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FIG. 3. (Color online) Mass—radius and mass—central density
relations for different equations of state. Details are given in the text.

This is in fact confirmed by the composition of NS matter
shown in the upper panels of Fig. 2, where the results obtained
with the two models V18 + TBF + ESC08 and V18 + UIX′+
NSC89 are compared with those of purely nuclear matter,
V18 + TBF and V18 + UIX′, disregarding the appearance
of hyperons. It is striking to see how the roles of the ! and
"− hyperons are reversed with the two YN potentials: With
the NSC89 the "− appears first at about twice normal nuclear
matter density and the ! at about 0.6 fm−3, whereas with
the ESC08 the hyperon onset densities are nearly the same,
but ! and "− are swapped. Furthermore, with the ESC08
the ! concentration reaches much larger values than with the
NSC89, while the "− remains more suppressed, due to its
strong repulsion in neutron-rich matter; see Fig. 1.

Pressure and energy density of hyperonic NS matter, shown
in the lower panels of Fig. 2, are quite similar for both models.
This is in contrast to the purely nucleonic calculations, where
one observes a much stiffer nuclear EOS with the microscopic
TBF than with the UIX′, see also Refs. [6,9]. The proton
fraction is larger with the microscopic TBF, which would
favor also a larger "− concentration. Evidently this effect
is completely overcome by the strong "− repulsion with the
ESC08 potential.

These results allow to interpret easily the final resulting
mass—radius and mass—central density relations for the
different EOS that are shown in Fig. 3: Regarding the purely
nucleonic cases (thin curves), in accordance with the EOS

shown in Fig. 2 one obtains a much larger maximum mass
with the microscopic TBF than with the UIX′ (2.27 M# vs
1.82 M#) [6], while remarkably the introduction of hyperons
yields nearly the same maximum mass in both models
(1.37 M# vs 1.32 M#; thick solid and dashed curves). These
values are also very close to the result 1.34 M# that was
obtained in an approximate way in Ref. [6] by combining
the microscopic TBF with the NSC89 potential, i.e., V18 +
TBF + NSC89, and that we repeat here for completeness,
together with the result for V18 + UIX′+ ESC08 (1.36 M#),
obtained in the same way.

While the maximum masses of hyperon stars are thus
nearly identical, there are significant differences for the
corresponding radii that are linked to the maximum central
baryon density that is reached in the different models. In
any case, however, most current observed NS masses [26]
are superior to these theoretical values of hyperon stars.

IV. CONCLUSIONS

In this article the finding of very low maximum masses of
hyperon stars within the BHF approach is reconfirmed, using
very recent realistic nucleon-nucleon and hyperon-nucleon
interactions.

Compared to previous results based on the V18 + UIX′

NN force and the NSC89/97 YN models, both changes are in
principle able to stiffen the EOS and increase the maximum
mass (as clearly shown for purely nucleonic stars), but it is
amazing to see how well the self-regulating compensation
softening mechanism for the hypernuclear EOS works, finally
yielding nearly the same maximum mass of about 1.35 M# as
before.

This result reinforces once more the important conclusion
that in our approach massive neutron stars have to be hybrid
stars containing a core of nonbaryonic (“quark”) matter [27],
since the possibility of them being nucleonic stars is ruled out
by the early appearance of hyperons.

It seems difficult to avoid this conclusion, even in view
of the current uncertainties regarding hyperon-hyperon and
hyperonic three-body interactions. Only simultaneous strong
repulsion in all relevant channels could significantly raise the
maximum mass (see, however, Ref. [28]). Obviously it will
be an important task for the future to verify this by following
future experimental and theoretical developments in this field.
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Figure 5.10. Threshold chemical potentials of neutral hyperons and neutron (left) and of nega-
tively charged hyperons and the sum µe+µn (right) versus baryon number density for model C of
Glendenning (1985). Vertical dotted lines mark the thresholds for the creation of new hyperons;
dashed lines show minimum enthalpies µ0

H of unstable hyperons before the thresholds.

5.14.1 Hyperonic composition
Let us consider an electrically neutral matter composed of baryons B (nucle-

ons and hyperons) and leptons ! (electron and muons) at a given baryon number
density nb. The baryon density is

∑

B

nB = nb , (5.111)

while the electric charge neutrality implies
∑

B

nBQB −
∑

!=e,µ

n! = 0 , (5.112)

where QB is the electric charge of a baryon B in units of e. The energy density
depends on the number densities of baryons {nB} and leptons (ne, nµ), E =
E({nB}, ne, nµ). The equilibrium state has to be determined by minimizing E
under the constraints given by Eqs. (5.111) and (5.112). To this aim, we will
use the method of Lagrange multipliers described in §5.11.1. In analogy with
Eq. (5.91) we define the auxiliary energy density Ẽ

Ẽ = E + λb

(
∑

B

nB − nb

)
+ λq




∑

B

QBnB −
∑

!=e,µ

n!



 . (5.113)

P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1, Springer 2007

Q = �1 : µb� = µn + µe

Q = 0 : µb0 = µn

Q = +1 : µb+ = µn � µe
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P. Haensel, A.Y. Potekhin, D.G. Yakovlev, 
Neutron Stars 1, Springer 2007
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Figure 5.1. Energy per nucleon versus baryon number density for symmetric nuclear matter
(δ = 0), asymmetric nuclear matter with δ = 0.4 (such an asymmetry corresponds to the
neutron-drip point in a neutron star crust and to a central core of a newly born protoneutron
star), and pure neutron matter (δ = 1). Minima of the E(nb) curves are indicated by filled
dots. Dotted segments correspond to negative pressure. Calculations are performed for the SLy4
model of effective nuclear Hamiltonian, which was used to calculate the SLy EOS by Douchin
& Haensel (2001). It yields n0 = 0.16 fm−3 and E0 = −16.0 MeV.

where S0 and K0 are, respectively, the nuclear symmetry energy and incom-
pressibility at the saturation point,12

S0 =
1
2

(
∂2E

∂δ2

)

nb=n0, δ=0
, K0 = 9

(
n2

b
∂2E

∂n2
b

)

nb=n0, δ=0
. (5.2)

The symmetry energy S0 determines the increase in the energy per nucleon due
to a small asymmetry δ; the incompressibility K0 gives the curvature of the

12A traditional factor of nine in the definition of K0 is introduced for historical reasons. In the original
definition of K0 the energy per nucleon in the symmetric nuclear matter was treated as a function of a
common Fermi momentum (in units of !) for neutrons and protons, kF, related to nb via nb = 2k3

F/(3π2).
This resulted in K0 ≡ (k2

FdE/ dk2
F)kF=kF0 and produced a factor of nine while replacing the derivative

with respect to kF by the derivative with respect to nb.

pure n matter

NS core

hyperons: softening of 
the EOS

H. Ðapo, B.-J. Schaefer, and J. Wambach, Phys. Rev. C 81, 035803 (2010)
nb [n0]nb [n0]
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Estimation of the effect of hyperonic three-body forces on the maximum mass of neutron stars
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Fig. 1: (Color online) Upper panel: β-stable matter EoS. Lower
panel: mass-radius relation for different EoS. Circles indicate
the central baryon number density, central pressure, mass and
radius of the maximum mass stellar configuration. Horizontal
lines show the masses of the pulsars PSR J1614-2230 [30], PSR
J1903+0327 [31] and the Hulse-Taylor one [36]. See the text
for details.

the Hulse-Taylor one (1.4414± 0.0002) [36]. The strong
softening of the EoS due to the presence of hyperons and
the consequent reduction of the maximum mass is clearly
seen. The maximum masses of hyperonic stars lay in a
narrow range from 1.27 to 1.60M!, that is still compatible
with the mass of Hulse-Taylor pulsar, but is well below
the masses of PSR J1903+0327 and PSR J1614-2230.
Summarizing, we use a model based on a microscopic

BHF approach of hyperonic matter supplemented with
additional simple phenomenological density-dependent
contact terms to establish numerical lower and upper
limits to the effect of hyperonic TBF on the maximum
mass of neutron stars. Assuming that the strength of
these forces is either smaller than or as large as the pure
nucleonic ones, our results show that maximum masses of
hyperonic stars lie in a narrow range from 1.27 to 1.60M!
which is still compatible with the “canonical” value of
1.4–1.5M!, but it is incompatible with the observation of
massive neutron stars, such as the recent measurements
of a mass of 1.97± 0.04M! for the millisecond pulsar
PSR J1614-2230, and a mass of 1.667± 0.021M! for the

PSR J1903+0327 one. We hope that this exploratory
work can serve as a motivation to perform more realistic
and sophisticated studies of hyperonic TBF and their
effects on the neutron star structure, since they have the
last word on this issue.
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This is in fact confirmed by the composition of NS matter
shown in the upper panels of Fig. 2, where the results obtained
with the two models V18 + TBF + ESC08 and V18 + UIX′+
NSC89 are compared with those of purely nuclear matter,
V18 + TBF and V18 + UIX′, disregarding the appearance
of hyperons. It is striking to see how the roles of the ! and
"− hyperons are reversed with the two YN potentials: With
the NSC89 the "− appears first at about twice normal nuclear
matter density and the ! at about 0.6 fm−3, whereas with
the ESC08 the hyperon onset densities are nearly the same,
but ! and "− are swapped. Furthermore, with the ESC08
the ! concentration reaches much larger values than with the
NSC89, while the "− remains more suppressed, due to its
strong repulsion in neutron-rich matter; see Fig. 1.

Pressure and energy density of hyperonic NS matter, shown
in the lower panels of Fig. 2, are quite similar for both models.
This is in contrast to the purely nucleonic calculations, where
one observes a much stiffer nuclear EOS with the microscopic
TBF than with the UIX′, see also Refs. [6,9]. The proton
fraction is larger with the microscopic TBF, which would
favor also a larger "− concentration. Evidently this effect
is completely overcome by the strong "− repulsion with the
ESC08 potential.

These results allow to interpret easily the final resulting
mass—radius and mass—central density relations for the
different EOS that are shown in Fig. 3: Regarding the purely
nucleonic cases (thin curves), in accordance with the EOS

shown in Fig. 2 one obtains a much larger maximum mass
with the microscopic TBF than with the UIX′ (2.27 M# vs
1.82 M#) [6], while remarkably the introduction of hyperons
yields nearly the same maximum mass in both models
(1.37 M# vs 1.32 M#; thick solid and dashed curves). These
values are also very close to the result 1.34 M# that was
obtained in an approximate way in Ref. [6] by combining
the microscopic TBF with the NSC89 potential, i.e., V18 +
TBF + NSC89, and that we repeat here for completeness,
together with the result for V18 + UIX′+ ESC08 (1.36 M#),
obtained in the same way.

While the maximum masses of hyperon stars are thus
nearly identical, there are significant differences for the
corresponding radii that are linked to the maximum central
baryon density that is reached in the different models. In
any case, however, most current observed NS masses [26]
are superior to these theoretical values of hyperon stars.

IV. CONCLUSIONS

In this article the finding of very low maximum masses of
hyperon stars within the BHF approach is reconfirmed, using
very recent realistic nucleon-nucleon and hyperon-nucleon
interactions.

Compared to previous results based on the V18 + UIX′

NN force and the NSC89/97 YN models, both changes are in
principle able to stiffen the EOS and increase the maximum
mass (as clearly shown for purely nucleonic stars), but it is
amazing to see how well the self-regulating compensation
softening mechanism for the hypernuclear EOS works, finally
yielding nearly the same maximum mass of about 1.35 M# as
before.

This result reinforces once more the important conclusion
that in our approach massive neutron stars have to be hybrid
stars containing a core of nonbaryonic (“quark”) matter [27],
since the possibility of them being nucleonic stars is ruled out
by the early appearance of hyperons.

It seems difficult to avoid this conclusion, even in view
of the current uncertainties regarding hyperon-hyperon and
hyperonic three-body interactions. Only simultaneous strong
repulsion in all relevant channels could significantly raise the
maximum mass (see, however, Ref. [28]). Obviously it will
be an important task for the future to verify this by following
future experimental and theoretical developments in this field.
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FIG. 7. (Color online) Dependence of the gravitational mass of
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The solid (blue online) and dashed (red online) show the limiting
cases of parameter space as indicated in the panels (a) and (b). The
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on the maximum mass 1.97M!.

configuration with the maximum mass and the stars with larger
central densities are unstable towards gravitational collapse.
A condition of stability for a sequence of configurations is
dM/dρc ! 0; i.e., the mass should be an increasing function
of the central density. Alternatively, the stability analysis
of the lowest-order harmonics of pulsation modes (e.g., the
fundamental radial pulsations) allows access to the stability
of a configuration, for these are damped for stable stars and
increase exponentially for unstable stars.

The range of considered hypernuclear EoS translates into
the band of the stable configurations shown in Fig. 7. The
hypernuclear configurations branch off from the purely nuclear
configurations once the central density of a configuration
reaches the threshold for appearance of hyperons in matter.
The gravitational mass of hypernuclear stars increases with
the density, indicating a stable branch of these objects, and
reaches the maximum mass "2.25M! for densities of order
7ρ0. Most of the sequences generated by the parameter space of
the couplings considered is compatible with the observational
bound M/M! ! 1.97. There is also room left for larger mass
stars to allow for statistical distribution of the masses of
neutron stars beyond this limit. Note that 1.4M! canonical
mass stars would be pure nucleonic for the softer subclass
of EoS considered, whereas they would contain hypernuclear
matter for the harder subclass; however, all stars with M >
1.5M! contain hypernuclear matter.

In Fig. 8 we show the mass-radius relationship for the
hypernuclear sequences. The configurations with masses close
to the maximum mass M " 2M! have radii of R " 12 km,
whereas the canonical mass stars have radii of order 14 km.
The figure also shows the bound, which predicts that PSR
J0437-4715, being a M = 1.76M! neutron star, has a radius
R > 12.5 km at the 2σ level. Clearly, the hypernuclear stars
are consistent with this observation. Finally we note that it is
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FIG. 8. (Color online) The mass-radius relations for compact
hypernuclear stars at zero temperature. The labeling and parameter
space is as in Fig. 7. The arrow shows the mass-radius constraint of
Ref. [31] at 2σ level, which is M = 1.76M! and R ! 12.5 km.

not excluded that the low-mass neutron stars with M ∼ 1.2M!
may already contain hypernuclear matter.

VI. CONCLUSIONS

Despite decades of theoretical research on hypernuclear
matter, the appearance of hyperons in compact stars remains an
open issue. While the recent astrophysical measurements ex-
clude a significant fraction of soft EoSs, the hyperonization of
dense nuclear matter remains a serious possibility. Our present
study confirms this within a relativistic density functional
approach to nuclear matter, where we investigated the impact
of variation of the hyperon–scalar-meson couplings on the EoS
of hypernuclear matter. The range of found EoSs is sufficiently
stiff to produce heavy compact stars (M " 2.25M!). The
radii of our sequences are located in the range of 12 " R "
14 km. Piecewise-polytropic fits for six representative EoSs
are provided, which span the complete range of EoS from our
parameter study.

The parameter space of couplings of hyperons to scalar
mesons was explored, holding density-dependent nucleonic
couplings fixed to their values suggested by the DD-
ME2 parametrization of the nuclear density functional [56].
To allow for hyperonization in massive stars a require-
ment is to have small ratios of the hypernuclear-to-nuclear
couplings; in particular, hyperons need to be coupled to
scalar mesons weaker than predicted by the SU(6) quark
model.

By extending our studies to nonzero temperature and
including thermal ensemble of neutrinos (present in a compact
star during the first minute after birth) we confirm that
the neutrinos stiffen the high-density EoS and impact the
charge lepton content of hypernuclear matter. Instead of
deleptonization with increasing density, seen in neutrinoless
matter, the abundances of charged leptons remain constant,
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Fig. 1: (Color online) Upper panel: β-stable matter EoS. Lower
panel: mass-radius relation for different EoS. Circles indicate
the central baryon number density, central pressure, mass and
radius of the maximum mass stellar configuration. Horizontal
lines show the masses of the pulsars PSR J1614-2230 [30], PSR
J1903+0327 [31] and the Hulse-Taylor one [36]. See the text
for details.

the Hulse-Taylor one (1.4414± 0.0002) [36]. The strong
softening of the EoS due to the presence of hyperons and
the consequent reduction of the maximum mass is clearly
seen. The maximum masses of hyperonic stars lay in a
narrow range from 1.27 to 1.60M!, that is still compatible
with the mass of Hulse-Taylor pulsar, but is well below
the masses of PSR J1903+0327 and PSR J1614-2230.
Summarizing, we use a model based on a microscopic

BHF approach of hyperonic matter supplemented with
additional simple phenomenological density-dependent
contact terms to establish numerical lower and upper
limits to the effect of hyperonic TBF on the maximum
mass of neutron stars. Assuming that the strength of
these forces is either smaller than or as large as the pure
nucleonic ones, our results show that maximum masses of
hyperonic stars lie in a narrow range from 1.27 to 1.60M!
which is still compatible with the “canonical” value of
1.4–1.5M!, but it is incompatible with the observation of
massive neutron stars, such as the recent measurements
of a mass of 1.97± 0.04M! for the millisecond pulsar
PSR J1614-2230, and a mass of 1.667± 0.021M! for the

PSR J1903+0327 one. We hope that this exploratory
work can serve as a motivation to perform more realistic
and sophisticated studies of hyperonic TBF and their
effects on the neutron star structure, since they have the
last word on this issue.
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FIG. 3. (Color online) Mass—radius and mass—central density
relations for different equations of state. Details are given in the text.

This is in fact confirmed by the composition of NS matter
shown in the upper panels of Fig. 2, where the results obtained
with the two models V18 + TBF + ESC08 and V18 + UIX′+
NSC89 are compared with those of purely nuclear matter,
V18 + TBF and V18 + UIX′, disregarding the appearance
of hyperons. It is striking to see how the roles of the ! and
"− hyperons are reversed with the two YN potentials: With
the NSC89 the "− appears first at about twice normal nuclear
matter density and the ! at about 0.6 fm−3, whereas with
the ESC08 the hyperon onset densities are nearly the same,
but ! and "− are swapped. Furthermore, with the ESC08
the ! concentration reaches much larger values than with the
NSC89, while the "− remains more suppressed, due to its
strong repulsion in neutron-rich matter; see Fig. 1.

Pressure and energy density of hyperonic NS matter, shown
in the lower panels of Fig. 2, are quite similar for both models.
This is in contrast to the purely nucleonic calculations, where
one observes a much stiffer nuclear EOS with the microscopic
TBF than with the UIX′, see also Refs. [6,9]. The proton
fraction is larger with the microscopic TBF, which would
favor also a larger "− concentration. Evidently this effect
is completely overcome by the strong "− repulsion with the
ESC08 potential.

These results allow to interpret easily the final resulting
mass—radius and mass—central density relations for the
different EOS that are shown in Fig. 3: Regarding the purely
nucleonic cases (thin curves), in accordance with the EOS

shown in Fig. 2 one obtains a much larger maximum mass
with the microscopic TBF than with the UIX′ (2.27 M# vs
1.82 M#) [6], while remarkably the introduction of hyperons
yields nearly the same maximum mass in both models
(1.37 M# vs 1.32 M#; thick solid and dashed curves). These
values are also very close to the result 1.34 M# that was
obtained in an approximate way in Ref. [6] by combining
the microscopic TBF with the NSC89 potential, i.e., V18 +
TBF + NSC89, and that we repeat here for completeness,
together with the result for V18 + UIX′+ ESC08 (1.36 M#),
obtained in the same way.

While the maximum masses of hyperon stars are thus
nearly identical, there are significant differences for the
corresponding radii that are linked to the maximum central
baryon density that is reached in the different models. In
any case, however, most current observed NS masses [26]
are superior to these theoretical values of hyperon stars.

IV. CONCLUSIONS

In this article the finding of very low maximum masses of
hyperon stars within the BHF approach is reconfirmed, using
very recent realistic nucleon-nucleon and hyperon-nucleon
interactions.

Compared to previous results based on the V18 + UIX′

NN force and the NSC89/97 YN models, both changes are in
principle able to stiffen the EOS and increase the maximum
mass (as clearly shown for purely nucleonic stars), but it is
amazing to see how well the self-regulating compensation
softening mechanism for the hypernuclear EOS works, finally
yielding nearly the same maximum mass of about 1.35 M# as
before.

This result reinforces once more the important conclusion
that in our approach massive neutron stars have to be hybrid
stars containing a core of nonbaryonic (“quark”) matter [27],
since the possibility of them being nucleonic stars is ruled out
by the early appearance of hyperons.

It seems difficult to avoid this conclusion, even in view
of the current uncertainties regarding hyperon-hyperon and
hyperonic three-body interactions. Only simultaneous strong
repulsion in all relevant channels could significantly raise the
maximum mass (see, however, Ref. [28]). Obviously it will
be an important task for the future to verify this by following
future experimental and theoretical developments in this field.
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FIG. 7. (Color online) Dependence of the gravitational mass of
compact hypernuclear stars on central density at zero temperature.
The solid (blue online) and dashed (red online) show the limiting
cases of parameter space as indicated in the panels (a) and (b). The
dash-dotted (green online) line shows the observational lower limit
on the maximum mass 1.97M!.

configuration with the maximum mass and the stars with larger
central densities are unstable towards gravitational collapse.
A condition of stability for a sequence of configurations is
dM/dρc ! 0; i.e., the mass should be an increasing function
of the central density. Alternatively, the stability analysis
of the lowest-order harmonics of pulsation modes (e.g., the
fundamental radial pulsations) allows access to the stability
of a configuration, for these are damped for stable stars and
increase exponentially for unstable stars.

The range of considered hypernuclear EoS translates into
the band of the stable configurations shown in Fig. 7. The
hypernuclear configurations branch off from the purely nuclear
configurations once the central density of a configuration
reaches the threshold for appearance of hyperons in matter.
The gravitational mass of hypernuclear stars increases with
the density, indicating a stable branch of these objects, and
reaches the maximum mass "2.25M! for densities of order
7ρ0. Most of the sequences generated by the parameter space of
the couplings considered is compatible with the observational
bound M/M! ! 1.97. There is also room left for larger mass
stars to allow for statistical distribution of the masses of
neutron stars beyond this limit. Note that 1.4M! canonical
mass stars would be pure nucleonic for the softer subclass
of EoS considered, whereas they would contain hypernuclear
matter for the harder subclass; however, all stars with M >
1.5M! contain hypernuclear matter.

In Fig. 8 we show the mass-radius relationship for the
hypernuclear sequences. The configurations with masses close
to the maximum mass M " 2M! have radii of R " 12 km,
whereas the canonical mass stars have radii of order 14 km.
The figure also shows the bound, which predicts that PSR
J0437-4715, being a M = 1.76M! neutron star, has a radius
R > 12.5 km at the 2σ level. Clearly, the hypernuclear stars
are consistent with this observation. Finally we note that it is
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FIG. 8. (Color online) The mass-radius relations for compact
hypernuclear stars at zero temperature. The labeling and parameter
space is as in Fig. 7. The arrow shows the mass-radius constraint of
Ref. [31] at 2σ level, which is M = 1.76M! and R ! 12.5 km.

not excluded that the low-mass neutron stars with M ∼ 1.2M!
may already contain hypernuclear matter.

VI. CONCLUSIONS

Despite decades of theoretical research on hypernuclear
matter, the appearance of hyperons in compact stars remains an
open issue. While the recent astrophysical measurements ex-
clude a significant fraction of soft EoSs, the hyperonization of
dense nuclear matter remains a serious possibility. Our present
study confirms this within a relativistic density functional
approach to nuclear matter, where we investigated the impact
of variation of the hyperon–scalar-meson couplings on the EoS
of hypernuclear matter. The range of found EoSs is sufficiently
stiff to produce heavy compact stars (M " 2.25M!). The
radii of our sequences are located in the range of 12 " R "
14 km. Piecewise-polytropic fits for six representative EoSs
are provided, which span the complete range of EoS from our
parameter study.

The parameter space of couplings of hyperons to scalar
mesons was explored, holding density-dependent nucleonic
couplings fixed to their values suggested by the DD-
ME2 parametrization of the nuclear density functional [56].
To allow for hyperonization in massive stars a require-
ment is to have small ratios of the hypernuclear-to-nuclear
couplings; in particular, hyperons need to be coupled to
scalar mesons weaker than predicted by the SU(6) quark
model.

By extending our studies to nonzero temperature and
including thermal ensemble of neutrinos (present in a compact
star during the first minute after birth) we confirm that
the neutrinos stiffen the high-density EoS and impact the
charge lepton content of hypernuclear matter. Instead of
deleptonization with increasing density, seen in neutrinoless
matter, the abundances of charged leptons remain constant,
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Fig. 1: (Color online) Upper panel: β-stable matter EoS. Lower
panel: mass-radius relation for different EoS. Circles indicate
the central baryon number density, central pressure, mass and
radius of the maximum mass stellar configuration. Horizontal
lines show the masses of the pulsars PSR J1614-2230 [30], PSR
J1903+0327 [31] and the Hulse-Taylor one [36]. See the text
for details.

the Hulse-Taylor one (1.4414± 0.0002) [36]. The strong
softening of the EoS due to the presence of hyperons and
the consequent reduction of the maximum mass is clearly
seen. The maximum masses of hyperonic stars lay in a
narrow range from 1.27 to 1.60M!, that is still compatible
with the mass of Hulse-Taylor pulsar, but is well below
the masses of PSR J1903+0327 and PSR J1614-2230.
Summarizing, we use a model based on a microscopic

BHF approach of hyperonic matter supplemented with
additional simple phenomenological density-dependent
contact terms to establish numerical lower and upper
limits to the effect of hyperonic TBF on the maximum
mass of neutron stars. Assuming that the strength of
these forces is either smaller than or as large as the pure
nucleonic ones, our results show that maximum masses of
hyperonic stars lie in a narrow range from 1.27 to 1.60M!
which is still compatible with the “canonical” value of
1.4–1.5M!, but it is incompatible with the observation of
massive neutron stars, such as the recent measurements
of a mass of 1.97± 0.04M! for the millisecond pulsar
PSR J1614-2230, and a mass of 1.667± 0.021M! for the

PSR J1903+0327 one. We hope that this exploratory
work can serve as a motivation to perform more realistic
and sophisticated studies of hyperonic TBF and their
effects on the neutron star structure, since they have the
last word on this issue.
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FIG. 3. (Color online) Mass—radius and mass—central density
relations for different equations of state. Details are given in the text.

This is in fact confirmed by the composition of NS matter
shown in the upper panels of Fig. 2, where the results obtained
with the two models V18 + TBF + ESC08 and V18 + UIX′+
NSC89 are compared with those of purely nuclear matter,
V18 + TBF and V18 + UIX′, disregarding the appearance
of hyperons. It is striking to see how the roles of the ! and
"− hyperons are reversed with the two YN potentials: With
the NSC89 the "− appears first at about twice normal nuclear
matter density and the ! at about 0.6 fm−3, whereas with
the ESC08 the hyperon onset densities are nearly the same,
but ! and "− are swapped. Furthermore, with the ESC08
the ! concentration reaches much larger values than with the
NSC89, while the "− remains more suppressed, due to its
strong repulsion in neutron-rich matter; see Fig. 1.

Pressure and energy density of hyperonic NS matter, shown
in the lower panels of Fig. 2, are quite similar for both models.
This is in contrast to the purely nucleonic calculations, where
one observes a much stiffer nuclear EOS with the microscopic
TBF than with the UIX′, see also Refs. [6,9]. The proton
fraction is larger with the microscopic TBF, which would
favor also a larger "− concentration. Evidently this effect
is completely overcome by the strong "− repulsion with the
ESC08 potential.

These results allow to interpret easily the final resulting
mass—radius and mass—central density relations for the
different EOS that are shown in Fig. 3: Regarding the purely
nucleonic cases (thin curves), in accordance with the EOS

shown in Fig. 2 one obtains a much larger maximum mass
with the microscopic TBF than with the UIX′ (2.27 M# vs
1.82 M#) [6], while remarkably the introduction of hyperons
yields nearly the same maximum mass in both models
(1.37 M# vs 1.32 M#; thick solid and dashed curves). These
values are also very close to the result 1.34 M# that was
obtained in an approximate way in Ref. [6] by combining
the microscopic TBF with the NSC89 potential, i.e., V18 +
TBF + NSC89, and that we repeat here for completeness,
together with the result for V18 + UIX′+ ESC08 (1.36 M#),
obtained in the same way.

While the maximum masses of hyperon stars are thus
nearly identical, there are significant differences for the
corresponding radii that are linked to the maximum central
baryon density that is reached in the different models. In
any case, however, most current observed NS masses [26]
are superior to these theoretical values of hyperon stars.

IV. CONCLUSIONS

In this article the finding of very low maximum masses of
hyperon stars within the BHF approach is reconfirmed, using
very recent realistic nucleon-nucleon and hyperon-nucleon
interactions.

Compared to previous results based on the V18 + UIX′

NN force and the NSC89/97 YN models, both changes are in
principle able to stiffen the EOS and increase the maximum
mass (as clearly shown for purely nucleonic stars), but it is
amazing to see how well the self-regulating compensation
softening mechanism for the hypernuclear EOS works, finally
yielding nearly the same maximum mass of about 1.35 M# as
before.

This result reinforces once more the important conclusion
that in our approach massive neutron stars have to be hybrid
stars containing a core of nonbaryonic (“quark”) matter [27],
since the possibility of them being nucleonic stars is ruled out
by the early appearance of hyperons.

It seems difficult to avoid this conclusion, even in view
of the current uncertainties regarding hyperon-hyperon and
hyperonic three-body interactions. Only simultaneous strong
repulsion in all relevant channels could significantly raise the
maximum mass (see, however, Ref. [28]). Obviously it will
be an important task for the future to verify this by following
future experimental and theoretical developments in this field.
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FIG. 7. (Color online) Dependence of the gravitational mass of
compact hypernuclear stars on central density at zero temperature.
The solid (blue online) and dashed (red online) show the limiting
cases of parameter space as indicated in the panels (a) and (b). The
dash-dotted (green online) line shows the observational lower limit
on the maximum mass 1.97M!.

configuration with the maximum mass and the stars with larger
central densities are unstable towards gravitational collapse.
A condition of stability for a sequence of configurations is
dM/dρc ! 0; i.e., the mass should be an increasing function
of the central density. Alternatively, the stability analysis
of the lowest-order harmonics of pulsation modes (e.g., the
fundamental radial pulsations) allows access to the stability
of a configuration, for these are damped for stable stars and
increase exponentially for unstable stars.

The range of considered hypernuclear EoS translates into
the band of the stable configurations shown in Fig. 7. The
hypernuclear configurations branch off from the purely nuclear
configurations once the central density of a configuration
reaches the threshold for appearance of hyperons in matter.
The gravitational mass of hypernuclear stars increases with
the density, indicating a stable branch of these objects, and
reaches the maximum mass "2.25M! for densities of order
7ρ0. Most of the sequences generated by the parameter space of
the couplings considered is compatible with the observational
bound M/M! ! 1.97. There is also room left for larger mass
stars to allow for statistical distribution of the masses of
neutron stars beyond this limit. Note that 1.4M! canonical
mass stars would be pure nucleonic for the softer subclass
of EoS considered, whereas they would contain hypernuclear
matter for the harder subclass; however, all stars with M >
1.5M! contain hypernuclear matter.

In Fig. 8 we show the mass-radius relationship for the
hypernuclear sequences. The configurations with masses close
to the maximum mass M " 2M! have radii of R " 12 km,
whereas the canonical mass stars have radii of order 14 km.
The figure also shows the bound, which predicts that PSR
J0437-4715, being a M = 1.76M! neutron star, has a radius
R > 12.5 km at the 2σ level. Clearly, the hypernuclear stars
are consistent with this observation. Finally we note that it is
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FIG. 8. (Color online) The mass-radius relations for compact
hypernuclear stars at zero temperature. The labeling and parameter
space is as in Fig. 7. The arrow shows the mass-radius constraint of
Ref. [31] at 2σ level, which is M = 1.76M! and R ! 12.5 km.

not excluded that the low-mass neutron stars with M ∼ 1.2M!
may already contain hypernuclear matter.

VI. CONCLUSIONS

Despite decades of theoretical research on hypernuclear
matter, the appearance of hyperons in compact stars remains an
open issue. While the recent astrophysical measurements ex-
clude a significant fraction of soft EoSs, the hyperonization of
dense nuclear matter remains a serious possibility. Our present
study confirms this within a relativistic density functional
approach to nuclear matter, where we investigated the impact
of variation of the hyperon–scalar-meson couplings on the EoS
of hypernuclear matter. The range of found EoSs is sufficiently
stiff to produce heavy compact stars (M " 2.25M!). The
radii of our sequences are located in the range of 12 " R "
14 km. Piecewise-polytropic fits for six representative EoSs
are provided, which span the complete range of EoS from our
parameter study.

The parameter space of couplings of hyperons to scalar
mesons was explored, holding density-dependent nucleonic
couplings fixed to their values suggested by the DD-
ME2 parametrization of the nuclear density functional [56].
To allow for hyperonization in massive stars a require-
ment is to have small ratios of the hypernuclear-to-nuclear
couplings; in particular, hyperons need to be coupled to
scalar mesons weaker than predicted by the SU(6) quark
model.

By extending our studies to nonzero temperature and
including thermal ensemble of neutrinos (present in a compact
star during the first minute after birth) we confirm that
the neutrinos stiffen the high-density EoS and impact the
charge lepton content of hypernuclear matter. Instead of
deleptonization with increasing density, seen in neutrinoless
matter, the abundances of charged leptons remain constant,
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The strange AFDMC project: the hyperon-nucleon interaction
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• 2-body and 3-body terms
• variational calculations

A. A. Usmani, F. C. Khanna, J. Phys. G: Nucl. Part. Phys. 35, 025105 (2008)AV18+UIX like



2-body

The strange AFDMC project: the hyperon-nucleon interaction

N

N

⇡

N

N

1⇡

N

N

N

N

⇡

⇡

N

N

N

N

⇡

⇡

��

N

N

N

N

⇡

⇡

�

2⇡

for
bid

den

vertex⇤⇡⌃
�

�

� �

N

N

�

�

⇤

⇤

⌃

N

N

⇡

⇡

CSB (A = 4)

�

�

N

N

K,K�

1 meson



�

�

�

�

N

NN

N

�

�

�

�

�

N

NN

N

�

�

�

N

N

�

�
N

3-body

N

N

⇡

⇡
N

N

N

�

N

N

⇡

⇡
N

N

N

� �

dispersive

for
bid

den

The strange AFDMC project: the hyperon-nucleon interaction

N

NN

N

N

N

�

⇡

⇡

⇡

⇡

N

NN

N

N

N

2⇡

N

NN

N

N

N

�

⇡

⇡

⇡

N

NN

N

N

N

⇡

⇡

⇡

�

�

3⇡



The strange AFDMC project: the hyperon-nucleon interaction
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The strange AFDMC project: the hyperon-nucleon interaction
⇤NN

v⇤ij = v2⇡⇤ij + vD⇤ij = vPW
⇤ij + vSW

⇤ij + vD⇤ij

8
>>>>>><

>>>>>>:

vPW
⇤ij = �1

6
CP {Xi⇤, X⇤j} ⌧i · ⌧j

vSW
⇤ij = CSZ⇡ (r⇤i)Z⇡ (r⇤j) (�i · r̂i⇤ �j · r̂j⇤) ⌧i · ⌧j

vD⇤ij = WDT 2
⇡ (r⇤i)T

2
⇡ (r⇤j)


1 +

1

6
�⇤ · (�i + �j)

�

fitting of the parameters to reproduce 
experimental separation energies

parameters not yet fixed



The strange AFDMC project: the AFDMC code
✓ Diffusion Monte Carlo

� @

@⌧
 (R,S, ⌧) = H (R,S, ⌧)

ground state

⌧ ! 1

 (R,S, ⌧ + d⌧) =

Z
hSR| e�(H�E0)d⌧ |R0S0i hS0R0| (⌧)i dR0dS0

walkers

 (R,S, ⌧ + d⌧) = e�Hd⌧  (R,S, ⌧)

(⌧ = it/~)

e
�
⇣

V̂ (R0)+V̂ (R)
2 �E0

⌘
d⌧

d� d�

potential 
term

branching

D = ~2/2m

kinetic
termd�

diffusion

(4⇡Dd⌧)
3A
2 e�

(R�R0)2
4Dd⌧



The strange AFDMC project: the AFDMC code
✓ Auxiliary Field

P ⇠ e�
1
2�d⌧O2

 ⇠ A!

Z!(A� Z)!
2A terms GFMC: A  12

Idea: Hubbard-Stratonovich transformation

e�
1
2�d⌧O2

=
1p
2⇡

Z
dx e�

x

2

2 +
p��d⌧xO

auxiliary field

rotation over spin-isospin 
configurations

potential matrices diagonalization

computational cost ⇠ A3



The strange AFDMC project: the AFDMC code
✓ AFDMC matrices: nuclear systems

O p=1,6
ij = {1,�i · �j , Sij}⌦ {1, ⌧i · ⌧j}VNN (AV6) =

X

i<j

6X

p=1

vp(r)O p
ij

V sd
NN =

1

2

X

i 6=j

X

�

⌧ �
i

⇣
A [⌧ ]

ij

⌘
⌧ �
j

+
1

2

X

i 6=j

X

↵�

� ↵
i

⇣
A [�]

i↵,j�

⌘
� �
j

+
1

2

X

i 6=j

X

↵��

⌧ �
i � ↵

i

⇣
A [�⌧ ]

i↵,j�

⌘
� �
j ⌧

�
j

A⇥A

3A⇥ 3A

3A⇥ 3A

X

j�

A [�]
i↵,j�  

[�]
n,j� = �[�]n  [�]

n,i↵ Õ [�]
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RAPID COMMUNICATIONS

EFFECTS OF THE TWO-BODY AND THREE-BODY . . . PHYSICAL REVIEW C 87, 041303(R) (2013)

we label as v2π
"ij = vP

"ij + vS
"ij , and that corresponds to the

p-wave and s-wave two-pion exchange diagrams (respectively,
Figs. 1(c) and 1(d)), and a dispersive term that includes short-
range contributions, labeled as vD

"ij . They can be expressed as

vD
"ij = WDT 2

π (mπ r"i)T 2
π (mπ r"j )

[
1 + 1

6
σ" · (σ i + σ j )

]
,

vP
"ij = −

(
CP

6

)
(τ i · τ j ){Xi" , X"j } , (4)

vS
"ij = CSZ(mπ r"i)Z(mπ r"j )(σ i · r̂ i" σ j · r̂j")τ i · τ j .

The definition of the functions Xi" and Z(x) as well as the
range of parameters for the three-body force can be found
in [24] and references therein.

The ground-state energy of the many-body nuclear and
hypernuclear Hamiltonians is computed by means of the
AFDMC method. The algorithm was originally introduced by
Schmidt and Fantoni [35] in order to deal in an efficient way
with spin-dependent Hamiltonians. A trial wave function #T

is propagated in imaginary time τ by sampling configurations
of the system in coordinate-spin-isospin space. Expectation
values are computed averaging over the sampled configura-
tions. In the τ → ∞ limit, the evolved state approaches the
ground state of H and thus the ground-state properties of the
system can be obtained.

For a system with A nucleons, the quadratic operator
structure O2

n of the nuclear Hamiltonians leads to a number
of spin-isospin states in the propagated wave function which
grows exponentially with A. This number quickly becomes
intractable as A gets large. Standard Green’s function Monte
Carlo (GFMC) calculations are in fact limited to up to
12 nucleons [36] or 16 neutrons [17]. By applying the
Hubbard-Stratonovich transformation the computational cost
of the calculation becomes proportional to A3 and systems with
a larger number of particles can be studied [16]. The AFDMC
algorithm can be applied to nuclear systems interacting via the
Argonne V6-type potentials, for which the two-body force can
be separated into a spin-independent and a spin-dependent
part. The latter can be written as a sum of real matrices
which contain proper combinations of the components of
V6. By means of the diagonalization of such matrices it
is possible to write the imaginary-time propagator in the
Hubbard-Stratonovich form (see Refs. [16,37,38] for a detailed
discussion). However, a realistic three-body force cannot be
included in the propagator.

A straightforward variant of AFDMC can be applied to
"-hypernuclear systems, including the two-body [Eq. (3)]
and three-body [Eq. (4)] hyperon-nucleon interactions. It is
indeed possible to recast the "N and "NN interactions so
that they contain at most two-body operators. These terms can
directly be included in the AFDMC propagator. The rest of the
algorithm closely follows the nucleon-only version [16].

We assume that the wave function of a single " hy-
pernucleus is a nuclear Slater determinant (the same as in
Ref. [38]), multiplied by a single-particle wave function for the
" hyperon. For nucleon single-particle states we use the radial
solutions of the Hartree-Fock problem with the Skyrme force
and we consider a 1s1/2 single-particle state for the " particle.

TABLE I. "-separation energies (in MeV) for 5
"He and 17

" O
obtained using different nucleon potentials (AV4’, AV6’, Minnesota)
and different hyperon-nucleon interactions (two-body alone and
two-body plus three-body). In the last line the experimental B" for
5
"He is from Ref. [39]. Since no experimental data for 17

" O exist, the
reference separation energy is the semiempirical value reported in
Ref. [22].

NN potential 5
"He 17

" O

V"N V"N + V"NN V"N V"N + V"NN

Argonne V4’ 7.1(1) 5.1(1) 43(1) 19(1)
Argonne V6’ 6.3(1) 5.2(1) 34(1) 21(1)
Minnesota 7.4(1) 5.2(1) 50(1) 17(2)
Expt. 3.12(2) 13.0(4)

With the wave function defined we consider nucleons and
the hyperon as distinct particles. In this way, we do not include
the "N exchange term of the "N potential directly in the
AFDMC propagator, because it mixes hyperon and nucleon
states. A perturbative treatment of this factor is, however,
possible.

A direct comparison of energy calculations with experi-
mental results is given for the "-separation energy, defined as

B" = Bnuc − Bhyp, (5)

where Bnuc and Bhyp are, respectively, the total binding
energies of a nucleus with A nucleons and the corresponding
hypernucleus with A nucleons plus one ". The most
significant outcome of the calculation is the fact that the
inclusion of the three-body "NN interaction qualitatively
changes the saturation properties of the "-separation energy.
However, this result might depend on the particular choice
of the NN interaction used to describe both the nucleus and
the hypernucleus. In particular, one might expect a strong
influence from the different nucleon density generated by
disparate models. To discuss this possible dependence, we
performed calculations with different NN interactions having
very different saturation properties. The nuclear Hamiltonians
considered here are semirealistic and can be easily
implemented within the AFDMC scheme. We should point
out that in neither case did we use a three-nucleon interaction.

In Table I we show the results of the AFDMC simulations
for the "-separation energy in 5

"He and 17
" O. For each

hypernucleus, the two columns correspond to calculations
using the "N interaction only or both the "N + "NN force
of Ref. [24] with different NN interactions. As it can be seen,
for 5

"He the extrapolated values of B" with the two-body
"N interaction alone are about 10% off and well outside
statistical errors. In contrast the inclusion of the three-body
"NN force gives a similar " binding energy independently
of the choice of the NN force. On the grounds of this
observation, we feel confident that the use of AV4’, which
makes AFDMC calculations less expensive and more stable,
will in any case return realistic estimates of B" for larger
masses when including the "NN interaction. We checked
this assumption performing simulations in 17

" O, where the
discrepancy between the "-separation energy computed using
the different NN interactions and the full "N + "NN force

041303-3

Results:   -hypernuclei⇤

Hyp. : nuclear effects cancel at most

hyperon separation energy not sensitive 
to the details of nuclear interaction
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Figure 2. Curves show the set of strengths giving B
exp
! . The dashed, long-dashed and dot-dashed

lines represent ε = 0.1, 0.2 and 0.3, respectively. The thin and thick lines differentiate between v1
and v3. The open circles, filled circles and squares respectively, represent ε = 0.1, 0.2 and 0.3 but
for v2.

Table 5. Variation of the slope, ∂WD/∂ε, with CP and v.

CP (MeV) v1 (MeV) v2 (MeV) v3 (MeV)

0.5 −0.016 (1) −0.017 (1) −0.017 (1)

1.0 −0.017 (1) −0.019 (1) −0.019 (1)

1.5 −0.019 (1) −0.022 (1) −0.023 (1)

2.0 −0.021 (1) −0.023 (1) −0.024 (1)

2.5 −0.022 (1) −0.025 (1) −0.026 (1)

clarification of the role of QCD in determining the potential strengths. New results expected
from the Japan Hadron Facility would help to sort out these questions in the near future.
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work in progress

Conclusions

✓ Extension of the AFDMC code for strange finite and infinite nuclear 
systems: develop of an hyperon-nucleon interaction in the Quantum 
Monte Carlo scheme
• analysis of the hyperon separation energy in medium-light hypernuclei
• analysis of the EoS of the hyperon-neutron matter at high density

✓ Two-body   interaction not sufficient to describe the hyperon-
separation energy of medium-light  -hypernuclei: need of a strongly 
repulsive three-body           interaction

⇤N
⇤

⇤NN

✓ EoS for the   -neutron matter not too soft: chance for a NS maximum 
mass up to            even in presence of hyperons

⇤
2 M�



Thank you for 
your attention !!
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Table A.1.1. Parameters of the ⇤N and ⇤NN interac-
tion (See [69] and reference therein). m

⇡

is the pion averaged
mass m
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= 1
3 (2m⇡

±+m
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0). For WD and CP , the variational
allowed range is shown. The value of the charge symmetry
breaking parameter CCSB is from Ref. [67]
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A.2. ⇤⇤ potential
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[MeV] for each size parameter µ(k) [fm�2] [36].
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B. AFDMC MATRICES

Labeling the components of AV6 as v
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(r) with i =
1 . . . 6, it is possible to define the following nucleon-
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Backup: the hyperon-hyperon interaction
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