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Introduction

• The electroweak response is a fundamental 
ingredient to describe the neutrino - 12-
carbon scattering, recently measured by the 
MiniBooNE collaboration to calibrate the 
detector aimed at studying neutrino 
oscillations.

• As a first step towards its calculation, we have 
computed the sum rules for the 
electromagnetic response of 12C. We want to 
predict the results of Jefferson lab experiment 
nearing publication.

S. Zeller, ECT* Workshop, May 2012 

MiniBooNE Detector 
10 

Aguilar-Arevalo et al., NIM A599, 28 (2009) 
(inside view of MiniBooNE tank) 

•  800 tons of mineral oil  
•  ν interactions on CH2 

•  Cerenkov detector → ring imaging for event reconstruction and PID v 

Excess, at relatively low energy, of measured 
cross section relative to theoretical 
calculations.
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The electromagnetic inclusive cross section of the process

Electromagnetic response

2

I. DESCRIPTION OF SCIENCE

The electroweak response is a fundamental ingredient to describe the neutrino - 12Carbon

scattering, recently measured by the MiniBooNE collaboration to calibrate the detector aimed

at studying neutrino oscillations. As a first step towards its calculation, we have computed

the sum rules for the electromagnetic response of 12C. The cross section of the process

e+12 C → e′ +X . (1)

can be written in Born approximation as [1]

d2σ

dΩe′dEe′
= −

α2

q4
Ee′

Ee

LµνW
µν , (2)

where α # 1/137 is the fine structure constant, dΩe′ is the differential solid angle specified by

ke′ and q = ke − ke′ is the four momentum transfer of the process. The leptonic tensor Lµν is

fully determined by the measured kinematical variables of the electron, while all information on

target structure, which is largely dictated by nuclear interactions, is enclosed in the hadronic

tensor

W µν =
∑

X

〈Ψ0|J
µ|ΨX〉〈ΨX |J

ν |Ψ0〉δ
(4)(p0 + q − pX) . (3)

The sum over the final states includes an integral over pX , the spatial momentum of the final

hadronic state, while p0 is the initial four-momentum of the nucleus.

In the nonrelativistic approach, the hadronic tensor can be written in terms of the longitu-

dinal and transverse response functions, with respect to the direction of the three-momentum

transfer q. For instance, taking q along the z-axis, the transverse response is defined by [2]

Rxx+yy(q,ω) =
∑

X

δ(ω + E0 − EX)
[

〈Ψ0|j
x(q,ω)|ΨX〉〈ΨX |j

x(q,ω)|Ψ0〉+

〈Ψ0|j
y(q,ω)|ΨX〉〈ΨX|j

y(q,ω)|Ψ0〉
]

(4)

while the longitudinal is given by

R00(q,ω) =
∑

X

δ(ω + E0 − EX)〈Ψ0|ρ(q,ω)|ΨX〉〈ΨX |ρ(q,ω)|Ψ0〉 (5)

The sum rules are obtained integrating the response functions over the energy transfer and

using the completeness relation of the states |X〉. For Rxx+yy and R00 one has

Sxx+yy(q) ≡

∫

dωRxx+yy(q,ω) = 〈Ψ0|j
x(q,ωel)j

x(q,ωel) + jy(q,ωel)j
y(q,ωel)|Ψ0〉

S00(q) ≡

∫

dωR00(q,ω) = 〈Ψ0|ρ(q,ωel)ρ(q,ωel)|Ψ0〉 , (6)

where the target final state is undetected, can be written in the Born approximation as

d2�

d⌦e0dEe0
= �↵2

q4
Ee0

Ee
Lµ⌫W

µ⌫ ,

The Hadronic tensor contains all the information on 
target structure.

e0

e 12C

X

Wµ⌫ =
X

X

h 0|Jµ| Xih X |J⌫ | 0i�(4)(p0 + q � pX)

The leptonic tensor is fully specified by the measured 
electron kinematic variables

Lµ⌫ = 2[kµk
0
⌫ + k⌫k

0
µ � gµ⌫(kk

0)]

q
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.

REVIEWS OF MODERN PHYSICS, VOLUME 80, JANUARY–MARCH 2008

0034-6861/2008/80!1"/189!36" ©2008 The American Physical Society189

Electromagnetic response
Schematic representation of the inclusive cross section.
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Electromagnetic response
• At moderate momentum transfer, non relativistic wave functions can be used to 
describe the initial and final states and an expansion of the current operator in 
powers of           can be performed.

• The hadronic tensor (and the cross section) can be written in terms of the 
longitudinal and transverse response functions, with respect to the direction of 
the three-momentum transfer:

RL(q,!) =
X

X

h 0|⇢| Xih X |⇢| 0i�(E0 + ! � EX)

RT (q,!) =
X

X

h 0|~j †
T | Xih X |~jT | 0i�(E0 + ! � EX)

 Longitudinal

 Transverse

|q|/m

• Realistic models for the electromagnetic charge and current operators include 
one- and two-body terms, the latter assumed to be due to exchanges of effective 
pseudo-scalar and vector mesons.
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Electromagnetic sum rules

• The sum rules provide an useful tool for studying integral properties of the 
electron-nucleus scattering. 

• Using the completeness relation, they can be expressed as ground-state 
expectation values of the charge and current operators. 

Z
d!

|0i

|XihX|

h0|

X

X

S↵(q) =

• The direct calculation of the response requires the knowledge of all the 
transition amplitudes:                   and                   .
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An ab initio calculation of the 12C elastic form factor, and sum rules of longitudinal and transverse
response functions measured in inclusive (e, e0) scattering, is reported, based on realistic nuclear po-
tentials and electromagnetic currents. The longitudinal elastic form factor and sum rule are found to
be in satisfactory agreement with available experimental data. A direct comparison between theory
and experiment is di�cult for the transverse sum rule. However, it is shown that the calculated
one has large contributions from two-body currents, indicating that these mechanisms lead to a
significant enhancement of the quasi-elastic transverse response. This fact may have implications
for the anomaly observed in recent neutrino quasi-elastic charge-changing scattering data o↵ 12C.
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The current picture of the nucleus as a system of
protons and neutrons interacting among themselves via
two- and three-body forces and with external electroweak
probes via one- and two-body currents—a dynamical
framework we will refer to below as the standard nu-
clear physics approach (SNPA)—has been shown to re-
produce satisfactorily a variety of empirical properties of
light nuclei with mass number A  12, including energy
spectra [1] and static properties [2] of low-lying states,
such as charge radii, and magnetic and quadrupole mo-
ments. However, it has yet to be established conclusively
whether such a picture quantitatively and successfully
accounts for the observed electroweak structure and re-
sponse of these systems, at least those with A > 4, in
a wide range of energy and momentum transfers. This
issue has acquired new and pressing relevance in view of
the anomaly seen in recent neutrino quasi-elastic charge-
changing scattering data on 12C [3], i.e., the excess, at
relatively low energy, of measured cross section relative
to theoretical calculations. Analyses based on these cal-
culations have led to speculations that our present under-
standing of the nuclear response to charge-changing weak
probes may be incomplete [4], and, in particular, that the
momentum-transfer dependence of the axial form factor
of the nucleon may be quite di↵erent from that obtained
from analyses of pion electro-production data [5] and
measurements of neutrino and anti-neutrino reactions on
protons and deuterons [6]. However, it should be em-
phasized that the calculations on which these analyses
are based use rather crude models of nuclear structure—
Fermi gas or local density approximations of the nuclear
matter spectral function—as well as simplistic treatments
of the reaction mechanism, and do not fit the picture out-

lined above. Conclusions based on them should therefore
be viewed with skepticism.

The present work provides the first step towards a com-
prehensive study, within the SNPA, of the quasi-elastic
electroweak response functions of light nuclei. We report
an exact quantum Monte Carlo (QMC) calculation of the
elastic form factor and sum rules associated with the lon-
gitudinal and transverse response functions measured in
inclusive electron scattering experiments on 12C. These
sum rules are defined as [7]

S↵(q) = C↵

Z 1

!+

th

d!
R↵(q,!)
Gp 2

E (Q2)
, (1)

where R↵(q,!) is the longitudinal (↵ = L) or transverse
(↵ = T ) response function, q and ! are the momentum
and energy transfers, !

th

is the energy transfer corre-
sponding to the inelastic threshold (the first excited-state
energy is at 4.44 MeV relative to the ground state in 12C),
Gp

E(Q2) is the proton electric form factor evaluated at
four-momentum transfer Q2 = q2 �!2, and the C↵’s are
appropriate normalization factors, given by

CL =
1
Z

, CT =
2�

Z µ2

p + N µ2

n

� m2

q2

. (2)

Here m is the nucleon mass, and Z (N) and µp (µn) are
the proton (neutron) number and magnetic moment, re-
spectively. These factors have been introduced so that
S↵(q ! 1) ' 1 under the approximation that the nu-
clear charge and current operators originate solely from
the charge and spin magnetization of individual protons
and neutrons and that relativistic corrections to these
one-body operators—such as the Darwin-Foldy and spin-
orbit terms in the charge operator—are ignored.

Proton electric 
form factor

h 0|⇢| Xi h 0|~jT | Xi
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Longitudinal and transverse sum rules.
 Longitudinal sum rule

SL(q) = CL

h 1

Gp
E(Q

2
qe)

h0|⇢(q)⇢(q)|0i � 1

Gp
E(Q

2
el)

|h0;q|⇢(q)|0i|2
i

The elastic contribution, proportional to the longitudinal form factor has been 
removed.

 Transverse sum rule

ST (q) =
CT

Gp
E(Q

2
qe)

h0|~j †
T (q)~jT (q)|0i
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S↵(q) = C↵

Z 1

!+

th

d!
R↵(q,!)
Gp 2

E (Q2)
, (1)

where R↵(q,!) is the longitudinal (↵ = L) or transverse
(↵ = T ) response function, q and ! are the momentum
and energy transfers, !

th

is the energy transfer corre-
sponding to the inelastic threshold (the first excited-state
energy is at 4.44 MeV relative to the ground state in 12C),
Gp

E(Q2) is the proton electric form factor evaluated at
four-momentum transfer Q2 = q2 �!2, and the C↵’s are
appropriate normalization factors, given by

CL =
1
Z

, CT =
2�

Z µ2

p + N µ2

n

� m2

q2

. (2)

Here m is the nucleon mass, and Z (N) and µp (µn) are
the proton (neutron) number and magnetic moment, re-
spectively. These factors have been introduced so that
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;

FL(q) = CLh0;q|⇢(q)|0i
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R↵(q,!)
Gp 2
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(↵ = T ) response function, q and ! are the momentum
and energy transfers, !
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Z

, CT =
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Z µ2

p + N µ2
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� m2

q2

. (2)
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;

• CL and CT have been introduced under in order for                              in the 
approximation where nuclear charge and current operators originate solely from the 
charge and spin magnetization of individual protons and neutrons and that relativistic 
corrections are ignored.

S↵(q ! 1) 1
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Comparison with experiment
Direct comparison between the calculated and experimentally extracted sum 
rules cannot be made unambiguously for two reasons

• The experimental determination of      requires measuring the associated   
         in the whole energy-transfer region, from threshold up to     .

S↵

R↵ 1

• Inadequacy of the dynamical framework to account for explicit pion production 
mechanisms. 

Inclusive electron scattering 
experiments only allow access to 
the region where ! < q

Extrapolation needed
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Ab-initio few-nucleon calculation
• The density and current operators have to be consistent with the realistic nucleon-
nucleon (NN) interaction.

v18(r12) =
18X

p=1

vp(r12)Ô
p
12Argonne v18 :

• Static part Ôp=1�6
ij = (1,�ij , Sij)⌦ (1, ⌧ij)

• Spin-orbit Ôp=7�8
ij = Lij · Sij ⌦ (1, ⌧ij)

Lij =
1

2i
(ri � rj)⇥ (ri �rj)

Sij =
1

2
(�i + �j)

The remaining operators are needed to achieve the description of the Nijmegen scattering 
data with            . They accounts for quadratic spin-orbit interaction and charge symmetry 
breaking effects.

�2 ' 1

Deuteron, S and D wave phase shifts

P wave phase shifts

Angular momentum

Total spin of the pair

is controlled by ~4300 np and nn scattering data below 350 MeV of the Nijmegen database.
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Ab-initio few-nucleon calculation
• To compute the sum rules and the longitudinal form factor, the ground state wave 
function of 12C needs to be precisely known. An accurate three body potential has to be 
introduced. 

Urbana IX 
contains the attractive Fujita and 
Miyazawa two-pion exchange 
interaction and a 
phenomenological repulsive term.

Illinois 7
also includes terms originating 
from three-pion exchange 
diagrams and the two-pion S-
wave contribution.

4He energies obtained with the nonlocal CD-Bonn interac-
tion are closer to experiment than the predictions of local
models, but it is predicted that nuclear matter properties are
farther away.
It has been stressed by Friar !32" that the various repre-

sentations of v# are related by unitary transformations. It
should be possible to use these transformations to find the
appropriate current operators that will explain the deuteron
form factors with wave functions predicted by the nonlocal
models. These transformations will also generate three-body
forces accounting for the difference between energies ob-
tained from local and nonlocal models. Thus the deuteron
form factors do not exclude nonlocal representations of v i j .
However, it seems that the simplest realistic models of the
nuclear Hamiltonian may be obtained with local v i j , and
fortunately there is much less model dependence in these. In
the present paper we use the AV18 model of v i j ; however,
the other local models will presumably require similar Vi jk .
The two-nucleon interaction v i j depends both on the rela-

tive momentum p!(pi"pj)/2 and the total momentum P
!pi#pj of the interacting nucleons. We can express it as

v i j! ṽ i j#$v%Pi j&, %2.7&

where $v(P!0)!0. The models discussed above give ṽ i j in
the P!0, center of momentum frame. In many calculations
the ṽ i j is used as an approximation to v i j by neglecting the
boost correction $v(Pi j). In fact terms dependent on p in-
cluded in ṽ i j are of the same order as those in $v(Pi j) de-
pendent on P !33". It is essential to include the $v(Pi j) to
obtain the true momentum dependence of the v i j . For ex-
ample, the electromagnetic interaction between two charges,
as well as the analogous vector-meson-exchange interaction
between two nucleons depends upon p1•p2!(1/4)P2"p2.
The ṽ includes only the p2 term, while the P2 term is in $v .
The $v is related to ṽ and its leading term of order P2 is
given by

$v%P&!"
P2

8m2ṽ#
1
8m2 !P•rP•“ , ṽ"

#
1
8m2 !%!1"!2&$P•“ , ṽ" . %2.8&

The validity of the above equation, obtained by Friar !34", in
classical and quantum relativistic mechanics and in relativis-
tic field theory has been shown in Ref. !33".
The effects of the $v(Pi j) on the energies of 3H and 4He

!17" and nuclear matter !3" have been studied for the AV18
model using the variational method. This boost correction
gives a repulsive contribution in both cases. It increases the
triton energy by'0.4 MeV away from experiment, while the
nuclear matter equilibrium E0 and (0 move to "13.7 MeV
at 0.23 fm"3, which is closer to the empirical density, but
farther from the empirical energy. The variational Monte
Carlo %VMC& studies !17" of $v(Pi j) also show that the
dominant corrections come from the first and second terms

of Eq. %2.8& and that only the first six operator terms %the
static terms& of AV18 give substantial contributions. Accord-
ingly, we ignore the last term of Eq. %2.8& in this paper and
evaluate the first two for only the static parts of ṽ . Further-
more, it was shown that the terms arising from the deriva-
tives acting on operators in ṽ were negligible, so we do not
evaluate them here.

III. ILLINOIS MODELS OF Vijk

The Illinois Vi jk are expressed as

Vi jk!A2#
PWOi jk

2# ,PW#A2#
SWOi jk

2# ,SW#A3#
)ROi jk

3# ,)R#AROi jk
R .
%3.1&

Their four terms represent the V2# ,PW, V2# ,SW, V3# ,)R, and
VR interactions with strengths A2#

PW , A2#
SW , A3#

)R , and AR . In
the following sections we give the spin-isospin and spatial
operators associated with these interactions and the theoreti-
cal estimates of the strengths. In the older Urbana models
A2#
PW is denoted by A2# , AR by U0, and the V2# ,SW and

V3# ,)R terms are absent.

A. V2" ,PW

The earliest model of V2# ,PW is due to Fujita and
Miyazawa !11", who assumed that it is entirely due to the
excitation of the ) resonance as shown in Fig. 2%a&. Neglect-
ing the nucleon and ) kinetic energies we obtain

A2#
PW!"

2
81

f #NN
2

4#

f#N)
2

4#

m#
2

%m)"mN&
, %3.2&

Oijk
2# ,PW!*

cyc
%+Xi j ,X jk,+#i•#j ,#j•#k,# 1

4 !Xi j ,X jk"

$!#i•#j ,#j•#k" &, %3.3&

Xi j!T%m#ri j&Si j#Y %m#ri j&!i•!j , %3.4&

Y %x &!
e"x

x -Y%r &, %3.5&

T%x &!! 3x2 #
3
x #1 " Y %x &-T%r &. %3.6&

Here -Y(r) and -T(r) are short-range cutoff functions. We
note that the one-pion-exchange two-nucleon interaction
used in AV18 is given by

FIG. 2. Three-body force Feynman diagrams. The first %a& is the
Fujita-Miyazawa, %b& is two-pion S wave, %c& and %d& are three-pion
rings with one ) in intermediate states.
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We have used Illinois 7 potential, that can be written as
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Ab-initio few-nucleon calculation
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Green’s Function Monte Carlo
Solving the many body Schroedinger equation is made particularly difficult by the 
complexity of the interaction, which is spin-isospin dependent and contains strong 
tensor terms

3

where the energy transfer dependence of the current and density operators is determined at

the the quasi-elastic peak: ωel =
√

|q|2 +m2 −m. Hence, the sum rules of the response can

be evaluated by computing the expectation values of the electromagnetic currents and density

on the ground state of 12C.

II. NUMERICAL METHODS

The calculation of the sum rules requires the knowledge of the nuclear ground state wave-

function of 12C. Solving the many-body Schroedinger equation

ĤΨ0(x1 . . . xA) = E0Ψ0(x1 . . . xA) , (7)

where the generalized coordinate xi ≡ {ri, si, ti} represents both the position and the spin-

isospin variables of the i-th nucleon, is made particularly difficult by the complexity of the

interaction. The nuclear potential is indeed spin-isospin dependent and contains strong tensor

terms; thus Eq. (7) consists in 2A
(

A
Z

)

complex coupled second order partial differential equa-

tions in 3A variables. For the actual case of 12C, there are 270,336 coupled equations in 36

variables.

Standard methods for solving partial differential equations are not feasible in this context.

Green Function Monte Carlo (GFMC) algorithms use projection techniques to enhance the

true ground-state component of a starting trial wave function ΨT

Ψ0(x1 . . . xA) = lim
τ→∞

e−(Ĥ−E0)τΨT (x1 . . . xA) . (8)

In the actual calculation, the imaginary time evaluation is done a sequence of imaginary time

steps, each one consisting in a 3A dimensional integral, evaluated within the Monte Carlo

approach.

In GFMC all the spin-isospin configurations are considered and the wave-function is a vector

of 2A
(

A
Z

)

complex numbers. For example the eight spin configurations of the 3H nucleus are

represented by [3]

For 12C 270,336 second 
order coupled  differential 
equations in 36 variables !!!

The wave function can be expresses as a sum over spin-isospin states

the number of which grows 
exponentially with the number of 
particles  

 0(x1 . . . xA) =
NX

↵=1

 0(r1 . . . rA)|↵i

N = 2A ⇥
✓
A

Z

◆

Friday, July 19, 13



Green’s Function Monte Carlo
GFMC algorithms use projection techniques to enhance the ground-state component 
of a starting trial wave function

3

where the energy transfer dependence of the current and density operators is determined at

the the quasi-elastic peak: ωel =
√

|q|2 +m2 −m. Hence, the sum rules of the response can

be evaluated by computing the expectation values of the electromagnetic currents and density

on the ground state of 12C.

II. NUMERICAL METHODS

The calculation of the sum rules requires the knowledge of the nuclear ground state wave-

function of 12C. Solving the many-body Schroedinger equation

ĤΨ0(x1 . . . xA) = E0Ψ0(x1 . . . xA) , (7)

where the generalized coordinate xi ≡ {ri, si, ti} represents both the position and the spin-

isospin variables of the i-th nucleon, is made particularly difficult by the complexity of the

interaction. The nuclear potential is indeed spin-isospin dependent and contains strong tensor

terms; thus Eq. (7) consists in 2A
(

A
Z

)

complex coupled second order partial differential equa-

tions in 3A variables. For the actual case of 12C, there are 270,336 coupled equations in 36

variables.

Standard methods for solving partial differential equations are not feasible in this context.

Green Function Monte Carlo (GFMC) algorithms use projection techniques to enhance the

true ground-state component of a starting trial wave function ΨT

Ψ0(x1 . . . xA) = lim
τ→∞

e−(Ĥ−E0)τΨT (x1 . . . xA) . (8)

In the actual calculation, the imaginary time evaluation is done a sequence of imaginary time

steps, each one consisting in a 3A dimensional integral, evaluated within the Monte Carlo

approach.

In GFMC all the spin-isospin configurations are considered and the wave-function is a vector

of 2A
(

A
Z

)

complex numbers. For example the eight spin configurations of the 3H nucleus are

represented by [3]

The trial wave function contains 3-body correlations stemming from 3-body potential 

The pair correlated wave function is written in terms of operator correlations

The total antisymmetric Jastrow wave function depends on the nuclear state.

�4(0, 0, 0, 0) = A|p " p # n " n #i

4He

 J =
h Y

i<j<k

f c
ijk

ihY

i<j

f c
ij

i
�A(J,M, T, T3)

 P =
h
S
X

i<j

(1 + Uij)
i
 J

 T =
h
1 +

X

i<j<k

ŨTNI
ijk

i
 P Ũijk = ✏̃AV

A
ijk + ✏RV

R
ijk

Uij =
X

p=2,6

h Y

k 6=j,i

fp(rik, rjk)
i
up(rij)O

p
ij

Since the operators do not commute, their ordering is sampled
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Green’s Function Monte Carlo

• Within GFMC the wave function is represented by a complex vector of 
numbers, each depending on the 3A coordinates: a GFMC sample.

3

where the energy transfer dependence of the current and density operators is determined at

the the quasi-elastic peak: ωel =
√

|q|2 +m2 −m. Hence, the sum rules of the response can

be evaluated by computing the expectation values of the electromagnetic currents and density

on the ground state of 12C.

II. NUMERICAL METHODS

The calculation of the sum rules requires the knowledge of the nuclear ground state wave-

function of 12C. Solving the many-body Schroedinger equation

ĤΨ0(x1 . . . xA) = E0Ψ0(x1 . . . xA) , (7)

where the generalized coordinate xi ≡ {ri, si, ti} represents both the position and the spin-

isospin variables of the i-th nucleon, is made particularly difficult by the complexity of the

interaction. The nuclear potential is indeed spin-isospin dependent and contains strong tensor

terms; thus Eq. (7) consists in 2A
(

A
Z

)

complex coupled second order partial differential equa-

tions in 3A variables. For the actual case of 12C, there are 270,336 coupled equations in 36

variables.

Standard methods for solving partial differential equations are not feasible in this context.

Green Function Monte Carlo (GFMC) algorithms use projection techniques to enhance the

true ground-state component of a starting trial wave function ΨT

Ψ0(x1 . . . xA) = lim
τ→∞

e−(Ĥ−E0)τΨT (x1 . . . xA) . (8)

In the actual calculation, the imaginary time evaluation is done a sequence of imaginary time

steps, each one consisting in a 3A dimensional integral, evaluated within the Monte Carlo

approach.

In GFMC all the spin-isospin configurations are considered and the wave-function is a vector

of 2A
(

A
Z

)

complex numbers. For example the eight spin configurations of the 3H nucleus are

represented by [3]
4

|Ψ3H〉 =







































a ↑↑↑

a ↑↑↓

a ↑↓↑

a ↑↓↓

a ↓↑↑

a ↓↑↓

a ↓↓↑

a ↓↓↓







































(9)

Each coefficient aα, which is a function of the coordinates r1, r2 and r3, represents the

amplitude of a given many-particle spin configuration; for instance

a ↑↑↓ = 〈↑↑↓ |Ψ3H〉 . (10)

The application of the spin matrix σ12 ≡
∑

i σ
i
1σ

i
2 yields

σ̂12|Ψ3H〉 =







































a ↑↑↑

a ↑↑↓

2a ↓↑↑ − a ↑↓↑

2a ↓↑↓ − a ↑↓↓

2a ↑↓↑ − a ↓↑↑

2a ↑↓↓ − a ↓↑↓

a ↓↓↑

a ↓↓↓







































(11)

The “new” wave function can be expressed in terms of the coefficients of the old one.

Therefore, in order to reduce the computational complexity of the spin and isospin matrix

multiplication, a specialized table-drive code is implemented.

III. BEFORE MIRA AND ON MIRA

The GFMC code needed to be deeply revised to better capitalize the resources of a

leadership class computer like Intrepid (BQP) and Mira (BGQ).

The branching process of the GFMC algorithm involves replication and killing of the sam-

ples, the number of which can undergo large fluctuations. Therefore, to achieve an high

• The 3H case fits in the slide!
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(9)

Each coefficient aα, which is a function of the coordinates r1, r2 and r3, represents the

amplitude of a given many-particle spin configuration; for instance

a ↑↑↓ = 〈↑↑↓ |Ψ3H〉 . (10)

The application of the spin matrix σ12 ≡
∑

i σ
i
1σ

i
2 yields

σ̂12|Ψ3H〉 =







































a ↑↑↑

a ↑↑↓

2a ↓↑↑ − a ↑↓↑

2a ↓↑↓ − a ↑↓↓

2a ↑↓↑ − a ↓↑↑

2a ↑↓↓ − a ↓↑↓
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a ↓↓↓







































(11)

The “new” wave function can be expressed in terms of the coefficients of the old one.

Therefore, in order to reduce the computational complexity of the spin and isospin matrix

multiplication, a specialized table-drive code is implemented.

III. BEFORE MIRA AND ON MIRA

The GFMC code needed to be deeply revised to better capitalize the resources of a

leadership class computer like Intrepid (BQP) and Mira (BGQ).

The branching process of the GFMC algorithm involves replication and killing of the sam-

ples, the number of which can undergo large fluctuations. Therefore, to achieve an high
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Green’s Function Monte Carlo
Each imaginary time step consists in a 3A dimensional integral, evaluated within the 
Monte Carlo approach. 

Matrix in spin-isospin space!

The short-time propagator is constructed from the exact two-body propagator

G↵�(R,R0) =↵ hR|e�(Ĥ�E0)�⌧ |R0i�

G↵�(R,R0) = G0(R,R0)↵h
h
S
Y

i<j

gij(rij , r0ij)

g0 ,ij(rij , r0ij)

i
i�

which is given by

gij(rij , r
0
ij) = hrij |e�Ĥij�⌧ |r0iji Ĥij = �

r2
ij

m
+ v̂ij

while                       is the free two-body propagator. Using the exact two-body 
propagators allows for larger time steps:

g0 ,ij(rij , r
0
ij)

Standar Trotter
Large error if two particles are 
very close ⇠ vij T̂ vij�⌧3

Two-body propagator
Large error if three particles     
are very close ⇠ vij T̂ vik�⌧3
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Green’s Function Monte Carlo

To control the sign problem, an 
algorithm for discarding 
configurations which resembles 
as much as possible the 
constrained-path algorithms is 
implemented.

0 10 20 30 40-94

-93

-92

-91

nu

〈H
〉  

(M
eV

)

12C(g.s.) − AV18+IL7 with various corrs. − 〈H〉 − 18 Jul 2013

6 state 18
4+5 O

Each path consists of a set of n steps, where each step contains a sample of 3A particle 
coordinates, as well as sets of operator orders used to sample the symmetrization 
operators     for the pair operators in the trial wave function.S

The algorithm has been tested 
studying the dependence 
upon constraining wave 
function and also the 
convergence of the results 
obtained by relaxing the 
constraint.
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Need to go beyond MPI

• The branching process of the GFMC algorithm involves replication and killing of 
the samples, the number of which can undergo large fluctuations.

• In the original version of the code, several Monte Carlo samples, say at least 10, 
were assigned to each rank.

• A typical 12C calculation involves around 15,000 samples while leadership class 
computers have many 10,000’s of processors, making the algorithm quite inefficient.

10
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8

11
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9

13
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8

Rank 1

Rank 2

Rank 3
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ADLB library: overview

• Nodes are organized in servers and 
slaves; in standard GFMC calculations 
approximately 3% of the nodes are ADLB 
servers. 

• Once a work package has been processed by a slave, a “response 
package” may be sent to the slave that put the work package in the queue.

6

have to be computed. Since the evaluation of the sum rules of the 12C for a single value of q

takes of about 100 seconds (with 32 OMP threads), we decided to split the calculation in such

a way that each ADLB slave calculates the sum rules for a single value of q.

Figure 1. Automatic Dynamic Load Balancing work flow.

• subroutine o_em_wk

Let us concentrate on a particular ADLB energy slave, managing a single configuration.

It enters o_em_wk and immediately puts into the work pool the part of work package

independent on q

call ADLB_Begin_batch_put (rwp%cfl,respon_wp_len_common,ierr)

where rwp%cfl indicates the beginning of the work package, respon_wp_len_common

denotes its size and ierr will get a return code.

Afterwards, the q dependent parts of the work packages are placed in the work pool for

each of the ∼ 60 cases.

call ADLB_PUT(rwp%qh,respon_wp_len_var,-1,myid, adlbwp_respon,i_prior,ierr)

• A shared work queue, managed by the servers, is accessed by the slaves 
that either put work units, denoted as “work packages” in it or get those work 
packages out to work on them. 
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ADLB library: implementation

• In order to reduce the statistical error associated with GFMC, the sum rules 
and the longitudinal form factor are evaluated for:

12 directions of the momentum transfer
(in four groups of three orthogonal directions)

21 values of the discretized momentum 
transfer magnitude

252 independent 
expectation values 
need to be computed.

• The evaluation of the sum rules of the 12C for a single value of the 
momentum transfer takes of about 360 seconds (with 16 OpenMP threads)

• ADLB is used to split the calculation in such a way that each slave 
calculates the sum rules and the form factor for a single value of    .q
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ADLB library: implementation

As big as 1.30 GB !
Impossible on Intrepid!

• The response work package contains the left and right wave functions 
and, in certain cases, their derivatives. 
      TYPE respon_wp_package_der
         sequence
!  common part of package
         complex(8), dimension(nspin0, niso1) ::  cfl, cfr
         complex(4), dimension(ns,niso1,3,npart0) ::  cfdl, cfdr
         real(8) :: rpart0(3*npart0)
         real(8) :: actf, weight
         integer(4) :: iptb, if2, ijunk
         logical(4) :: prtsw
!  variable part
         real(8), dimension(3) :: qh
         real(8) :: q
         integer(4) :: iqq, iqh
      END TYPE respon_wp_package_der

call ADLB_Begin_batch_put(rwp%cfl, respon_wp_len_common, ierr)

call ADLB_PUT(rwp%qh, respon_wp_len_var, -1, myid, adlbwp_respon, i_prior, ierr)

Common part put: called once for each configuration. 

Variable part put: called for each    .

• ADLB solution

q
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ADLB library: performance

• Very good scaling of the energy calculation up to 262,144 MPI ranks!
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ADLB library: performance

• Very good scaling of the calculation: total time per configuration per q-value very 
close to the ideal case.

95.2%
Efficiency!
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Results - Longitudinal form factor

• Experimental data are well 
reproduced by theory over the 
whole range of momentum 
transfers;

• Two-body terms become 
appreciable only for q > 3 fm
−1, where they interfere 
destructively with the one-
body contributions bringing 
theory into closer agreement 
with experiment.
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Results - Longitudinal sum rule

• SL vanishes quadratically 
at small momentum transfer.

• The one-body sum rule in
the large q limit differs from 
unity because of relativistic 
correction and convection 
term.

• Satisfactory agreement with 
the experimental values, 
including tail contributions.

• No significant quenching of 
longitudinal strength is observed

No evidence for significant in-
medium modifications of the nucleon 
electromagnetic form factors.
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Results - Transverse sum rule

•Divergent behavior at small q 
due to the normalization factor 
CT.

• Large two-body 
contribution, most likely from 
the quasi-elastic region, 
needed for a better 
agreement with experimental 
data.

• Comparison with 
experimental data made 
difficult by the     peak. �
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Conclusions 

• Very good description of the longitudinal form factor; two body terms bring theory 
into closer agreement with experiment.

• As for the longitudinal sum rule, we find satisfactory agreement with the experimental 
values, including tail contributions. Hence, we find no evidence for in-medium 
modifications of the nucleon electromagnetic form factors.

• Very good ADLB scaling up to 32,768 ranks (at least), using 4 ranks per node. 

• In the transverse sum rule large two-body contribution the sizable contribution 
of the two-body terms is needed for a better agreement with experimental data.

• Good OpenMP scaling in each process: using 16 threads (the most possible) instead 
of only 4 reduces the time per configuration per q-value from about 12 to 6 minutes
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Future

• Euclidean electromagnetic response calculation of 12-carbon

• Neutral current sum rules, allowing for the description of neutrino scattering 
on Carbon-12, are currently being implemented in the code.  

E↵(q, ⌧) =

Z 1

!th

e�(!�E0)⌧R↵(q,!)

will enable us to make a more direct comparison with data. Its implementation 
does not involve conceptual difficulties, as it consists in the evaluation of matrix 
elements like

M(⌧) =
h0|O†

↵e
�(H�E0)⌧O↵|0i

h0|e�(H�E0)⌧ |0i
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Future
Èj

†
x

j x
Í

q

≠

The 4He transverse sum rule (not divided by the form factor) of the response 
function exhibits a sizable enhancement due to two-body terms.
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