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Outline

• Auxiliary-field quantum Monte Carlo (AFMC) in the 
configuration-interaction framework

‣ Exact particle-number projection

• Numerical stabilization

‣ More efficient method for particle-number projection

• Application:  Thermodynamic properties of a trapped 
finite cold atomic Fermi gas

‣ Heat capacity, condensate fraction, pairing gap

‣ Spatial density

‣ Density due to an “extra” particle
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Auxiliary-field Quantum Monte Carlo (AFMC) 

• A method for studying highly-correlated systems which is free of 
systematic errors

• Benefits:

‣ Permits finite-temperature calculations

‣ No fixed-node approximations (for good sign interactions)

‣ Useful in different contexts (electronic structure, nuclear 
physics, atomic physics, chemistry)

‣ Allows calculation of any one- or two-body observable

• Challenges:

‣ Sign problem -- for repulsive interactions and certain 
projections

‣ Scaling is               or                , depending on the application

‣ Numerical stability at low temperatures / large model spaces  
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AFMC in Configuration (Fock) Space

• Goal: compute the thermal expectation

for a collection of fermions.

• Steps to formulate AFMC:

(a) Formulation of the Configuration-Interaction (CI) Hamiltonian 
as a sum of quadratic one-body operators

(b) Trotter decomposition (imaginary time discretization)

(c) Path-integral representation

(d) Calculation of observables for a given set of fields

(e) Monte Carlo evaluation
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(a) Hamiltonian and (b)Trotter decomposition

• Single-particle basis: 

• Model space:  set of all Slater determinants from the s.p. basis

• Hamiltonian:

• Rewrite in terms of one-body densities        ,         and 
diagonalize the matrix         to obtain

where       and        are one-body operators.   

• Trotter decomposition:                                                and
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2
↵

|ii, i = 1, . . . , Ns
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Discretization error in observables

��
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• The error due to the Trotter decomposition scales as
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(c) Path-Integral Formulation

• Hubbard-Stratonovich (HS) transformation: 

‣ This linearizes the two-body part of the Hamiltonian into a 
one-body operator, with the addition of an auxiliary field   .

• End result of the HS transformation:

• A path integral of a non-interacting propagator with respect to 
fluctuating time-dependent auxiliary fields.
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(d) Observables in the Canonical Ensemble

• Want to compute: 

•          is a non-interacting propagator and      is a one-or two-
body operator.

• To compute traces for fixed particle number, we use exact 
particle-number projection:

• Can be derived by writing          as a sum of canonical traces 
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(d) Canonical ensemble cont.

• To compute grand-canonical quantities, can use matrix algebra in 
the single particle space (of order ~100-1000):

‣  

‣  

where U is the matrix representing    in the single-particle 
space. 
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(e) Monte Carlo evaluation
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• Discretize the integrals over the auxiliary fields:

• Apply the Metropolis algorithm.
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Accuracy of AFMC:  Three cold atoms
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Numerical Stabilization 



Numerical Stabilization

• Need to compute, for each m,

where          matrix representing     in the single-particle space. 

• At long imaginary times, the propagator U becomes unstable.

• (1) Compute    :  

‣ (a) Unstabilized method

‣ (b) Stabilized method  

• (2) Compute determinant:

‣ (i) Unstabilized method

‣ (ii) Standard stabilized method

‣ (iii) New stabilized method (faster)
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Unstabilized calculation of U

• As      grows large, the matrix product 
becomes ill-conditioned: ratio of largest to smallest eigenvalues 
becomes very large.

• The matrix elements of U, however, all become large, and it is 
impossible to extract smaller scales (those near the Fermi 
surface) accurately.

• Unstabilized calculation is only good for high temperatures 
(small   )   
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• Stabilized calculation of    :  Use method of [E. Y. Loh Jr. and J. E. 
Gubernatis, in Electronic Phase Transitions, 1992]

• Instead of computing    , compute a decomposition                 of
   which explicitly displays all numerical scales. 

•    and    are well-conditioned, and     is diagonal with positive 
entries: 

• E.g., singular value decomposition or QR decomposition
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A B D

the schematic form

U = SDV =




x x x

x x x

x x x








X

X

X








x x x

x x x

x x x





=




X X X

X X X

X X X



 ,

(5.3)

where the size of the symbols X indicate the magnitude of the numerical scales, and
the script symbols x indicate numbers of order unity or smaller. After multiplying
the product in Eq. (5.3), U is essentially an outer product of the leftmost column of
S and top row of V . All information about the smaller scales in U is represented only
implicitly as differences between numbers of the largest scale, and therefore quickly
becomes unrecoverable with finite-precision arithmetic.

The solution to this problem is to store a decomposed form of U , such as its
SVD, which keeps track of the divergent numerical scales separately. This involves
updating the decomposition carefully when computing the product (5.2). Given the
partial product SDV = Un · · ·U1, one computes

Un+1(SDV ) = (Un+1SD)V

= (S ′D′V ′)V

= S ′D′V ′′ = Un+1 · · ·U1 ,

where V ′′ = V ′V . Here the product Un+1SD is column-stratified,

Un+1SD =




x x x

x x x

x x x








x x x

x x x

x x x








X

X

X



 =




X X X

X X X

X X X





and can be decomposed stably [129]. As the full product (5.2) is computed, a long
chain of unitary matrices V = VNt · · ·V2V1 is accumulated. Because these are unitary,
this product remains numerically stable.

In practice we do not use the SVD, but rather a “QDR” decomposition, as it is
much faster1. The QDR decomposition is based on the well-known QR decomposition

1Modern Jacobi methods [130, 131] may make the SVD competitive in speed with QDR, but at
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Stabilized Matrix Multiplication

• To compute                            , begin with an initial 
decomposition of      and carefully update when multiplying in 
each new factor: 

• The intermediate matrix                     is column-stratified and 
therefore can be decomposed stably
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U = UNt · · ·U2U1
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U1

U1 = A1D1B1
...

= (An+1Dn+1B
0)Bn

= An+1Dn+1(B
0Bn)

= An+1Dn+1Bn+1
...

U = ANtDNtBNt

Un+1(AnDnBn) = ((Un+1An)Dn)Bn

(Un+1An)Dn



Stabilized Matrix Multiplication cont.

• A column-stratified matrix displays its scales in the columns:

• Similarly, a row-stratified matrix displays its scales in the rows:

• Stratified matrices are much more stable for decomposition and 
diagonalization than general matrices with widely varying scales.
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the product in Eq. (5.3), U is essentially an outer product of the leftmost column of
S and top row of V . All information about the smaller scales in U is represented only
implicitly as differences between numbers of the largest scale, and therefore quickly
becomes unrecoverable with finite-precision arithmetic.

The solution to this problem is to store a decomposed form of U , such as its
SVD, which keeps track of the divergent numerical scales separately. This involves
updating the decomposition carefully when computing the product (5.2). Given the
partial product SDV = Un · · ·U1, one computes
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and can be decomposed stably [129]. As the full product (5.2) is computed, a long
chain of unitary matrices V = VNt · · ·V2V1 is accumulated. Because these are unitary,
this product remains numerically stable.

In practice we do not use the SVD, but rather a “QDR” decomposition, as it is
much faster1. The QDR decomposition is based on the well-known QR decomposition

1Modern Jacobi methods [130, 131] may make the SVD competitive in speed with QDR, but at
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(2) Calculation of the Determinant 

• Wish to compute                         for each m = 1, 2, ... , Ns

• (i) Unstabilized calculation:

‣ Compute                         using standard matrix multiplication

‣ Diagonalize     and compute     

‣ Only for high temperatures. Scales as           (diagonalization) 

• (ii) Standard stabilized calculation:  [Alhassid et al., 101, 082501 (2008)]

‣ Cannot multiply out           to diagonalize, as this would 
destroy information. Instead:

‣ Requires decomposition for each                        , so scales
as 
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U = UNt · · ·U1

U
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O(N3
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= A(A0D0B0)B (decompose)

det(1 + Uei'm)

det(1 + Uei'm) =
NsY

k=1
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• (iii) New method:  Transform

‣ The matrix DBA is row-stratified and can be multiplied out & 
diagonalized stably

‣ Eigenvalues are identical to those of          .

‣ Reduces time back to           

• Test 1: Compute eigenvectors and eigenvalues of         , where C     
is a random complex matrix, and n =1,2,3,...

• Test 2: Compare to standard stabilization method
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Stabilized Matrix Diagonalization
[Gilbreth & Alhassid, arXiv:1210.4131] 



Accuracy of Diagonalizing an ill-conditioned 
Matrix
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Numerical Stabilization -- Accuracy and Timing
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Summary 

• AFMC method in the configuration-interaction 
framework

• Strongly-interacting systems with arbitrary good-
sign interactions can be studied

• Calculations in the canonical ensemble

• A new stabilization method in the canonical 
ensemble

‣ Much faster, scales as          instead of 
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Thermodynamics of a 
finite trapped cold 
atomic Fermi gas



Advances with Atomic Fermi Gases

• 1999: First realization of an ideal degenerate Fermi gas 
(40K).  Evaporative cooling to T = 0.5 TF  (JILA, CO)

• 2002:  Feshbach resonance allows tuning to strongly-
interacting regime (6Li, Duke Univ.)

• 2005: Observation of vortex                                       
lattice after “stirring” confirms                            
superfluidity (MIT)

• 2012: Measurement of “lambda”                                  
peak in heat capacity (MIT)

[Zwierlein, M. W. et al., 
Nature 435, 1047 (2005)]
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single-particle excitations freeze out and pairs form
(see model in Fig. 1).

As T → 0, the Fermi energy EF is the only
intensive energy scale, so the chemical potential
must be related to EF by a universal number, m =
xEF, where x is known as the Bertsch parameter
(6, 7). It follows that at T = 0, k̃ = 1/p̃ = 1/x (13).
The extrapolation of the low-temperature exper-
imental data for k̃ ( p̃) toward the curve k̃ = 1/p̃
gives x = 0.37(1), a value that we find consistently
for the normalized chemical potential, energy, and
free energy at our lowest temperatures.

From the universal function k̃ ( p̃), we obtain
all other thermodynamic quantities of the unitary
gas. First, to find the normalized temperature T/TF
(where kB TF = EF), note that the change in pres-
sure with T/TF at constant temperature is re-
lated to the compressibility. One finds dp̃

dðT=TF Þ ¼5
2
TF
T p̃ − 1

k̃

! "
, so by integration (13)

T
TF

¼ T
TF

# $

i
exp

2
5

Z
pi˜

p̃

dp̃
1

p̃ − 1
k̃

8
<

:

9
=

; ð1Þ

where (T/TF)i is the normalized temperature at an
initial normalized pressure p̃i that can be chosen
to lie in the Virial regime validated above.

Thanks to the relation E = 3
2PV, valid at

unitarity (17), we can also directly obtain the heat
capacity per particle at constant volume V (13),

CV

kBN
≡

1
kBN

∂E
∂T

jN,V ¼ 3
5

dp̃
dðT=TFÞ

¼ 3
2
TF
T

p̃ −
1
k̃

# $
ð2Þ

Figure 2 shows the normalized compressibility
and the specific heat as a function of T/TF. At
high temperatures, the specific heat approaches
that of a noninteracting Fermi gas and eventually
CV = 3

2 N kB, the value for a Boltzmann gas. A
dramatic rise is observed for T/TF at around 0.16,
followed by a steep drop at lower temperatures.
Such a l-shaped feature in the specific heat is
characteristic of second-order phase transitions,
as in the famous l transition in 4He (3). Jumps in
the specific heat are well known from supercon-
ductors (1) and 3He (2). In experiments on atomic
gases, such jumps had only been inferred from
derivatives to fit functions that implied a jump
(20, 21). We do not expect to resolve the critical
behavior very close to Tc. Because of the spatially
varying chemical potential in our trapped sample,
the critical region is confined to a narrow shell.

Based on the estimate in (22), the thickness of the
critical shell is 1% of the cloud size. The finite
resolution of our imaging system (2 mm or about
5% of the cloud size in the radial direction) suf-
fices to explain the rounding of the singularity
expected from criticality. The rounding also re-
duces the observed jump in the heat capacity at
the transition. We obtain a lower bound ∆C/Cn ≡
(Cs − Cn)/Cn ≥ 1:0þ4

−1 , where Cs/N (Cn/N) is the
specific heat per particle at the peak (the onset of
the sudden rise). Considering the strong inter-
actions, this is surprisingly close to the BCS
value of 1.43 (1). Below Tc, the specific heat is
expected to decrease as ∼ exp(−∆0/kB T ) due to
the pairing gap ∆0. At low temperatures, T << Tc ,
the phonon contribution º T3 dominates (23).
This behavior is consistent with our data, but the
phonon regime is not resolved.

To validate our in situ measurements of the
superfluid phase transition, we have employed
the rapid ramp method to detect fermion pair con-
densation (24, 25). The results (Fig. 2C) show
that the onset of condensation and the sudden rise
in specific heat and compressibility all occur at
the same critical temperature, within the error bars.
Unlike previous experimental determinations of
Tc/TF for the homogeneous unitary Fermi gas
(11, 12), we determine Tc/TF directly from the den-
sity profiles, finding a sudden rise in the specific
heat and the onset of condensation at Tc/TF =
0.167(13). This value is determined as the mid-
point of the sudden rise, and the error is assessed
as the shift due to the uncertainty of the Feshbach
resonance (13). This is in very good agreement
with theoretical determinations, such as the self-
consistent T-matrix approach that gives Tc/TF ≈
0.16 (23), andMonte Carlo calculations that give
Tc/TF = 0.171(5) (26) and 0.152(7) (27). There is
a current debate on the possibility of a pseudo-
gap phase of preformed pairs above Tc (12, 28).
A pairing gap for single-particle excitations above
the transition should be signaled by a downturn
of the specific heat above Tc, which is not ob-
served in our measurements.

From the definition of the compressibility
k ¼ 1

n2
∂n
∂m jT , we can obtain the reduced chemical

potential m/EF as a function of the T/TF (Fig. 3A)
(13). This function is here obtained frommeasured
quantities, rather than from numerical derivatives
of data that involved uncontrolled thermometry (11).
In the interval of T/TF from around 0.25 to 1,
the chemical potential is close to that of a non-
interacting Fermi gas, shifted by (xn − 1)EF be-
cause of interactions present in the normal state,
with xn ≈ 0.45. Unlike a normal Fermi gas, the
chemical potential attains a maximum of m/EF =
0.42(1) at T/TF = 0.171(10), and then decreases at
lower temperatures, as expected for a superfluid
of paired fermions (23). As the temperature is in-
creased from zero in a superfluid, first the emer-
gence of phonons (sound excitations) and then
the breaking of fermion pairs contribute to in-
creasing the chemical potential. At Tc, the sin-
gular compressibility implies a sharp change in
slope for m/EF, in agreement with our observa-
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Clean, strongly interacting, tunable systems

• Two species (“  ” and “  ”) of Fermions interact at very 
short range in a harmonic trap.

• Zero-range (s-wave) interactions 

• s-wave scattering length a controllable via external 
magnetic field 

• Unitary limit                saturates                                               
s-wave scattering cross section.

• Strongly interacting, nonperturbative                        
system when     is large

24

[Zwierlein, M. W. et al., Nature 435, 1047 (2005)]
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Unitary, Finite, Trapped Fermi Gas
• Goal: Describe thermodynamics of trapped finite-size (~20 

particle) Fermi gas in the unitary limit.

‣ Heat capacity

‣ Pairing gap

‣ Condensate fraction.

‣ Particle density

• Questions:

‣ Is the superfluid phase transition visible in a system of this 
size?

‣ If so, is there a pseudogap effect?

25
[Q. Chen et al., Physics Reports 412 (2005) 1-88]



AFMC for Trapped Cold Atoms

• Hamiltonian:

• Single-particle basis of harmonic-oscillator states:

• Interaction:

• Shell-model decomposition:

• Our calculations are done in the canonical ensemble.
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(V0 renormalized for each Nmax to reproduce
 two-particle ground-state energy)



Monte Carlo Sign of the Contact Interaction

• It is well-known that the contact interaction                         has 
good Monte Carlo sign in coordinate space.

• It is not as clear in the Configuration-Interaction formalism.

• The proof proceeds as follows:

‣ The Hamiltonian takes the form

‣ and in a “time-reversed density decomposition”:

‣ One can show that the interaction matrix

has only nonpositive eigenvalues when V0 < 0.
27

V (r) = V0�(r)

In the next two subsections we consider the sign of our AFMC calculations in the CI
framework with the contact interaction, for both the grand-canonical and canonical
ensembles. We show that our calculations have good sign both in the grand-canonical
ensemble and for spin-balanced systems in the canonical ensemble.

4.2.1 Good sign in the grand-canonical ensemble

The sign is identically 1 in the grand-canonical ensemble if the interaction satisfies
a simple condition on its eigenvalues, namely, if the eigenvalues in Eq. (4.9) are all
nonpositive. To see this, note that if the interaction eigenvalues are nonpositive the
phases sk in the linearized Hamiltonian [Eq. (4.14)] are all 1. This implies that the
linearized Hamiltonian ĥ(σt) is time-reversal invariant for all time slices t. When
this is true, Û is also time-reversal invariant, implying that its eigenvalues come in
complex-conjugate pairs. Therefore, grand canonical trace TrGC(Û(σ)) = det[1 +

U(σ)] is positive. Hence, Monte Carlo calculations done in this framework in the
grand-canonical ensemble will satisfy Φ(σ) = 1 for all σ. For this reason, we refer to
interactions for which all λk ≤ 0 as good-sign interactions.

The contact interaction satisfies this condition. We state it as a theorem [127].

Theorem 4.1. [127] The contact interaction V (r) = V0δ(r) for V0 < 0 has good sign
in the direct time-reversed density decomposition.

Proof. It is easiest to consider the interaction without angular momentum coupling.
In this case the Hamiltonian is

H =
∑

nlmσ

εnla
†
nlmσanlmσ +

1

2

∑
(ab|V̂ |cd)a†aσa

†
bσ′adσ′acσ , (4.23)

where the bold Roman letters indicate state indices, e.g. a = (nalama), excluding
spin. The second sum is over a, b, c, d, σ and σ′. For the time-reversed density
decomposition, we transform this to

Ĥ = Ĥ1 +
1

2

∑
(ab̄|V̂ |cd̄)(−)mb(−)md a†aσacσā

†
bσ′ ādσ′ ,

where we have absorbed all one-body terms into H1 and ādσ′ ≡ (−)
1
2−σ′+mdad̄−σ′ is the

time-reverse of adσ′ . (The EKπ matrix in Eq. (4.6) is an orthogonal transformation
of the matrix (ab̄|V̂ |cd̄)(−)mb+md , excluding the degeneracy in m, and therefore has
the same eigenvalues.) The matrix elements of the contact interaction V (r1 − r2) =
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Vac,bd = (ab̄|V̂ |cd̄)(�)ma(�)mb

āa,� =
time reverse



Sign of the Contact Interaction (cont.)

• We show this as follows:

• This implies           in the Hubbard-Stratonovich transformation:

So the auxiliary-field Hamiltonian is complex-conjugation 
invariant.
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V0δ(r1 − r2) are

(ab|V̂ |cd) =
∫

d3r1d
3r2ϕ

∗
a(r1)ϕ

∗
b(r2)V (r1 − r2)ϕc(r1)ϕd(r2)

= V0

∫
d3rϕ∗

a(r)ϕ
∗
b(r)ϕc(r)ϕd(r) .

We show that the matrix (ab̄|V̂ |cd̄)(−)mb+md (with pair indices ac and b̄d̄) is
negative semi-definite when V0 < 0. For any vector vac, we have

∑

ac,bd

v∗ac(ab̄|V̂ |cd̄)(−)mb+mdvbd

= V0

∑

ac,bd

∫
d3r v∗acϕ

∗
a(r)ϕc(r)ϕ

∗
b̄(r)(−)mbϕd̄(r)(−)mdvbd

= V0

∫
d3r

(
∑

ac

v∗acϕ
∗
a(r)ϕc(r)

)(
∑

bd

ϕb(r)ϕ
∗
d(r)vbd

)

= V0

∫
d3r

∣∣∣
∑

ac

v∗acϕ
∗
a(r)ϕc(r)

∣∣∣
2

≤ 0 .

In the second equality we have used ϕ∗
nlm(r) = (−)mϕnl−m(r), and in the last in-

equality V0 < 0. The non-positivity of the eigenvalues implies sk = 1 in Eq. (4.14)
and that ĥ, and hence Û(σ), is time-reversal invariant.

When Û(σ) is time-reversal invariant, the eigenvalues of U(σ) are either real or
come in complex-conjugate pairs: if U(σ)x = λx, where x is an Ns-dimensional vector,
then applying time reversal implies U(σ)Tx = λ∗Tx. Therefore

TrGC[Û(σ)] = det[1 + Û(σ)] =
∏

k

(1 + λk) ≥ 0

and the grand-canonical sign is 1.

4.2.2 Good sign in the canonical ensemble.

The fact that TrGCÛ(σ) > 0 does not necessarily imply TrN↑,N↓Û(σ) > 0. However,
when N↑ = N↓, the cold atom system with the contact interaction does satisfy this
condition and therefore has good sign. We prove this in the following theorem.

Theorem 4.2. For spin-balanced systems of fermions in the canonical ensemble, the
contact interaction V (r) = V0δ(r) for V0 < 0 in the direct time-reversed density
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s = 1

e����Ô2/2 =

Z 1

�1
d�e���|�|�2/2e�����Ô ,



Sign of the Contact Interaction (cont.)

• The propagator factorizes: 

•           are invariant under complex conjugation:

• Therefore, complex eigenvalues come in complex-conjugate pairs

• So

• When               ,

so the calculation has good sign.
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Û = Û"Û#

Û", Û#

K0Û",#K
†
0 = Û",#

TrN",#(Û",#) =
X

i

�
(N",#)
i = real

Û",#|vi = �|vi K0Û",#|vi = Û",#K0|vi = �⇤K0|vi)

N" = N#

TrN",N#(Û) = TrN"(Û")TrN#(Û#) = [TrN"(Û")]
2 � 0



Accuracy of Renormalized Contact Interaction
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Heat capacity

• When computing the heat capacity, the statistical error in the 
energy can be greatly magnified.

• We use a method of correlated errors introduced in [S. Liu and Y. 

Alhassid, PRL 87, 022501 (2001)] to avoid this.

‣ Sample fields at a single temperature

‣ Compute energies at               and                 for each sample:

‣ Statistical error:

‣ Covariance greatly reduces statistical error in heat capacity
31

C =
dE(T )

dT
⇡ [E(T +�T )� E(T ��T )]/2�T

E(T ±�T ) =

R
D[�]G�(T ±�T )Tr[Û(�, T ±�T )]

R
D[�]G�(T ±�T )Tr Û(�, T ±�T )

T +�T T ��T

T

Var(C) =

1

(2 ⇤�T )2
⇥

h
Var(h ˆH(T +�T )i) + Var(h ˆH(T ��T )i)� 2 ⇤ Cov(h ˆH(T +�T )i, h ˆH(T ��T )i)

i

�2 ⇤ Cov(h ˆH(T +�T )i, h ˆH(T ��T )i)
i
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FIG. 1. The SMMC heat capacity of 54Fe. The left panel is the result of conventional SMMC

calculations. The right panel is calculated using the improved method (based on the representation

(4) where a correlated error can be accounted for).
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[S. Liu and Y. Alhassid, PRL 87, 022501 (2001)]



Condensate Fraction

• “Condensate fraction” does not have a standard meaning in 
finite-size systems

• We define a condensate fraction from the two-body density 
matrix (TBDM).

• C. N.  Yang (1962): Off-diagonal long-range order (ODLRO) is 
equivalent to the existence of a large eigenvalue in the TBDM

• Calculation:

1. Compute

2. Diagonalize to obtain a pair wavefunction                    
corresponding to the largest eigenvalue of C.

3. The largest eigenvalue    satisfies (for                          )

and
33

C(ij, kl) ⌘ ha†i,"a
†
j,#al,"ak,#i

B† ⌘
X

ij

'ija
†
i"aj#

0  �  N/2

� = hB†Bi
N" = N# = N/2

n ⌘ �/(N/2)

�

defines a condensate fraction.so



Energy-Staggering Pairing gap

• Energy-staggering pairing gap

where

•        measures the difference in energy between fully paired 
systems and a systems with an unpaired particle.

• Calculation:  (for                          )

1. Sample auxiliary fields for the                    system. 

2. Compute                 ,                                             , and
                            for each sample

3. Compute variance of         using correlated errors.
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�gap ⌘ [E(N", N# + 1) + E(N" + 1, N#)� E(N" + 1, N# + 1)� E(N", N#)]/2
�gap ⌘ [E(N", N# + 1) + E(N" + 1, N#)� E(N" + 1, N# + 1)� E(N", N#)]/2

E(N", N#) =
energy of a system with      spin-up particles
and      spin-down particles. 

N"
N#

�gap

(N", N# + 1)

N" = N# = N/2

E(N", N#) E(N" + 1, N#) = E(N", N# + 1)
E(N" + 1, N# + 1)

�gap



Signatures of the Phase Transition: 20 Atoms
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CL(ab, cd) = hA†
LM (ab)ALM (cd)i

n = �
max

/(N/2)

�gap = [E(N", N# + 1) + E(N" + 1, N#)

�E(N", N#)� E(N" + 1, N# + 1)]/2

[Gilbreth and Alhassid, arXiv:1210.4131]
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Particle Density & Odd Particle Effect
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⇢(r) =
⌦P

�  
†
�(r) �(r)

↵
�⇢(r) = [⇢(r)(9,10) + ⇢(r)(10,9)]/2

�[⇢(r)(10,10) + ⇢(r)(9,9)]/2
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edge of the trap 
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Summary:  AFMC in the CI Framework for 
Cold Atoms

• We devised a more efficient numerical stabilization method in 
the canonical ensemble which allows calculations in much larger 
model spaces.

• First ab initio calculations of heat capacity and energy-staggering 
pairing gap across the superfluid phase transition in any system 
of cold atoms

• Condensate fraction and particle density for a finite trapped 
system of cold atoms

• Clear signatures of a superfluid phase transition

• The addition of an extra particle to the spin-balanced system 
produces extra density at the edge of the trap.
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Questions

• Questions:

‣ Does         show a pseudogap effect in the trapped system for 
larger numbers of particles at unitarity?

‣ Does          (as opposed to the spectral function) show a 
pseudogap effect in the uniform system?

‣ How can we extend AFMC in the CI framework to larger 
model spaces?

- Represent the interaction in coordinate space?

- Optimize matrix exponential, diagonalization, etc. methods?

- Optimize single-particle basis functions?

- Alternatives to Metropolis?
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