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A History (of Sorts)
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An example:
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RENORMALIZATION 421
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The Problem
k

Eg) P p = [d%...

= Integral diverges from k — oo states.
= k — oo states infinitely important?

= k — oo not just QED = need to understand string theory
(or...?) in order to calculate anything?? Disaster???



The Solution: UV Cutoff

¢ Introduce UV cutoff: omit all states with k > A from theory.

¢ Choose A = boundary between known and unknown
physics = A Aoo!!

e Use for p < A where

p = typical momentum in
process of interest,

e Fixes infinities, but ...



What is left out?

k> A
|

Eg) p p’ k>A>p,p’ = states m, n far
DI off shell (AE~ A).

= m, n very shortlived (uncertainty principle):

1 1
At — ~ —.
AE A

= Interaction occurs over very small region:

1 1
AR — <L —.
A p

= Interactions effectively local compared to A ~ 1/p.



= Can mimic piece of theory excluded by cutoff with new
local interaction:

k> A

*%h-» ~ o co(A) AT

= Add k > A physics back in by adding
5L = co(A) P4

to the cutoff Lagrangian (much simpler)!

N.B. £ + 5 then has interaction e(A) A1) where

e(A) =eg+co(A) = “running coupling.”



More Accuracy

Taylor expand in p/A, p’/A:

k> A

p*%h‘p/ =

u

co(A) uyyu

Cl( )an(p p)u

Cz(A)

(p—p")* ur,u



= Add more corrections to £™):

clf\A) EUWFWQ/J for p/A
c;i\/;) Eié‘uF‘”tp for (p/A)?

N.B.

* Operators all local = polynomial in v, A,,, and J,
(Taylor expansion!).

¢ Infinitely many operators but only need first few since

p
- <1
A



Only other amplitude important in order 1/A? is

S )(w Y)Y+

k> A

k> A

Eg) - f( ) — Wry)*+

LG (6) =
N K k2 A3



Summary: Renormalization Theory

e UV cutoff = omit k > A states
= no infinities
= no string/M theory needed!
® Add local universal correction terms, with theory-specific

coupling coefficients, to £ to mimic effects of k > A
physics (all we need to know about it).

* Only a finite number of correction terms needed for given
accuracy, (p/A)".

= [ Arbitrary precision with finite A! ]

G.P. Lepage, What is Renormalization?, arXiv:hep-ph/0506330



Why is QED renormalizable?

QED = low-energy approximation to complex super-theory
(strings? branes? SUSY?) with threshold A.

n _ CJG-F@b Czaa'F'ﬂ/f
Zogp = <R+ A —F\Az +...
“Renormalizable” theory. .

Due to new dynamics at k > A.

A is boundary between

old and new physics. Terms really there, but only

affect results in order p/A < 1.

Cutoff restricts theory to

region of validity. = Theory appears to be

renormalizable!



Example: QED in Atoms— Ps, H, He...



Non-relativistic Expansion (eg, Ps)

* Probability P(p, > m,) ~ a® = very non-relativisitc.
e Expand in powers of p/m, =v:

2
a
H:p——?+5Hrel

me
where
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* Good approximation through O(v?), but. ..



* Too singular: 53(r), 1/r® cause UV divergences in
2" order; p®, v283(r) diverge in 1% order.

= Treat relativity exactly? Eg, use Bethe-Salpeter equation:
(iae Y= me)(iaé Y- me)lp(xeaxé)

= J d4 ed4 EK(xe’Xé;ye’yé)w(YE’yé)

¢ Nonperturbative, but QED renormalization implemented
order-by-order in Feynman perturbation theory.

¢ Bound states offshell = K highly gauge-dependent: e.g.,

3

{ED a~m, in Feynman gauge,
~
a’m,

in Coulomb gauge.

= Bound states directly in QED is bad idea!



* Nonrelativistic bound states involve multiple, widely
separated scales: K ~ mv?, P ~ mv, m where v ~ a.

* q expansion of E’s, I'’s not so convergent.

Eg)
To_ps =T (1-3a+4a®>—20a°+---)

—

atInda

3
— In“a+0.7lna
2T

— Due to multi-scales:
In%(K/m)...



Nonrelativistic Effective Theory

UV cutoff A ~ m, for p, < m, problems (eg, atoms).
e Cutoff prevents infinities.

* Nonrelativisitic electrons: p, ~ m,v < m,
= no pair creation = don’t need QFT for e.

* Hard photons: p, ~p, = E, > E, (by factor 1/v)
= 7 highly virtual, short-lived

= replace by instantaneous potentials V(r), o - pV'(r)....

* Soft photons: p, ~vp, = E, ~E,
Probablility P(eyy.) ~ a® is very small.
Replace by E-dependent potential Vg (E).

N.B., no photons left = gauge invariant.



QED — nonrelativistic Schrodinger theory

HZ

) + 5VSOft(E)



UV Cutoff

1 F.T. 4

g 41
cutol — e /2N (cutoff = g < A)
q

BT, —erf(rA/w/E) (erf(x) = %J e_tzdt)

r 0

=  Analytic atr =0, and 1/r at large r.

Note: One of infinitely many choices.



Cutoff = errors of &((p/A)"). Remove errors order-by-order using
local correction terms (mimic excluded k > A physics):

Vog(r) = —% erf(rA/v2)
+c (‘513\(1‘)/A2 «— removes @(p/A)? errors
+d, V283 (r)/A*+dy V-G53 (r)V/A*  « removes @(p/A)*

+ .-
a—(rA)?/2 A3

+gVIS (/A2 — 53 ()= NS

+ .-

G.P. Lepage, How to renormalize the Schrédinger Equation,
arXiv:nucl-th/9706029.



Eg) Nonperturbative Positronium

Calculate O-Ps decay rate in two steps.

1) Define Hamiltonian (= QED) with finite cutoff A built in.

2 4
an=2_P Ly
m  4m?3

Decay —J

Define V,W by matching T =V +iW +V(E —Hy) "'V +--- to
QED Feynman diagrams for ee scattering, order-by-order in
a and p/A.

R. Hill and G.P. Lepage, Phys Rev D62, 111301,2000; hep-ph/000327.
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Decay piece:

k-1 2 /902
(IW|k) = [A +B %} o lk=112/2A
m

AO(1 +aAD 4 .. Not real QED behavior but
from matching Born equivalent for low-energy
series for T with QED. e’s, provided A, B correct.

2
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* Given V,W can solve theory even if completely ignorant of
QED, renormalization, Effective Field Theory.
¢ A=m (or m/2 or 2m)
=No divergences (V analytic at r = 0).
¢ Renormalization built in, automatic.
¢ High-order QED/relativity built in, automatic.

* Can solve nonperturbatively in V (eg, numerically).

= Don’t need Rayleigh-Schrédinger perturbation theory.
= Move trivially to many-e analysis (He...).

®* NolnasinV = perturbation theory for V is more
convergent than for E,,.

= Compute V in (QED) perturbation theory; solve
nonperturbatively in V.

= Schrodinger equation generates In as and resums them
automatically.



2)

a)

b)

c)

Solve theory:

Diagonalize H(™) (eg, on finite basis set of Gaussians).
= E,s and [y,)s.

Compute

1—‘n = 2(¢H|W|¢n)
= A (Pule TN 2p,) = B (| V2T A 2|, )

Publish numerical values obtained for I',s.
= (I = 7.039967(10) us~1.)



Eg) Numerical Analysis Bonus

e —a/r—oo0asr—0.
= Cuspiny(r)atr=0.
= Expansions (eg, on basis set) converge more slowly.

* Gaussian cutoff in V() = analytic at r = 0.
= (r=0) analytic.
= Expansions converge exponentially faster.



Lamb Shift in H, He

e N = # basis functions < oo
= effective cutoff Ay.

e Lamb shift

w*ﬁ%%w ~ P&

An
f dkap (k)

2
:

2

~

1
where (k) — Iz for k large




® Yegr ~ e /20" for k large

A2 /a2
= [erroroce An/A ]

= Errors exponentially suppressed.



H(1S): Lamb Shift
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He(1!S): Binding Energy
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He(1'S): QED/Relativistic Corrections

(63,,(r)) for He: 135,
100 T L | T
_______________ ‘/coul

o 1072 b 7
E V.
) eff
2
= 107t T
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Example: u Decay in Materials



Muon Decay

* Measure u lifetime I'), = us stopped in matter.
e Significant number bind to form muonium (ue).

e Effect of binding? Effect of interactions with matter?

A. Czarnecki, G.P. Lepage, and W.J. Marciano, Phys.Rev. D61 (2000) 073001



Simple estimates
* Binding energy reduces phase space
= correction of @’(azme/mu).
= Important!

e Final state interactions
= o((V)/m,) = ﬁ(azme/mu).
= Important!

e Except these cancel.
= Dominant contribution is ﬁ(azmg / mi).
= Unimportant!



NRQED for u

* Typical p, ~ am, for stopped u in matter.
= Use NRQED to describe it (= A ~m,,).

° u—evv —u = distances ~1/m,
= Include in NRQED as local (non-unitary) terms.

DZ
Lrrqed =¢L {iDt + ot — gauge covariant Ds
2m,
ir, D>  3D* ~
Ty (Mtagme tagm T T Hmey
b u
T T
o-Yio
+d1wezpe+d2 q'pEB we-’-"' (_‘ue_)’vv
m
m 1

u u

eoc-B eV -E
+fl mz +f2 m3 +e 'L/}H,



Note:

* No term il",, wZAOw u /m“ (not gauge invariant)
= No a?m,/m,,. (Compare J = 0 “photon.”)

Q. Why no il 4 liDyap,/m,?
A. In L 1ged
! iDpp, = ! —wﬂ
because “equations of motion” are

2

iDtd’,u z_ﬂwu—i_

N.B. “Equivalent” not “equal.” Prove using field
transformation in path integral (change integration
variables) = “redundant operators”.



* Muon decay from

ir
_ e
5$decay = 7 'QbZﬂl’,u + ﬁ((ame/mp)z F“)
Not renormalized; j k Conserved current;
free-u decay rate u number operator.

in rest frame..



= Decay rate for any state |u¢)

irﬂ 2
(M¢|5$decay|.u¢) = 7 + 0((ame/mp) FM)

* Here ¢ is e in muonium, conduction band in metal... or
any other single/multi-electron state in ordinary matter.

= Decay rate of y unaffected by all ordinary materials at
ppb level.



Conclusions

* Uses effective non-relativistic theory:

¢ Non-perturbative (eg, numerical) treatment of
non-relativistic expansion of relativistic QED.

¢ Improved numerical analysis by replacing singular
potentials with equivalent UV-regulated potentials.

¢ Implications of gauge and other symmetries.



* References:
¢ G.P. Lepage, What is Renormalization?,
arXiv:hep-ph/0506330 — general ideas behind
renormalization and its applications in particle physics.

¢ G.P. Lepage, How to renormalize the Schridinger Equation,
arXiv:nucl-th/9706029 — worked examples of
renormalization for several simple models.

© R. Hill and G.P. Lepage, @(a’I") Binding Effects in
Orthopositronium Decay, Phys.Rev. D62 (2000) 111301 —a
non-perturbative QED boundstate analysis using effective
theory.

¢ A. Czarnecki, G.P. Lepage, and W. Marciano, Muonium
Decay, Phys.Rev. D61 (2000) 073001 — using effective
theory to analyze implications of gauge symmetry.

¢ R.J. Dowdall et al., The Upsilon Spectrum ..., Phys.Rev. D85
(2012) 054509 — non-relativistic QCD for high-precision
lattice QCD study of upsilon physics.
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