψ↑



Experimental relevance:
Population imbalance (µσ): Tuning of the species relative population
via a magnetic field h [e.g. Zwierlein et al. ’06, Partidge et al. ’06]

Mass imbalance (mσ): Mixtures of different elements, e.g. 6Li and
40K [e.g. A. Gezerlis, S. Gandolfi, K.E. Schmidt, J. Carlson ’09 ;K.B. Gubbels, J.E. Baarsma, H.T.C. Stoof ’09]

BUT
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Introducing Imbalance

S[ψ↑, ψ↓] =

∫ β

0
dτ
∫

d3x

∑
σ=↑,↓

ψ∗σ

(
∂τ −

∇2

2mσ
− µσ

)
ψσ + ḡψ∗↑ψ∗↓ψ↓ψ↑


Population- and/or mass-imbalance destroy the symmetry between ↑ and
↓ particles and thus also the positivity of the fermion determinant:

Ĝ−1 =

(
−iωn − ∇

2

m+
− ∇

2

m− − µ̄−h 0
0 iωn − ∇

2

m+
+ ∇

2

m− − µ̄+h

)

with
µ̄ =

µ↑ + µ↓
2 , h =

µ↑ − µ↓
2

m+ =
4m↑m↓

m↓ + m↑
, m− =

4m↑m↓
m↓ −m↑

Sign Problem!
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The Sign Problem and Imaginary Imbalance
The sign problem could be resolved, if the ↑ − ↓ symmetry was
reinstated. Define complex-valued particle masses mCσ and chemical
potentials µCσ such that:

h = ihI , hI ∈ R, m̄ ≡
mC+
mC−

= im̄I , m̄I ∈ R

The blocks of Ĝ−1
C

are again complex conjugates of each other:

Ĝ−1
C

=

(
−iωn − ∇

2

m+
−im̄I∇2 − µ̄−ihI 0

0 iωn − ∇
2

m+
+im̄I∇2 − µ̄+ihI

)

Population- and mass-imbalance behave quiet differently. For population
imbalance, see
[J. Braun, J.-W. Chen, J. Deng, J. Drut, B. Friman, C.-T. Ma, Y.-D. Tsai ’12]
For a large part of the talk: purely mass imbalanced case (h = 0)
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The Sign Problem and Imaginary Imbalance
The sign could be resolved, if the ↑ − ↓ symmetry was reinstated. Define
complex-valued particle masses mCσ and chemical potentials µCσ such
that:

h = ihI , hI ∈ R, m̄ ≡
mC+
mC−

= im̄I , m̄I ∈ R
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)

Sign Problem Circumvented!!

But...

How to get back to real (physical) imbalance?
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The Sign Problem

Physical Results from Imaginary Calculations
Suppose, some observable has been computed for imaginary
mass-imbalance. Then fit the data points with, e.g., some polynomial
〈ÔC〉 ∼

∑Nmax
n=0 C (n)

O m̄2n
I and analytically continue m̄I → −im̄.

Schematically:

Are there any limits to the method, once Monte Carlo data is available?
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The Sign Problem

Analytic Limits for the Method

Meaningful results can only be expected,
if the series representation for 〈ÔC〉 con-
verges in the complex m̄-plane:

〈ÔC〉(−im̄I) = 〈Ô〉(m̄) ⇔ m̄I ≤ rm̄

The radius of convergence is determined
by the closest singularity.

Knowledge of rm̄ (the singularity structure) is crucial to ascertain
reliability of the results, see also examples below.

⇒ Analytical pre-treatment is required
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Mean-Field Results

How can rm̄ be obtained?
Plan:

Perform fully analytical calculation ϕ =const mean-field case
Investigate convergence properties
Get an idea of the analytic structure of the theory and see what can
be used for actual MC data

Mean-field theory:

Reduce Z =

∫
DϕDϕ∗e−Γ[ϕ,ϕ∗] to ZMF = e−Γ[ϕ0,ϕ

∗
0 ] and Γ[ϕ0, ϕ

∗
0 ]

!
= min

The grand canonical potential is then just given by

ΩMF = − 1
β
lnZMF =

1
β

Γ[ϕ0, ϕ
∗
0 ]
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Mean-Field Results

ΩMF and the Gap Equation

For ϕ =const, det
[
Ĝ−1 + Φ̂

]
can be computed analytically by

performing a Bogoliubov transformation and the Matsubara sum.

Result (m+ = 1,regularizing terms dropped):

ΩMF
[
|ϕ|2
]

=

∫
d3q

(2π)3

{
g2
ϕ|ϕ|

2

2q2 −
1
β

ln
[
cosh
(
βm̄q2

)
+ cosh

(
β
√

(q2 − µ̄2)2 + g2
ϕ|ϕ|2

)]}

Gap equation with g2
ϕ|ϕ0|2

µ̄2 ≡ ∆̄:

0 !
=

∫
dq

{
1
2

+
q2

2
√

(q2 − 1)2 + ∆̄

(
1

1 + e
βµ̄

(
q2m̄+
√

(q2−1)2+∆̄

) − 1

1 + e
βµ̄

(
q2m̄−
√

(q2−1)2+∆̄

))}
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Ĝ−1 + Φ̂

]
can be computed analytically by

performing a Bogoliubov transformation and the Matsubara sum.

Result (m+ = 1,regularizing terms dropped):

ΩMF
[
|ϕ|2
]

=

∫
d3q

(2π)3

{
g2
ϕ|ϕ|

2

2q2 −
1
β

ln
[
cosh
(
βm̄q2

)
+ cosh

(
β
√

(q2 − µ̄2)2 + g2
ϕ|ϕ|2

)]}

Gap equation with g2
ϕ|ϕ0|2

µ̄2 ≡ ∆̄:

0 !
=

∫
dq

{
1
2

+
q2

2
√

(q2 − 1)2 + ∆̄

(
1

1 + e
βµ̄

(
q2m̄+
√

(q2−1)2+∆̄

) − 1

1 + e
βµ̄

(
q2m̄−
√

(q2−1)2+∆̄

))}



Mass-Imbalanced Fermi Gases
Mean-Field Results

Mean-Field Phase Diagram for the Mass-Imbalanced
Unitary Fermi Gas

Position of the critical point:
(

TCP
µ̄ , m̄CP

)
≈ (0.47, 0.37)



Mass-Imbalanced Fermi Gases
Mean-Field Results

Comparing Phase Diagrams for m̄ and m̄I

Since the functional form of ΩMF is known analytically, both phase
diagrams can be determined directly:

No critical point/1st order transition for m̄I

Analytic continuation of phase boundary will not reproduce result for
all m̄ ⇒ radius of convergence rm̄?
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Mean-Field Results

Quantitative bounds on rm̄

Functional form of ΩMF(m̄) not explicitly known due to integration:

ΩMF (m̄) =

∫
d3q

(2π)3

{
g2
ϕ|ϕ|

2

2q2 −
1
β
ln
[
cosh
(
βm̄q2

)
+ cosh

(
β
√

(q2 − µ̄2)2 + g2
ϕ|ϕ|2

)]}
Complex analysis: rm̄ bounded from below by singularity structure of the
integrand, i.e. the log term.

With Φ = gϕϕ

⇒ rm̄ ≥ rmin =

√
β2|Φ|2 + π2

β2|Φ|2 + π2 + β2µ̄2
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Mean-Field Results

Properties and Usefulness of rmin

rmin =

√
β2|Φ|2 + π2

β2|Φ|2 + π2 + β2µ̄2

Limiting cases:
rmin|T→∞ = 1, i.e. access to all possible m̄ for high temperatures

rmin|T→0 =
√

|Φ|2
|Φ|2+µ̄2 , i.e. (partial) access to symmetry broken

phases at T = 0

Applicability:
If ΩC itself is computed for certain (m̄I ,T ), T fixed, it can be
continued to Ω inside the interval [0, rmin(T )[
Physical observables can then be obtained from Ω.
Additional expansions of ΩC around some m̄ > 0 may vastly extend
regime of applicability [F. Karbstein, M. Thies ’07]

If observables 〈ÔC〉 are computed directly, as it is most often the
case with Monte Carlo, things get a little more complicated...
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Application I: Phase Boundary
Information provided by Ω:

Boundary Tc(m̄) of phase with broken symmetry is defined for every
m̄ by the lowest T with ∆̄ = 0
Locally smooth manifold up to critical point, global properties not
accessible due to implicit form

Analytic continuation of boundary is meaningful if
Ω[Tc(m̄), m̄, ∆̄ = 0] is convergent ⇒ rmin(|Φ|2 = 0) =

√
T 2π2

T 2π2+µ̄2
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Continuation of the m̄I data yields:

Fair reproduction of phase boundary up to the critical point
Non-analytic behaviour of Tc(m̄) itself limits applicability

Way out: computation & continuation of Ω itself, critical point
should then be within reach
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Definition:
ξ =

µ̄

εF
, ξFree

T =0 = 1 ∀m̄ ∈ [0, 1)

Smooth observable implicitly depends on ∆̄

By complex analysis: rξ ≤ min[rmin, r∆]

First order phase transition is expected to limit continuation of ξC
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Bertsch Parameter from m̄I

Good reproduction of ξ up to the ∆̄ discontinuity
Smooth observables indeed limited by rmin or r∆
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Detour: Population-Imbalance

[J. Braun, J.-W. Chen, J. Deng, J. Drut, B. Friman, C.-T. Ma, Y.-D. Tsai ’12]

G−1↑ = −iωn −
∇2

m+
− im̄I∇2 − µ̄− ihI , ωn = (2n + 1)πT

Due to interference with Matsubara frequencies: hI
!
< πT

Continuation of ξT =0 not possible for population imbalanced case
Structurally similar to finite µ problem in lattice QCD
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Remarks on rmin for Monte Carlo
Schematic structure of the grand canonical potential from Monte Carlo:

ΩMC ∼ ln

 ∑
{ϕ(x)}

det
[
Ĝ−1 + Φ̂

]
e−
∫

m2
ϕ|ϕ(x)|2


Rigorous statements:

For every fixed configuration ϕ(x), the corresponding analytical
calculation would correspond to the above mean-field procedure
Overall radius of convergence: rMC ≥ min{ϕ(x)}[rmin]

Problem: no easy way to calculate rmin for general ϕ(x)

First practical estimate: rMC ≥ rmin(ϕ = 0)
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Summary

Imbalanced strongly interacting Fermi gases are tough systems to
compute with Monte Carlo methods due to a sign problem
Imaginary imbalance parameters remove the sign problem

Physical observables may be extracted by analytic continuation
Large parts of the phase diagram of the 3D unitary Fermi gas are in
reach

Extraction of physical results is limited by convergence issues
Radius of convergence of the grand potential Ω
Analyticity of the observables and dependencies
Type of imbalance

Analytic structure at mean-field level provides hints for treatment of
genuine Monte Carlo data
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Outlook

Extend investigation of convergence properties of observables
Make connection to Monte Carlo more rigorous, ideally provide
rigorous quantitative bounds
Apply method in an actual Monte Carlo study

⇒ Work in progress by Joaquín Drut ⇐
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