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Outline

»> BCS-BEC crossover. Unitary regime.
»> Theoretical approach: Path Integral Monte Carlo (QMC)
»> Equation of state for the Fermi gas in the unitary regime.

»> Pairing gap and pseudogap. Spin susceptibility, conductivity
and diffusion.

»> VIscosity.



What is a unitary gas?

A gas of Interacting fermions is in the unitary regime if the average
separation between particles is large compared to their size (range of
Interaction), but small compared to their scattering length.

S 35S n - particle density
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System is dilute but
strongly interacting!

Universality: E(X)=&(X)Ers ; X= %
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£(0) =0.37(1) - Exp. estimate
EFG - Energy of noninteracting Fermi gas




Cold atomic gases and high Tc superconductors
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From Fischer et al., Rev. Mod. Phys. 79, 353 (2007) & P. Magierski, G. Wlaztowski, A. Bulgac, Phys. Rev. Lett. 107, 145304 (2011)
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Coordinate space

Path Integral Monte Carlo for fermions on 3D lattice

Volume = L°

L —limit for the spatial
correlations in the system
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Periodic boundary conditions imposed




Basics of Auxiliary Field Monte Carlo (Path Integral MC)
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Details of calculations, improvements and problems

» Currently we can reach 143 lattice and perform calcs. down to x = 0.06
(x — temperature in Fermi energy units) at the densities of the order of 0.03.

» Effective use of FET (W) makes all imaginary time propagators diagonal (either in
real space or momentum space) and there is no need to store large matrices.

» Update field configurations using the Metropolis importance sampling algorithm.
QMC calculations can be split into two independent processes:
1) sample generation (generation of sigma fields),
2) calculations of observables.

» Change randomly at a fraction of all space and time sites the signs the auxiliary
fields o(r,7) so as to maintain a running average of the acceptance rate between

0.4 and 0.6 .

» At low temperatures use Singular VValue Decomposition of the evolution operator
U({c}) to stabilize the numerics.

« MC correlation “time” = 200 time steps at T = T, for lattices 103.
Unfortunately when increasing the lattice size the correlation time also increases.
One needs few thousands uncorrelated samples (we usually take about 10 000) to
decrease the statistical error to the level of 1%.
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Burovski et al.
PRL96, 160402(2006)

1.0

Comparison with Many-Body Theories (1)
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Equation of state of the unitary Fermi gas - current status
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Experiment: M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein , Science 335, 563 (2012)

MC (PIMC + Hybrid Monte Carlo):
J.E.Drut, T.Lahde, G.Wlaztowski, P.Magierski, Phys. Rev. A 85, 051601 (2012)
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Results in the vicinity
of the unitary limit:
-Critical temperature
-Pairing gap

BCS theory predicts:

AT =0)/T. ~1.7

At unitarity:

A(T =0)/T. ~33

This iIs NOT a BCS superfluid!

Bulgac, Drut, Magierski, PRA78, 023625(2008)



Pairing gap from spectral function:

Spectral weight function: A(p, o)
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Linear inverse problem

o0

K(x, y)A(x)dx,

|x|

G Is known from QMC with some error for a number of values of vy,
usually uniformly distributed within the interval: (0, 1/T)

Data
(affected by noise)

Space of admissible

solutions: A4

One needs to associate a probability distribution in the space of solutions
under condition that G is known with certain accuracy: P(A|G)



Maximum entropy method (MEM):

p(G|G)p(A)

Bayes’ theorem: INIGIOES

p(G)

Maximization of conditional probability leads to minimization of:

Relative entropy term

Problem: if ,,alpha” is too small then the procedure is numerically
unstable.
If it Is too large then the entropy term is too restrictive.
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(Color online) Reconstruction of the artificial object function

Figure 5:
consistent MEM for different values of parameter o.

Magierski, Wlaztowski,
Comp. Phys. Comm. 183 (2012) 2264




Solution: construct the class of models depending on a set of
parameters which are adjusted selfconsistently.
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It can be transformed into an iterative process of
consecutive least square problems:
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Magierski, Wlaztowski,
Comp. Phys. Comm. 183 (2012) 2264
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Figure 6: (Color online) The reconstruction ability of the spectral function for the full
problem (data with noise + external constraints) of the SVD and MEM methods. The left
panel shows the solution of the self-consistent MEM with a combination of two Gaussians
functions as a default model class. The right panel shows the solution of the self-consistent
MEM with Gaussian functions as a default model class.

Magierski, Wlaztowski,
Comp. Phys. Comm. 183 (2012) 2264




Spectral weight function at unitarity: (k.a)™ =0

T =0.156, ~ T,







Single-particle properties

Quasiparticle spectrum
extracted from spectral weight
functionat T =0.1lep

Fixed node MC calcs. at T=0

Effective mass: m = (1.0£0.2)m

Mean-field potential: U =(—0.5+0.2)¢r

Weak temperature dependence!



From Sa de Melo,
Physics Today (2008)

Preformed

Unbound fermion pairs Bose
fermions ) iqui

Pairing pseudogap: suppression of low-energy spectral weight
function due to incoherent pairing in the normal state (7 > T)

Important issue related to pairing pseudogap:
- Are there sharp gapless quasiparticles in a normal Fermi liquid
YES: Landau's Fermi liquid theory:
NO: breakdown of Fermi liquid paradigm




In the sinqgle particle fermionic spectrum - theor

Normal Fermi gas

Onset of
the pseudogap

Ab initio result: The onset of pseudogap phase at 1/ak_

Magierski, Wlaztowski, Bulgac, Phys. Rev. Lett.107,145304(2011)
Magierski, Wlaztowski, Bulgac, Drut, Phys. Rev. Lett.103,210403(2009)



Energy distribution curves (EDC) from the spectral weight function
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Experiment (blue dots): Gaebler et al. Nature Physics 6,
569(2010)

QMC (red line): Magierski, Wlaztowski, Bulgac,
Phys. Rev. Lett. 107, 145304 (2011)




Local density approximation (LDA) from QMC

. 3
Uniform —E _ — _
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der

system Q= — &g (Me(x(r))+U(r)-4 |n(r)
(gradient 9 =

corrections T 72 12/3
neglected)  X(I) = —; &p(r)= —[3ﬂ2n(r)
Ep (r) 2m

The overall chemical potential A and the temperature T are constant
throughout the system. The density profile will depend on the shape of
the trap as dictated by:

X2 S(F—AN)
on(r) on(r)
Using as an input the Monte Carlo results for the uniform system and

experimental data (trapping potential, number of particles), we determine
the density profiles.

= u(x(r))+U(r)—-4=0



Spin susceptibility and spin drag rate
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FIG. 2: (Color online) The static spin susceptibility as a func-
tion of temperature for an 8% lattice solid (red) circles, 10
lattice (blue) squares and 122 lattice (green) diamonds. Ver-
tical black dotted line indicates the critical temperature of
superfluid to normal phase transition 7. = 0.15 5. For com-
parison Fermi liquid theory prediction and recent results of
the T-matrix theory produced by Enss and Haussmann [25]
are plotted with solid and dashed (brown) lines, respectively.
The experimental data point from Ref. [15] is also shown.

Wlaztowski, Magierski, Bulgac, Drut, Roche,

Phys. Rev. Lett. 110, 090401,(2013)
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FIG. 3: (Color online) The spin drag rate I'.; = n/o, in
units of Fermi energy as a function of temperature for an 8%
lattice solid (red) cireles, 10 lattice (blue) squares and 12*
lattice (green) diamonds. Vertical black dotted line locates
the critical temperature of superfluid to normal phase tran-
sition. Results of the T-matrix theory are plotted by dashed
(brown) line [25]. The inset shows extracted value of the
contact density as funetion of the temperature. The (purple)
asterisk shows the contact density from the QMC calculations
of Ref. [20] at T = 0.

- spin drag rate

0,(0) = 20,(4=0,0) |

1
Gs(q,’[) :\7

G,(0,7) = jps<q o)

- spin conductivity
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Spin diffusion

FIG. 4: (Color online) The spin diffusion coefficient obtained
by the Einstein relation D, = o./x. as function of tempera-
ture. The notation is identical to Fig. 3.

No minimum is seen in QMC down to 0.1 of Fermi energy

E_Stlmate from Wilaztowski, Magierski, Bulgac, Drut, Roche,
kinetic theory at low T: Phys. Rev. Lett. 110, 090401,(2013)




Pseudogap at unitarity - theoretical predictions

Path Integral Monte Carlo - YES
Dynamic Mean Field - YES
Selfconsistent T-matrix - NO
Nonselfconsistent T-matrix - YES



Hydrodynamics at unitarity

No intrinsic length scale mmmp Uniform expansion keeps the unitary gas in equilibrium

Consequence:
uniform expansion does not produce entropy = bulk viscosity is zero!

Shear viscosity:

For any physical fluid:

Q > h KSS conjecture
S — 4 k Kovtun, Son, Starinets, Phys.Rev.Lett. 94, 111601, (2005)
7T B | from AdS/CFT correspondence

Maxwell classical estimate:77 ~ mean free path

No well defined
quasiparticles

Perfect fluid g: - strongly interacting quantum system =

47Ky

Candidates: unitary Fermi gas, quark-gluon plasma



Shear viscosity
(@) = 70, (0 =0,0)/
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Additional symmetries and sum rules:
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Shear viscosity to entropy density ratio
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Phys. Rev. Lett. 109, 020406 (2012)
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Uncertainties related
to numerical analytic
continuation

G.WIlaztowski, P.Magierski,J.E.Drut,
Phys. Rev. Lett. 109, 020406 (2012)
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approximation
hydrodynamic bound --------

R A , C. Chafin, T. Schafer
QMmC (2012) ——— C :
NfB, n=0.08 +—e—i PRA87,023629(2013)

_ _ P.Romatschke, R.E. Young,
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Wlaziowski, Magierski, Bulgac, Roche. arXiv:1304.2283



Shear viscosity to entropy ratio — experiment vs. theory
(from A. Adams et al.1205.5180)
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Lattice QCD ( SU(3) gluodynamics ): QMC calculations for UFG:
H.B. Meyer, Phys. Rev. D 76, 101701 (2007) G. Wlaztowski, P. Magierski, J.E. Drut,
Phys. Rev. Lett. 109, 020406 (2012)




