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Outline

® Auxiliary-field quantum Monte Carlo (AFMC) in the
configuration-interaction framework

» Exact particle-number projection
® Numerical stabilization
» More efficient method for particle-number projection

® Application: Thermodynamic properties of a trapped
finite cold atomic Fermi gas

» Heat capacity, condensate fraction, pairing gap
» Spatial density

» Density due to an “extra” particle




Auxiliary-field Quantum Monte Carlo (AFMC)

® A method for studying highly-correlated systems which is free of
systematic errors

® Benefits:

4
4
4

4

Permits finite-temperature calculations
No fixed-node approximations (for good sign interactions)

Useful in different contexts (electronic structure, nuclear
physics, atomic physics, chemistry)

Allows calculation of any one- or two-body observable

® Challenges:

4

Sign problem -- for repulsive interactions and certain
projections

Scaling is N2 x N, or N2 x N, , depending on the application
g s s P g PP

Numerical stability at low temperatures / large model spaces




AFMC in Configuration (Fock) Space

® Goal: compute the thermal expectation
(©O) — Tr(OeFH)
Tr(e—BAH)

for a collection of fermions.

® Steps to formulate AFMC:

(a) Formulation of the Configuration-Interaction (Cl) Hamiltonian
as a sum of quadratic one-body operators

(b) Trotter decomposition (imaginary time discretization)
(c) Path-integral representation
(d) Calculation of observables for a given set of fields

(e) Monte Carlo evaluation




(a) Hamiltonian and (b) Trotter decomposition

Single-particle basis: |i),i=1,..., N
Model space: set of all Slater determinants from the s.p. basis

Hamiltonian:

H = E hma a; + E vmkla a a;ar
zgkl

Rewrite in terms of one-body densities a;-rak, a;f-al and

diagonalize the matrix Vijkxi to obtain
o1 -
H=Ho+ ; Ao O2
where Hyand O, are one-body operators.
Trotter decomposition: e # = (¢~ 28H)Nt A = 3/N, and

e—ABﬁ _ e—ABﬁO He—ABAaOAi/2 4 O((Aﬁ)Q)
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Discretization error in observables
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The error due to the Trotter decomposition scales as Af

We perform a linear fit and extrapolate to A5 — 0




(c) Path-Integral Formulation

® Hubbard-Stratonovich (HS) transformation:

ABNO? /2 > ABINo2/2 —ABsAcO _ )L A<D

» This linearizes the two-body part of the Hamiltonian into a
one-body operator, with the addition of an auxiliary field o.

® End result of the HS transformation:

[ Time-dependent auxiliary fields (many)

e PH = | D[o|G,U(o)
——

Integration measure —/ Non-interacting propagator

Gaussian weight

® A path integral of a non-interacting propagator with respect to
fluctuating time-dependent auxiliary fields.




(d) Observables in the Canonical Ensemble

A AN

® Want to compute: / D[o]|G,Tr[U(c)O]

e U(0) is a non-interacting propagator and O is a one-or two-
body operator.

® Jo compute traces for fixed particle number, we use exact
particle-number projection:

Number of single-particle states

/

N

A

Try[OU(0)] = e~ WnNTro o [OU (o)™ ] .

S A

Canonical trace Om = 2mm /Ny Grand-canonical trace
N = number of particles

® C(Can be derived by writing Trcc as a sum of canonical traces

[W.E. Ormand, et al,, Phys. Rev. C 49, 1422 (1994)]




(d) Canonical ensemble cont.

® TJo compute grand-canonical quantities, can use matrix algebra in
the single particle space (of order ~100-1000):

A

y Trac(U(o)e™mN) = det(1 + Ue'$™)

AN

Traclala; U(c)eiemN] ( 1 )
77

PaN A

Trac|U(o)eiemnN] 14+ U Te—iwnm

where U is the matrix representing U in the single-particle
space.

(e) Monte Carlo evaluation
® Discretize the integrals over the auxiliary fields:
/ D[0)G,U(0) — 3 w(0)U (o)
® Apply the Metropolis algorithm.

[Koonin, et al., Phys. Rep. 278, | (1997)]




Accuracy of AFMC: Three cold atoms
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AFMC vs. diagonalization for a fixed interaction
with three cold atoms (11} ) in a harmonic trap




Numerical Stabilization



Numerical Stabilization

Need to compute, for each m,
Trac[U(o)emN] = det(1 + Ue'#™)

where U = matrix representing U in the single-particle space.
At long imaginary times, the propagator U becomes unstable.
(1) Compute U:

» (a) Unstabilized method

» (b) Stabilized method

(2) Compute determinant:

» (i) Unstabilized method

» (ii) Standard stabilized method

» (iii) New stabilized method (faster)




Unstabilized calculation of U

® As N, grows large, the matrix product U = U(op, ) -+ U(o2)U(01)
becomes ill-conditioned: ratio of largest to smallest eigenvalues
becomes very large.

® The matrix elements of U, however, all become large, and it is
impossible to extract smaller scales (those near the Fermi
surface) accurately.

120
100 + ¢--- 4| Energy vs.inverse temperature 3
’ for 20 cold atoms in the unitary limit.
o 30| /
60 lo | At low temperatures, calculation becomes
e A unreliable.
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® Unstabilized calculation is only good for high temperatures

(small 5)




Stabilized Calculation of U

® Stabilized calculation of U: Use method of [E.Y. Loh Jr.and J.E.
Gubernatis, in Electronic Phase Transitions, 1992]

® |nstead of computing U, compute a decompositionU = ADB of
U which explicitly displays all numerical scales.

® AandB are well-conditioned, and D is diagonal with positive
entries:

r T x X r T x
U=ADB =]| =z = «x X T xr X
r T X % S A

® E.g.,singular value decomposition or QR decomposition




Stabilized Matrix Multiplication

® TJo compute U = Uy, ---UyU; , begin with an initial
decomposition of U and carefully update when multiplying in
each new factor:

Ui = A1D1 B, (decompose)

U1 (AnDnBy) = (Uni1An) Do) B, (group terms)
= (An41Dp41B")B,,  (decompose)
= A, 1D,1(B'B,) (group terms)
= Apt1Dn41Bnia

U= An,Dn, Bn,

® The intermediate matrix (U, 114, )D, is column-stratified and
therefore can be decomposed stably




Stabilized Matrix Multiplication cont.

® A column-stratified matrix displays its scales in the columns:

r T X r T X X X X x
Uni1An D, = r T T r T X X = | X Xx x
r T X r T X X X X x

Similarly, a row-stratified matrix displays its scales in the rows:

e E (R

Stratified matrices are much more stable for decomposition and
diagonalization than general matrices with widely varying scales.

82 8
2 8 8
82 8 8
2 8 8
82 8
82 8




(2) Calculation of the Determinant

® W/ish to compute det(1 + erm) foreachm=1,2, ..., N
® (i) Unstabilized calculation:

» Compute U = Uy, - - - U; using standard matrix multiplication
N

» Diagonalize U and compute det(1 + Ue*¥™) = H(1 + Agelem)
k=1
» Only for high temperatures. Scales as O(IV?) (diagonalization)

® (ii) Standard stabilized calculation: [Alhassid et al, 101,082501 (2008)]

» Cannot multiply out ADB to diagonalize, as this would
destroy information. Instead:

1+ ADBe"¥™ = A(A"'B™! + De'*™)B
— A(A’D’B’)B (decompose)
» Requires decomposition for eachm = 1,..., N, ,so scales
as O(N?)




Stabilized Matrix Diagonalization
[Gilbreth & Alhassid, arXiv:1210.4131]

® (iii) New method: Transform

ADBx = Az Let z = Ay
< DBAy = \y

» The matrix DBA is row-stratified and can be multiplied out &
diagonalized stably

» Eigenvalues are identical to those of ADB.

» Reduces time back to O(N?)

e Test |: Compute eigenvectors and eigenvalues of (¢“)” where C
is a random complex matrix, and n =1,2,3,...

® TJest 2: Compare to standard stabilization method




Accuracy of Diagonalizing an ill-conditioned

max relative error
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Numerical Stabilization -- Accuracy and Timing
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Summary

AFMC method in the configuration-interaction
framework

Strongly-interacting systems with arbitrary good-
sign interactions can be studied

Calculations in the canonical ensemble

A new stabilization method in the canonical
ensemble

» Much faster, scales as O(N?) instead of O(N?)

21




Thermodynamics of a
finite trapped cold
atomic Fermi gas



Advances with Atomic Fermi Gases

1 999: First realization of an ideal degenerate Fermi gas
(“°K). Evaporative cooling to T = 0.5 Tr (JILA, CO)

2002: Feshbach resonance allows tuning to strongly-
interacting regime (°Li, Duke Univ.)

Magnetic field (G)
792 833 852
1 1 1

2005: Observation of vortex
lattice after “‘stirring” confirms

Su Pe r‘ﬂ U|d |t)/ (M IT) [Zwierlein, M.W. et al,,

0.7 0 Y
Natu re 435, I 047 (2005)] <«— BEC Interaction parameter, 1/k-a BCS —>

2012: Measurement of “lambda”
peak in heat capacity (MIT)

Cy/Nkg

[Ku, et al., Science
335,563 (2012)]
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Clean, strongly interacting, tunable systems

Two species (“7” and “}”) of Fermions interact at very
short range in a harmonic trap.

Zero-range (s-wave) interactions

s-wave scattering length a controllable via external
magnetic field 1

(&)}
I

Unitary limit (¢ — oo) saturates
s-wave scattering cross section.

scattering length (1000 a )
o o

—

Strongly interacting, nonperturbative "ol . . .
600 800. | 1000 1200
system when |a|is large magnetic field (©)

[Zwierlein, M.WV. et al., Nature 435, 1047 (2005)]
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Unitary, Finite, Trapped Fermi Gas

® Goal: Describe thermodynamics of trapped finite-size (~20
particle) Fermi gas in the unitary limit.

4
4
4
4

Heat capacity
Pairing gap
Condensate fraction.

Particle density

® Questions:

4

4

Is the superfluid phase transition visible in a system of this
size!?

If so, is there a pseudogap effect!?

A(T)

[Q. Chen et al., Physics Reports 412 (2005) 1-88]
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AFMC for Trapped Cold Atoms

Hamiltonian:

N1+No 1
H = Z (—§V2—|— mwr)+ZV

1=1 1<)
Single-particle basis of harmonic-oscillator states:

1) = |nim) = Ry (1)Y,"(0,0), 2n+1< Npax

Cutoff parameter

Interaction:

Vir-—r.) = Vad(r: — r. (Vo renormalized for each Nnax to reproduce
( ¢ ]) 0 ( ’ '7) two-particle ground-state energy)

Shell- model decomposition°
K

H = Zh”aaﬁr > Akxla Z Qrernt (@) + Prerar(@)?)

7.7 1 K m,x =0
Q,P one-body operators

Our calculations are done in the canonical ensemble.

26




Monte Carlo Sign of the Contact Interaction

® [t is well-known that the contact interaction V' (r) = Vyd(r) has

good Monte Carlo sign in coordinate space.

® |tis not as clear in the Configuration-Interaction formalism.

® The proof proceeds as follows:

» The Hamiltonian takes the form

1 .
H = Z et ime + 5 Z(ab|V|cd)a£aaza,ad0,aw ,

nlmo

» and in a“time-reversed density decomposition’:

N | .
H=Hi+g > (ab|V]ed) (=)™ (=)™ alytco@yldo |
» One can show that the interaction matrix

Vae,ba = (ab|V|ed)(—)™ (=)™

has only nonpositive eigenvalues when Vj < 0.

.aa,a —
time reverse

27




Sign of the Contact Interaction (cont.)

® We show this as follows:

S vielab|V]ed)(—)™ vy

ac,bd

W 3 [ Eriireds 52 (1) (= ) e

ac,bd

e (g >< s

_Vb/d3 ‘Z ac@a )SOC O

® This implies s = 1 in the Hubbard-Stratonovich transformation:

)

O
. , .
c—ABAO? /2 :/ doe—ABINo? /2 ,—ABAO

— OO

So the auxiliary-field Hamiltonian is complex-conjugation
Invariant.

28




Sign of the Contact Interaction (cont.)

The propagator factorizes: U = (AJTIA] !
(AJT, (A]¢ are invariant under complex conjugation:
KoUKy = Upy
Urilv) =) = KoUyylv) = Uy, Kolv) = X Kolv)

Therefore, complex eigenvalues come in complex-conjugate pairs

So

TTNT’L(UT&) = Z )\gNT’L) — real

When NT — N¢ ,
TI'NT,Ni(Uv) — TI'NT(UT)TTNi(Ul) — [TI‘NT(UT)]Q > ()

so the calculation has good sign.
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Accuracy of Renormalized Contact Interaction
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Tuning V) to reproduce two-particle ground-state energy provides an accurate
interaction for the three-particle system.

’

[Exact results based on S.Tan and Werner & Castin]
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Heat capacity

dE(T)
dT

When computing the heat capacity, the statistical error in the
energy can be greatly magnified.

C = ~ [E(T + AT) — E(T — AT)]/2AT

We use a method of correlated errors introduced in [S. Liu andY.
Alhassid, PRL 87, 022501 (2001)] to avoid this.

» Sample fields at a single temperature T°

» Compute energies at 7'+ AT and T'— AT for each sample:
[ D[o]|Go(T £ AT)Tx[U (0, T + AT))
f D[O‘]GJ(T T AT)TI ﬁ(O’, 1"+ AT)

E(T £ AT) =

» Statistical error:

1
Var(C') = (2% AT)?

< [Var((H(T + AT))) + Var((H (T ~ AT)))
—2 % Cov((H(T + AT)), (H(T — AT»)}

» Covariance greatly reduces statistical error in heat capacity

31
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10 |
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[S. Liu and Y. Alhassid, PRL 87,022501 (2001)]
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Condensate Fraction

“Condensate fraction” does not have a standard meaning in
finite-size systems

We define a condensate fraction from the two-body density
matrix (TBDM).

C. N. Yang (1962): Off-diagonal long-range order (ODLRO) is
equivalent to the existence of a large eigenvalue in the TBDM

Calculation:
. Compute C(ig, kl) = <a;f,Ta;’¢al,¢ak,¢>

2. Diagonalize to obtain a pair wavefunction B' = ¢;;al.a;,
corresponding to the largest eigenvalue of C. @

3. The largest eigenvalue A satisfies (for N. = N| = N/2)
N= (B B)| |

and SO ‘”ﬂ/ = )\/(N/Q)‘ defines a condensate fraction.

0< A< N/2
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Energy-Staggering Pairing gap

® Energy-staggering pairing gap

Agap = [E(N+, N, + 1) + E(Ny+ + 1,N}) —

E(Ny +1,N, +1) — E(Ny, Ny )|/2
where

__energy of a system with NT spin-up particles
E(Ny, Ny) = and N spin-down particles.

® A,., measures the difference in energy between fully paired
systems and a systems with an unpaired particle.

® Calculation: (for Ny = N| = N/2)
|. Sample auxiliary fields for the (N, N| + 1) system.

2. Compute E(N+,N|), E(N++1,N,) = E(N+,N, + 1), and
FE(Ny +1,N| + 1) for each sample

3. Compute variance of Ag,, using correlated errors.
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Signatures of the Phase Transition: 20 Atoms
[Gilbreth and Alhassid, arXiv:1210.4131]

i

~ 0.2 | A

S i ittt

'r
I
I
I
I
I
®
I
I
®

condensate fraction

Fermi gas

O H .

\

C

+++ :

7
'
/
Z
7
'
7

_--"| Fermi gas

7

15 ™

e
\

0.05 0.1 0.15
T/T

0.2 0.25

Agap = [E(Ny, Ny +1) + E(Ny + 1, Ny )
—E(Ny,Np) — E(Ny + 1, Ny +1)]/2

Cr(ab,cd) = (Al (ab)Apy(cd))
n = Amax/(N/2)
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Particle Density & Odd Particle Effect
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Unpaired particle prefers the
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Summary: AFMC in the C| Framework for
Cold Atoms

We devised a more efficient numerical stabilization method in
the canonical ensemble which allows calculations in much larger
model spaces.

First ab initio calculations of heat capacity and energy-staggering
pairing gap across the superfluid phase transition in any system
of cold atoms

Condensate fraction and particle density for a finite trapped
system of cold atoms

Clear signatures of a superfluid phase transition

The addition of an extra particle to the spin-balanced system
produces extra density at the edge of the trap.
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Questions

® Questions:

4

Does A,., show a pseudogap effect in the trapped system for
larger numbers of particles at unitarity?

Does A, (as opposed to the spectral function) show a
pseudogap effect in the uniform system!?

How can we extend AFMC in the Cl| framework to larger
model spaces!?

= Represent the interaction in coordinate space!
= Optimize matrix exponential, diagonalization, etc. methods!?
= Optimize single-particle basis functions!?

= Alternatives to Metropolis?
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