Ultracold atoms in optical lattices:

beyond the Hubbard model

Seb asti an o Pil ati The "Abdus Salam" International Centre for Theoretical Physics Trieste- Italy

COLLABORATORS:Thuong Nguyen(SISSA/ICTP – Trieste)Prof. Matthias Troyer, Ilia Zintchenko, Ping Nang Ma(ETH - Zurich)Prof. Xi Dai(Chinese Academy of Science - Beijing)

INT Program: "Advances in Quantum Monte Carlo Techniques for Non-Relativistic Many-Body Systems, SEATTLE – 18 – 07 - 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ultracold atoms as:

 Digital quantum computer (Feynman 1982)

Analog quantum emulator

<u>Main idea:</u>

use ultra-cold gases to emulate strongly correlated

materials and to test many body theories

quantum magnetism (ferromagnetism, antif., spin liquids)

giant magnetoresistance

High-T_c **superconductors**

Solid state:

Inter-atomic distance $\sim 0.1 \text{ nm}$

Dilute atomic alkali gases:

Inter-atomic distance ~ $10^2 - 10^3$ nm Temperature ~ 100 nK

Left: condensate surrounded by thermal cloud; right: a nearly pure Bose-Einstein condensate

Periodic potentials: optical lattices

$$V(x) = \frac{V_0}{\sin^2(\pi x/d)} + harmonic \ terms$$

*V*₀ : laser intensity

 λ : laser wavelength

Tuning the interaction strength

· ·	lacor	into	ncitv
× ∩ •	IUSCI	mu	IJJICY

- λ : laser wavelength
- a_s : s-wave scattering length
- E_R : recoil energy $E_R = h^2 / 8md^2$

2) Born approximation a < d

 Single-band Bose-Hubbard model:

 $\hat{H} = -t \sum_{\langle i,j \rangle} b_i^{\dagger} b_j + \frac{U}{2} \sum_i b_i^{\dagger} b_i^{\dagger} b_i b_i$

 hopping energy
 interaction energy

 interaction energy

Jaksch et al. PRL (1998)

BOSONS IN OPTICAL LATTICES

Single-atom (and single-site) microscope

Greiner's group - Harvard (2010)

Bosons: single-band Hubbard model

$$H = \int d\mathbf{x} \psi^{+}(\mathbf{x}) \left[\frac{-\hbar^{2}}{2m} \Delta + V_{ext}(\mathbf{x}) \right] \psi(\mathbf{x}) + \frac{1}{2} \int d\mathbf{x} d\mathbf{y} V_{int}(\mathbf{x} - \mathbf{y}) \psi^{+}(\mathbf{y}) \psi(\mathbf{x}) \psi(\mathbf{x}) \psi(\mathbf{x})$$

$$\psi^{+}(\mathbf{x}) = \sum_{i,n} b_{i,n}^{+} w_{i}^{n}(\mathbf{x})$$

$$U_{n,i;m,j}^{n',i';m',j'} = \int d\mathbf{x} d\mathbf{y} V_{int}(\mathbf{x} - \mathbf{y}) w_{i'}^{n'}(\mathbf{y}) w_{j'}^{m'}(\mathbf{y}) w_{j}^{m}(\mathbf{x}) w_{i}^{n}(\mathbf{x})$$

$$V_{int}(\mathbf{r}) = \frac{4\pi\hbar^2 a}{m} \delta(\mathbf{r})$$

Jaksch, Bruder, Cirac, Gardiner, Zoller (1998)

NOTE: not the Fermi-Huang pseudopotential !

Single-band Bose-Hubbard model:

$$H = -t\sum_{\langle ij\rangle} b_i^+ b_j^+ + \frac{U}{2}\sum_i b_j^+ b_j^+ b_i b_i$$

Problems with single band Bose - Hubbard model:

- valid only for deep lattices (slow thermalization in experiments)
- neglects virtual excitations to higher bands (strong for short-range interactions)
- No density assisted hopping, nearest neighbour interaction, next nearest neighbour hopping
- No multi orbital tunneling
- Anderson (Science 2009): there is no bosonic Mott insulator!!!

Continuous-space Hamiltonian:

a = R

r

Method: ground state path integral MC (PIGS)

<u>Hybrid</u> ground-state path integral Monte Carlo (PIGS)

$$\Psi_{\mathrm{T}}(\mathbf{R}) = \sum_{\mathbf{L}} \phi(\mathbf{L}) \psi_{\mathbf{L}}(\mathbf{R})$$
$$\int \mathrm{d}\mathbf{R} \rightarrow \sum_{\mathbf{L}} \int \mathrm{d}\mathbf{R} \quad \mathbf{R} \rightarrow (\mathbf{R}, \mathbf{L})$$

$$\gamma = 0$$

$$\Psi_{\mathrm{T}}(\mathbf{R}) \simeq \prod_{i,j} b_{\mathbf{k}=\mathbf{0}}(\mathbf{r}_{i}) \prod_{i} f(r_{ij})$$
Bloch function
$$b_{\mathbf{k}}(\mathbf{r}) = M^{-1/2} \sum_{\mathbf{l}} \exp(i\mathbf{k} \cdot \mathbf{l}) w_{\mathbf{l}}(\mathbf{r})$$

$$\gamma = \infty$$

$$\Psi_{\mathrm{T}}(\mathbf{R}) = \operatorname{Perm}\left[w_{\mathrm{l}}(\mathbf{r}_{i})\right] \prod_{i,j} f(r_{i,j})$$
Wannier function
$$w_{\mathrm{l}}(\mathbf{r}) = M^{-1/2} \sum_{\mathbf{k}} \exp\left(-i\mathbf{k} \cdot \mathbf{l}\right) b_{\mathbf{k}}(\mathbf{r})$$

Superfluid to insulator transition

Superfluid to Mott insulator transition: experiment in Innsbruck

Mark, Haller, Lauber, Danzl, Daley, Nägerl Phys. Rev. Lett. 2011

The critical depth $V_{\rm C}$ is identified as the intersection point of two linear functions that we add quadratically and fit to the data.

Hard Spheres in OL (cont. space) vs. single-band Bose-Hubbard

na³ ≈ 0.25 Kalos *et al.* PRA (1974)

Critical temperature for interacting Bose gases in optical lattices

S.P., Nguyen, Herrmann, Troyer, in preparation

Critical temperature of homogeneous Bos gas

- -) Grüter, Ceperley, Laloë PRL 1997
- -) S.P. Giorgini, Prokof'ev PRL 2008

Two-component repulsive Fermi gas

interaction strength

Mean-field theory:	k _F a _s = 1.57	(Stoner model)
2 nd order pert. Th.:	k _F a _s = 1.054	Duine, MacDonald PRL 2009
QMC:	k _F a _s ≈0.8	Chang <i>et al.</i> PNAS 2011 S. P., Bertaina, Giorgini, Troyer PRL 2010 Conduit <i>et al.</i> PRL 2009

However : instability against molecule formation

```
Pekker et al. PRL(2011)
Lee et al., PRA 85 063615 (exp @ MIT 2012) \rightarrow maximum k<sub>F</sub>a<sub>s</sub> \approx 0.25
```

Two-component Fermi gases in optical lattices

→ QUANTUM MAGNETISM

Note:

in atomic gases the number of spin-up and spin-down particles are fixed

Kohn-Sham Density Functional Theory

the standard computational method in material science

1998 Nobel prize in chemistry

Walter Kohn

successful in calculating properties of many metals, insulators, semiconductors

Es.: band structure of silicon

Chelikowsky and Cohen, PRB (1974)

reduces the N-body problem to an effective single-particle problem

$$E = \left\langle \Psi \left| \hat{H} \right| \Psi \right\rangle$$

find $\Psi(\mathbf{R})$

$$E = \min \left\{ E \left[n(\mathbf{r}) \right] \right\}$$
find $n(\mathbf{r})$

Use of DFT in quantum chemistry and materials science

FIG. 1. Numbers of papers when DFT is searched as a topic in Web of Knowledge (grey), B3LYP citations (blue), and PBE citations (green, on top of blue).

Energy-density functional:

DFT for unitary Fermi gas: Bulgac et al, SCIENCE **332**, 1288 (2011)

Kohn Sham-DFT with LSDA for a repulsive Fermi gas in OL

GROUND-STATE PHASE DIAGRAM

Phase diagram at half-filling

Ma, SP, Xi, Troyer, Nature Physics 2012

short range anti-ferromagnetic order observed @ ETH

Science 340, 1307-1310 (2013)

DFT vs Fixed-Node DMC: phase diagram

Repulsive Hubbard model:				
infinite U	->	Ferromagnetism at nd ³ ≈ 0.75 Becca Sorella 2001, Park Haule Marianetti Kotliar 2008, Liu Yao Berg White Kivelson 2012		
finite U	->	no ferromagnetism for nd ³ <= 0.5 Chang Zhang Ceperley 2010		

SUMMARY:

ultracold atoms in optical lattices:

IDEAL TOOL TO PLAY WITH STRONG CORRELATIONS

simulations for (shallow) optical lattices can be done in

continuous space

QMC methods for discrete lattice models and continuous-

space Hamiltonians can be combined

we could use experiments with cold atoms and QMC to

develop energy functionals for DFT

Challenges for QMC (beyond sign problem): strong correlations

in realistic Hamiltonians, disorder (many-body localization),

combining DFT and QMC