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Con�guration Interaction Monte Carlo

� QMC a la �xed-node DMC in CI/k-space
QMC with non-local (χ EFT) forces

� Variational energies from CC wave functions
Standard CC theory is non-variational

� Momentum distribution in QMC
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The rise of second quantization

We want to solve:

H =

Ω∑
i

εia
†
iai +

Ω∑
ijkl

Vijkla
†
ia
†
jalak + . . .

Full-CI diagonalization possible only for small systems
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The rise of second quantization

We want to solve:

H =

Ω∑
i

εia
†
iai +

Ω∑
ijkl

Vijkla
†
ia
†
jalak + . . .

� A general Vijkl leads to a non-local interaction in r-space

� Cannot apply standard r-space �xed-node DMC

� Formulate DMC in CI space?
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Con�guration interaction Monte Carlo

� Use the power method

|ΨGround State〉 = lim
N→∞PN|ΨInitial State〉

� Occupation number basis : |n〉 = | . . . 0101 . . .〉
� Interpret Pmn as transition probabilities

� Propagator

� Simplest choice: P = (1− ∆τH)

� In reality we use more e�cient propagators : e−∆τ(H−ET )
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Con�guration interaction Monte Carlo

P = 1− ∆τH→ |Ψτ+∆τ〉 = P|Ψτ〉
Ψτ+∆τ(m) =

∑
n

〈m|P |n〉Ψτ(n)

=
∑
n

( 〈m|P |n〉∑
m
〈m|P |n〉

)(∑
m

〈m|P |n〉
)
Ψτ(n)

=
∑
n

p(m,n)︸ ︷︷ ︸w(n)︸ ︷︷ ︸Ψτ(n)
Transition probability Branching

MC sampling not possible if p(m,n) < 0

=⇒ 〈m|H|n〉 > 0 −→ sign problem
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Ψτ(n)

=
∑
n

p(m,n)︸ ︷︷ ︸w(n)︸ ︷︷ ︸Ψτ(n)
Transition probability Branching

MC sampling not possible if p(m,n) < 0

=⇒ 〈m|H|n〉 > 0 −→ sign problem

� There is a sign problem for the generic case

� We need to somehow construct non-negative propagators
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Non-negative propagator

How to choose a non-negative propagator?

Borrow from lattice-GFMC (discrete, �nite Hilbert space)

� Use importance sampling to circumvent the sign

problem

P −→ Pnew(ΦG) ≥ 0

� But there is a price

���
���

���:
Variational upper bound

Exact GS energy

� Better ΦG =⇒ tighter bound

� ECIMC ≤ 〈ΦG|H|ΦG〉

ten Haaf et al PRB (1995)

AM & Alhassid, arXiv:1304.1645 (2013)
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Non-negative propagator

How to choose a non-negative propagator?

Borrow from lattice-GFMC (discrete, �nite Hilbert space)

� Use importance sampling to circumvent the sign

problem

P −→ Pnew(ΦG) ≥ 0

� But there is a price

���
���

���:
Variational upper bound

Exact GS energy

� Better ΦG =⇒ tighter bound

� ECIMC ≤ 〈ΦG|H|ΦG〉

How to choose the importance function ΦG?

ten Haaf et al PRB (1995)

AM & Alhassid, arXiv:1304.1645 (2013)
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Good CI wave functions

The importance function should be:

� Accurate/Flexible: Should be able to include the major

correlations in the system

� Calculable : Need a fast algorithm to calculate it on a

computer (fast = at most polynomial in N and/or Ω)

� Plenty of experience in r-space (∼ 50 years)

� Very little is CI/k-space

� `Fourier' transform of r-space wave functions (e.g.

Jastrow-Slater) does not work
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Good CI wave functions

The importance function should be:

� Accurate/Flexible: Should be able to include the major

correlations in the system

� Calculable : Need a fast algorithm to calculate it on a

computer (fast = at most polynomial in N and/or Ω)

� Plenty of experience in r-space (∼ 50 years)

� Very little is CI/k-space

� `Fourier' transform of r-space wave functions (e.g.

Jastrow-Slater) does not work

Can we get known CI w.f.s to work with MC?

7/24



Antisymmetric geminal power

� For even N

|ΦAGP〉 =
(
φija

†
ia
†
j

)N/2
|0〉

� For odd N, we put the additional particle in a general

sp orbital

� Fast algorithms : 〈n|ΦG〉 is a Pfa�an (∼ N3).

� Very �exible : can include di�erent kinds of 2b

correlations

� HFB, BCS, HF are special cases
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Trapped unitary fermi gas

� Atoms in a harmonic trap

� Contact interaction among↑ and ↓ spins only
� In this case 〈n|ΦG〉 is a
determinant!
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Coupled Cluster wave functions

|ΦCC〉 = eT |Φ0〉

T =
∑

tai a
†
aai +

∑
tabij a

†
aa
†
baiaj + . . .

� Di�erent truncations for T lead to di�erent

approximations CCD, CCSD, CCSDT . . .

� Accurate: CCSD(T) is `gold standard' in chemistry 3

� Energies not variational in the standard approach 7

Can we calculate 〈n|ΦCC〉 quickly?
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The magic formula

Start with Coupled Cluster Doubles (good for uniform

systems):

ΦmCCD
( p1p2···pm
h1h2···hm

)
= ΦCCD(n)

for

|n〉 = a†p1 . . . a
†
pmah1 . . . ahm |ΦHF〉

Recursive formula:

ΦmCCD ( ······ ) =

m∑
γ=2

m∑
µ<ν

(−)γ+µ+νt
pµpν
h1hγ

Φm−2
CCD

( ······ )

A. Roggero, AM & F. Pederiva, arXiv:1304.1549 (2013)
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The magic formula

Start with Coupled Cluster Doubles (good for uniform

systems):

ΦmCCD
( p1p2···pm
h1h2···hm

)
= ΦCCD(n)

for

|n〉 = a†p1 . . . a
†
pmah1 . . . ahm |ΦHF〉

� Can be easily generalized to CCSD, CCSDT . . .

� Scaling only with # ph

� No scaling with particle number or basis size!

A. Roggero, AM & F. Pederiva, arXiv:1304.1549 (2013)
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Results for 3DEG

� The 3d electron gas is the canonical long range

Hamiltonian.

� Good benchmark, many calculations available

How to do CIMC?

� Lattice in momentum space

� Single particle basis = plane waves

� Include all sp states up to some k2 ≤ k2max

Roggero, AM & Pederiva, arXiv:1304.1549 (2013)
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Results for 3DEG

� The 3d electron gas is the canonical long range

Hamiltonian.

� Good benchmark, many calculations available
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Results for 3DEG

� The 3d electron gas is the canonical long range

Hamiltonian.

� Good benchmark, many calculations available

� CCD + CIMC captures ∼ 95% of the correlation energy

� No adjustable parameters in the wf

� Accuracy comparable to r-space MC

� Can improve systematically: CCDT, . . .

Roggero, AM & Pederiva, arXiv:1304.1549 (2013)
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What have we acheived, so far?

� Formulated `Fixed-node' DMC in CI/k-space 3

� Shown how to use two well known classes of accurate wave

functions as importance functions 3

� Supervariational energies from CC wave functions

Remember

EGS ≤ ECIMC ≤ 〈ΦG|H|ΦG〉
when ΦG ≡ ΦCC

EGS ≤ ECIMC ≤ 〈ΦCC|H|ΦCC〉 333!!!
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But, we can do better . . .

Sign-structure important, not exact amplitudes
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� CCD(1) = CCD wf with amplitudes taken from 2nd

order perturbation theory

� Huge saving in computational time

� Can be very important for CCSD(T)
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Fringe bene�ts: momentum distribution

� Di�cult in r-space MC

� However, its diagonal in k-space 3

� We can even calculate pure estimators 3

� Typically in DMC/GFMC one calculates 〈ΦG|O|Ψ〉
� Not the same as 〈Ψ|O|Ψ〉, if [O, H] 6= 0
� But in CIMC we can calculate 〈Ψ|O|Ψ〉 using the
Feynman-Hellmann theorem

〈Ψ|nk|Ψ〉 =
∂〈H+ αnk〉

∂α

∣∣∣∣
0

= 〈ΦG|nk|Ψ〉−const.×cov(E, nk)

No need to calculate numerical derivatives! 3

Gaudin & Pitarke, PRL (2007)
Roggero, AM & Pederiva, in preparation
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15/24



Lefschetz thimble Monte Carlo

� We want to calculate quantities like this

〈O〉 =
∫
Rn dφO(φ)e−S(φ)∫

Rn dφe
−S(φ)

� If S(φ) is not real, we have a sign problem.

� Can we do better by letting φ venture into
the complex plane?
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Successive complexi�cation of life

<φ

=φ

Saddle point of
S(φ)
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Successive complexi�cation of life

<φ

=φ

Saddle point of
S(φ)

dτφ = −∂φS
Steepest descent

� =S(φ) is constant on SD path

No sign problem from the action! 3

� <S(φ) is bounded below on SD path 3

17/24



Life and times on the Lefschetz thimble

� A Lefschetz thimble is a many dimensional

generalization of the paths of steepest descent

� It is the union of all paths of steepest descent which

end at the saddle point at τ→∞
� It is a n-dimensional object 3

� On the Lefschetz thimble

〈O〉 =
e−i=S

∫
J dφO(φ)e−<S(φ)

e−i=S
∫
J dφe

−<S(φ)

Constant

Non-trivial measure
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One-link model: S(φ) = −iβcos(φ)
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One-link model: S(φ) = −iβcos(φ)
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Complex φ4 theory
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Complex φ4 theory
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Details

Q How to sample on the Lefschetz thimble?

We have used two di�erent algorithms

� Langevin dynamics, improved version in progress

� Mapping Lefschetz thimble → �at manifold + Metropolis

Q What about the measure?

Need to calculate the Jacobian of the tangent space

Q Does the measure lead to a sign problem?

We cannot prove that it does not, but

� Leading order = 1

� Fluctuations small where e−<S large

Q Enough to integrate on one (or a small #) thimble(s)?

Strong arguments in favor, but no rigorous proof
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THE END
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Fixing the sign problem in Fock space

� Comes from the Hamiltonian (if Hmn > 0 for m 6= n)
� Carrying walker sign leads to a null state

� No concept of `continuity' in discrete Fock space

� Node �xing not possible

Fixed `sign' Hamiltonian

[Hγ]
mn

=δmn{Hnn + (1+ γ)
∑

s
nn

′>0

ΦG(n
′)Hn ′

nΦG(n)
−1}

+ (1− δmn){γΘ(smn) +Θ(−smn)}Hmn

where smn = sign{ΦG(m)HmnΦG(n)
−1}
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Fixing the sign problem in Fock space

[Pγ]mn = ΦG(m)
{
δmn − ∆τ

(
[Hγ]mn − ETδmn

)}
Φ−1
G
(n)

� Hγ=−1 = H

� H0≤γ≤1 has no sign problem by construction

� GS energies of H0≤γ≤1 provide upper bounds for the GS
energy of H

� So does any linear extrapolation to γ = −1

ten Haaf et al., PRB (1995); Sorella & Capriotti, PRB (2000);

Beccaria, PRB (2001)
AM & Y. Alhassid, arXiv:1304.1645 (2013)

Our tightest upper bound for GS energy of H is :

ECIMC = 2EGS[Hγ=0] −EGS[Hγ=1]
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