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                   The Challenge 
 Solve the N-body Schrödinger equation 

 Antisymmetric solution– a highly excited mode 

 Diffusion Monte Carlo naturally gives ground state 

 Antisymmetric state decays exponentially fast 

 Pauli Principle is non-local; diffusion is local 

 “Fixed-node approximation”  gives upper bound 

   BUT 
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  Challenge, continued 
  We want a solution with no uncontrolled approximations 

•  Error estimate computable internally 
•  Error can be reduced in polynomial computing time 

Is a “fixed node”  an uncontrolled approximation? 
    Often guided by knowledge of experimental result 
Yes, unless exact node known, or a sequence can converge to exact 
  node, adding only polynomial complexity 
Can one find exact or tractably improvable nodes? 

We seek a method based on Monte Carlo variance 
  reduction methods: correlation, importance sampling,  

       non-local moves. 

Is this possible? 
  Many people think not.  
  But not all “sign problems” are the same! 
  Some are intractable, some are hard, some are trivial. 
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Basic ideas 
  Ensembles of pairs of plus and minus walkers 

  Correlated diffusion to make close pairs 

  Cancel close pairs– to control symmetric part of walker distribution 

  Make pairs from single walkers– “repairing” 

  Break “plus-minus symmetry” 

          -  Use sign-dependent dynamics 
 - Use distinct odd permutations to reconfigure pairs 
 - Use asymmetric “second-stage” importance functions 
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One seeks to solve the Schrödinger Equation in imaginary time for an N-body 
system


where R  stands for the 3N coordinates of the system, τ is i  times the physical 
time, t, and V  is the potential energy function.   


This is a diffusion equation in a 3N-dimensional Euclidean space, in which

the function V(R) governs the birth or death of walkers.  This is clear from a 
short-time expansion:


The Schrödinger Equation 
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When V(R) is positive, walkers are removed from the population, and when it is 
negative, walkers are created.
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The solution can be written in terms of the eigenvalues and eigenfunctions of 
the Hamiltonian:


The eigenfunction expansion 
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so that as the imaginary time grows infinitely large, the distribution of walkers 
approaches the fundamental mode, which is non-negative.


This is a viable way of generating the fundamental mode, except for the fact the 
the potential V(R) can be unbounded from above and from below.


as
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where ψT(R) is a trial function that satisfies the Schrödinger equation at 
singularities of the potential, and ET is a trial eigenvalue.

For small increments of imaginary time, δτ, adding drift and branching to the

purely diffusive random walk accomplishes this:


These technical difficulties can be overcome by altering the dynamics of the 
random walk so that the density of walkers is


Importance Sampling (1) 
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where  U is a vector of 3N normal random variables with mean zero and 
variance δτ.   Each walker is branched into m walkers where
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Note that if ψT were ψ0 and ET were E0 , then < m > = 1, and no branching

takes place.  This is the basis of powerful optimization techniques.


For non-interacting particles, we can take ψT = 1 and the dynamics is exact.
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A population of walkers is generated using the stochastic dynamics described.

The population can be kept close to constant by adjusting the the trial energy, ET .


Assuming we have generated a random walk that samples ψT(R) ψ(R,τ), we can 
use the trial function ψT(R) to project the energy estimator as


where Rk are the configurations of the system in the walk.


Estimating the eigenvalue 
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For a system of identical particles, the potential V is symmetric under the 
interchange of particle coordinates:


for every i and j.  Then the fundamental mode,           , has the same symmetry:


This is in fact the correct symmetry for wave functions of “bosonic” particles.

But for “fermionic” particles, like electrons, wave functions must be 
“antisymmetric.”  In the non-relativistic limit, electrons can be thought to have 
either “spin up” or “spin down.”  Acceptable wave functions are antisymmetric 
with respect to the exchange of coordinates of like-spin electrons:


when i and j denote like-spin electrons.  This is the “Pauli principle.”


Symmetries for identical particles 
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Negative walkers 

That means that the solutions we seek are not everywhere positive— 
not a promising situation for a Monte Carlo method.


A naïve answer to this problem is to assign algebraic signs to our walkers.  In 
fact, we will use ensembles of pairs of walkers carrying opposite signs.
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We use positive and negative walkers, R+ and R-, along with an antisymmetric 
trial function, ψA(R), and a non-symmetric positive “guiding function”, ψG(R), 
replacing the importance function, so that the energy estimator becomes


If the asymptotic distributions for R+ and R- are the same, then this estimator will 
give zero over zero, not an efficient Monte Carlo procedure.

We call the method “statistically stable” if the average denominator is not 
equal to zero.

We must break the dynamical symmetry that would otherwise give the 
same distribution for plus and minus walkers.  

At the same time, we must limit the magnitude of the symmetric component 
of the walker distribution, so that it does not dominate asymptotically.


The “sign problem” 
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The “sign problem”—continued 
Recall the eigenfunction expansion, now singling out the “bosonic” ground state 
and the higher “fermionic” mode:


Since the part of the walker distribution that contributes to an integral weighted 
with ψF(R) decays exponentially;  a simple Monte Carlo treatment of a fermion 
system will become inefficient exponentially fast because



 
 
EF > E0 .


One can defeat the decay by growing the population of walkers exponentially fast, 
demanding exponentially growing computing work.


For extensive systems, EF – E0 ∝ N so that the exponential decay is exacerbated 
in larger systems.


We note also that the Pauli principle is a non-local constraint, at variance with 
the local character of diffusion equations and the random walks we use.


! 

" (R,# ) = a
k
e
$Ek#

k

% "
k
(R) = a

0
e
$E0#"

S
(R) + ....+ a

F
e
$EF #"

F
(R) + ...



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
14 

The “fixed-node” approximation 
The standard method in the practice of Quantum Monte Carlo is totake an 
antisymmetric trial function, ψA(R), and carry out the kind of random walk with drift and 
diffusion described above, subject to the boundary condition that the walk not cross 
the nodes of ψA(R).  This procedure gives an upper bound to the energy of the 
system.


In current practice, it has been refined in many important ways by:


      Investigating the mathematical, topological, and physical character of


            antisymmetric trial functions.


      Using expansions over large bases with many parameters.


      Using highly sophisticated optimization methods to improve ψA(R).


As yet, it remains a method with uncontrolled approximations.
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                                                       (1) 
We use simple diffusion Monte Carlo for both walkers, but correlate the 
diffusion steps by using correlated Gaussian vectors:


If U+ is the vector of gaussians for a plus walker, then we use U- for its


minus partner, where


The Euclidean distance between the walkers, | R+ - R- |, undergoes a 
random walk in one dimension.  Given periodic boundary conditions, or a 
finite system, this brings the pair of walkers arbitrarily close in linear time 
or better in any number of dimensions, which permits them to cancel each 
other with high probability.  In simple DMC, and in the free-fermion system, 
a pair of walkers diffusing from (R0

+,R0
-) to (R+,R-) continues with probability
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Correlation and Cancellation 
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Correlated diffusion of plus and minus 
walkers 

Plus  walker 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Cancelation of plus and minus walkers 
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Imaginary time to cancellation for free fermions 
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Imaginary time to cancel—Pöschl-Teller potential 
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                                                                   (2) 
We use simple diffusion Monte Carlo for both walkers, but


each walker separately executes correct drift and diffusion steps.


This has the effect of reducing the overlap with symmetric test 
functions, while not affecting the overlap with antisymmetric test 
functions.  


But by itself, this procedure does not break the symmetry.             


Correlation and Cancellation 
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The “plus-minus symmetry” 
We have introduced rules that define stochastic dynamics for a pair of random walkers, (R+,R-), 

each of which lives in a 3N-dimensional Euclidean space.  


Let ρ(R+,R-,τ) be the joint density of walkers (R+,R-) at imaginary time τ.


The stochastic dynamics define an operator,                                       , that


advances the density in imaginary time:


If                                             is invariant under exchange of the labels, +,−,


then, asymptotically,


so that the sum over pairs of walkers needed in the energy quotient


                                                                                is asymptotically zero:  Not stable!
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Breaking the plus/minus symmetry (1) 

Quite generally, if  the evolution depends in any way on the +⁄− labels of 
the pair, the symmetry is broken, a necessary condition for stability. 

For example:   

If                                 use the antithetic correlated dynamics described above. 

Else:   if                             move      and       in parallel,  i,e., set  
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We call this “parallel dynamics.”
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Repairing 
If P is an odd permutation then, on the average, the descendants of a 

walker at R+ have exactly the negative of the expectations (weighted 
with an antisymmetric function) of the descendants of PR+.


No bias is introduced if a walker at R+ is replaced, with probability ½ , by the 
pair of walkers (R+, PR+) for any odd permutation P.


The figure shows the cancellation 
time for 80 free fermions as a 
function of the initial Euclidean 
separation of the pair.


We can adjust the average 
cancellation time by choosing

different permutations.
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The figure shows the cancellation 
time for 80 free fermions as a 
function of the initial Euclidean 
separation of the pair.


We can adjust the average 
cancellation time by choosing

different permutations.


This is analogous to applying an antisymmetrizing operator. 
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Breaking the plus/minus symmetry (2) 

That means that the plus/minus symmetry can be broken by explicit separation and “repairing” 
one or another of a pair (R+, R-). 

Choose one of the pair at random; suppose it to be R+. Next choose an odd permutation, P, to 
produce pair (R+, PR+). We let the choice of P depend on R+ in the following way: 

  If  ψA(R+) > 0, choose P so that  | R+ - PR+ |  is large ;  

  If  ψA(R+) < 0, choose P so that  | R+ - PR+ |  is small.      

If the walker to be repaired is R-, then the sense of the inequalities is reversed. 

Now the evolution depends explicitly on the +⁄− labels of the pair. 

The symmetry is broken. 
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Importance Sampling (2) 
In the experiments we have recently carried out, we use two distinct stages of 
importance functions.  In the first stage, which uses simple DMC, we set the 
importance function for both walkers to be a symmetric  function, ψS(R), an 
approximation to the ground state of the Hamiltonian. 

Symmetry breaking using different permutations guarantees stability, but not 
necessarily a practical level of computational efficiency. It can be improved with 
the introduction of a second-stage importance function, Ψ2(R+,R-), using 
ratios of this function before and after a move of δτ to determine the outcome of 
a branching process. 

To specify the form of this new function, write the denominator of the energy 
quotient as 
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Two-dimensional Free Fermions 

For the two-dimensional free fermion system, we use a constant symmetric 
function, and a Slater determinant with distorted plane waves as orbitals. 
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ζ is an adjustable constant designed to create controllably bad nodal surfaces. 

It is easy to get a fixed-node energy 10% too high. 
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Second-stage Importance Function & Stability 
Then 

with parameters to be determined to optimize efficiency. 

The stochastic operator that advances the walkers is not invariant 
under interchange of the signs of the walkers, so that the 
equilibrium distribution will in general have a non-zero overlap 
with the antisymmetric function ψA. 
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Second-stage Importance Function-- SSIF(D) 
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Dynamics of stability 
  First-stage importance ψS drives walkers to its maxima. 

  Correlation of gaussians brings plus and minus walkers together. 

  Cancellation of walkers reduces symmetric component of distribution. 

  Repairing with permutations that depend on the sign of the walker breaks 
the +/- symmetry.  For example, a walker on the correct side of the nodal surface 
can live longer before cancellation than a walker on the wrong side. 

  D is the energy denominator:    ψA(R+) / ψS(R+) - ψA(R-) / ψS(R-)                          

  Second stage importance causes pairs with positive D to drift apart and tend to 
avoid cancellation. 

  Pairs with negative D do not drift apart and cancellation is more likely for them. 

  The total effect is to produce a population of walkers having a stable 
overlap with an antisymmetric function, which within a linear time-step 
error correctly gives fermionic estimators.   

  For free Fermions, it is exact, except for population bias 
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Conclusions 
  All computational steps introduce no bias for free fermions. 

  The method is manifestly stable. 

  The sign problem is not intractable! 

  What’s next? 
— Understanding the structure of the Importance Function 
—  More efficient sampling 
— Quantum expectations 
— 2D e-gas. 
— Polarized 3He. 
— “Ultracold Fermions” 
— Quantum Chemistry (finite systems) 
— Hubbard models 
— . . . 


