#### **Quantum Monte Carlo for Noncovalent Interactions**

Advances in quantum Monte Carlo techniques for non-relativistic many-body systems (June 28, 2013, Seattle)

> Matúš Dubecký matus.dubecky@upol.cz





Palacky University of Olomouc, Czech Republic Dept. of Physical Chemistry (http://fch.upol.cz) + Research Center for Advanced Technology and Materials

**Collaboration**:

Pavel Hobza Lubos Mitas Michal Otyepka Petr Jurecka Rene Derian

# **Outline & Scope**

- Numerical evidence
  - FN-DMC in NCI what can be achieved?

// No method development, skip details on VMC & DMC & technical details //

FUNDAMENTAL QUESTIONS OF THIS MEETING ADRESSED: What is the current state of the art of QMC as compared to other many-body techniques? Is it possible to imagine QMC as a reliable standard to be used also by non- experts in the near future? What is the cost/benefit ratio compared, for instance, to DFT calculations?

http://www.int.washington.edu/PROGRAMS/13-2a/Questions.html

# Noncovalent Molecular Interactions

- Chemical <u>bonding without sharing of electrons</u>
  - Hydrogen bonds
  - Van der Waals
    - Dipole-dipole, London dispersion
- Importance
  - Structure of biomacromolecules
  - Properties of liquids
  - Molecular recognition
  - •

#### Typical strength: 0.5-30 kcal/mol

# Levels of accuracy

- Depends on the problem
- Chemical accuracy
  - 1 kcal/mol ~ 0.04 eV
- Scale of NCI starts at 0.5 kcal/mol
  - Need less than 1 kcal/mol
- Subchemical accuracy: 0.1 kcal/mol
  - Target benchmark level for NCI
  - One of the most challenging tasks in computational chemisty

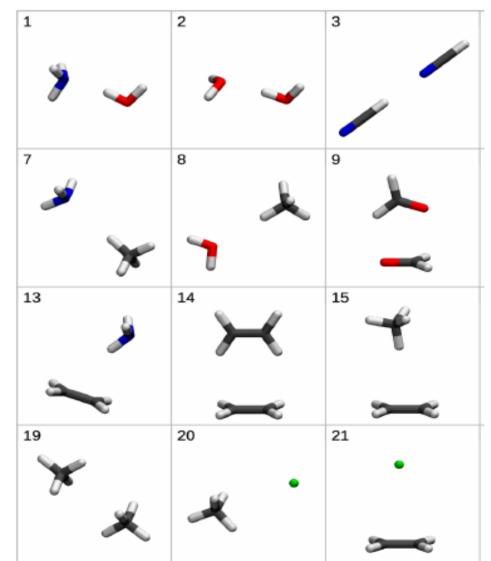
# Levels of accuracy

- Depends on the problem
- Chemical accuracy
  - 1 kcal/mol ~ 0.04 eV
- Scale of NCI starts at 0.5 kcal/mol
  - Need less than 1 kcal/mol
- Subchemical accuracy: 0.1 kcal/mol
  - Target benchmark level for NCI
  - One of the most challenging tasks in computational chemisty

#### **OUR GOAL!**

# **Noncovalent Interactions**

#### • Experiment


- Strength on interactions
  - Dissociation & adsorption enthalpies
  - No direct info on nature of interactions
- Theory
  - Enthalpy
    - hard for anharmonicity
  - Interaction energy available from SSE in BO approx.
  - Other quantities of interest fundamental understanding

# Theory

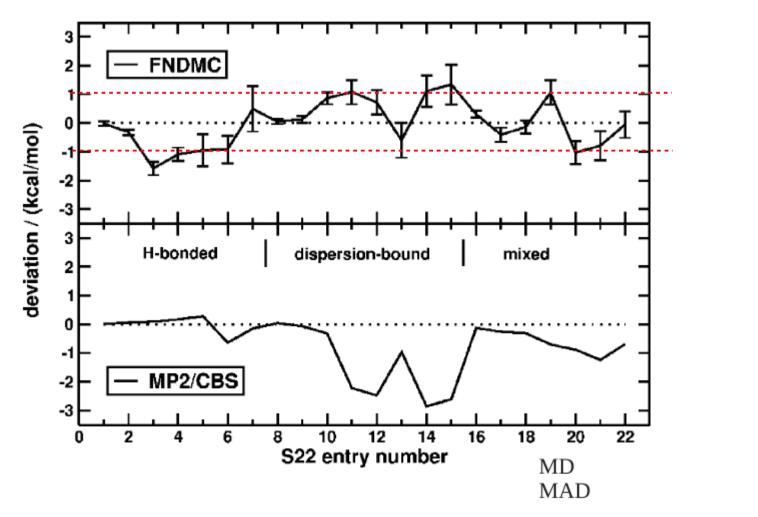
- Problem: solve SNR-SE in BO approximation
- Golden standard of QCH: CCSD(T)
- Accurate in large basis and/or in CBS limit  $\rightarrow 1$  kcal/mol
- Problem: rapid scaling with system complexity ~O(N^7)
- Is the CCSD(T)/CBS reliable? How much?
- In general this is not settled
  - Single reference method! OK for NCI

#### Recent assessment of CCSD(T) on small complexes

- Rezac, Hobza JCTC 2013
  - Tests of various approximations on noncovalent interactions, test set A24:
    - Relativity
    - Excitation order by CCSDT(Q)
    - Ignoring core-valence correlation



|   | system          |          | CCSD(T)/CBS | <b>ACCSD</b> | Γ(Q) (%) |
|---|-----------------|----------|-------------|--------------|----------|
| 1 | water…ammonia   | Cs       | -6.493      | 0.001        | (0.01)   |
| 2 | water dimer     | $C_s$    | -5.006      | 0.012        | (0.23)   |
| 3 | HCN dimer       | $C_s$    | -4.745      | 0.007        | (0.15)   |
| 4 | HF dimer        | $C_s$    | -4.581      | 0.017        | (0.38)   |
| 5 | ammonia dimer   | $C_{2h}$ | -3.137      | -0.004       | (0.13)   |
| 6 | HF…methane      | $C_{3v}$ | -1.654      | -0.006       | (0.37)   |
| 7 | ammonia…methane | $C_{3v}$ | -0.765      | -0.006       | (0.80)   |


- Subchemical accuracy is achieved within the whole set >20 mol's, total avg. error on IE is 1.5 % only
- Error compensation
- CCSD(T) is "converged" for IEs in small noncovalent complexes our reference

# What about Quantum Monte Carlo?

- First step, assess FN-DMC w.r.t. CCSD(T) in small complexes
  - Then test on larges systems
  - Learn what's possible: goal
- Chemistry: screening of large sets
  - Feasible and black-box approach required: goal
- How well are we able to reach the benchmark CCSD(T)/CBS data on small molecules?

# Previous QMC attempt on a set S22

 Chemists are not satisfied with ~1 kcal/mol average error reported by Korth et al. JPCA 2008




-0.03

0.68

#### Our work...

#### Test set



| Complex       | Reference | $\mathrm{FN}\text{-}\mathrm{DMC}^a$ | $\Delta^a$ | $\mathrm{FN}	ext{-}\mathrm{DMC}^b$ | $\Delta^b$ |
|---------------|-----------|-------------------------------------|------------|------------------------------------|------------|
| Ammonia dimer | -3.15     | $-3.19 {\pm} 0.09$                  | 0.04       | $-3.22 \pm 0.10$                   | 0.07       |
| Water dimer   | -5.07     | $-5.34 {\pm} 0.09$                  | 0.27       | $-5.15 \pm 0.10$                   | 0.08       |
| HF dimer      | -4.58     | -                                   | -          | $-4.68 {\pm} 0.10$                 | 0.10       |
| Methane dimer | -0.53     | $-0.48 {\pm} 0.08$                  | -0.05      | $-0.44 \pm 0.10$                   | -0.09      |
| Ethene dimer  | -1.48     | $-1.38 {\pm} 0.13$                  | -0.10      | $-1.47 {\pm} 0.09$                 | -0.01      |
| Ethene/ethyne | -1.50     | $-1.22 \pm 0.12$                    | -0.28      | $-1.56 \pm 0.10$                   | 0.06       |

| Complex       | Reference | $\mathbf{I}$ N-DMC <sup>a</sup> | $\Delta^a$ | $\mathrm{FN}\text{-}\mathrm{DMC}^{b}$ | $\Delta^b$ |
|---------------|-----------|---------------------------------|------------|---------------------------------------|------------|
| Ammonia dimer | -3.15     | - <b>B</b> .19±0.09             | 0.04       | $-3.22 \pm 0.10$                      | 0.07       |
| Water dimer   | -5.07     | $-5.34 {\pm} 0.09$              | 0.27       | $-5.15 \pm 0.10$                      | 0.08       |
| HF dimer      | -4.58     | -                               | -          | $-4.68 {\pm} 0.10$                    | 0.10       |
| Methane dimer | -0.53     | $-0.48 {\pm} 0.08$              | -0.05      | $-0.44 \pm 0.10$                      | -0.09      |
| Ethene dimer  | -1.48     | $-1.38 {\pm} 0.13$              | -0.10      | $-1.47 {\pm} 0.09$                    | -0.01      |
| Ethene/ethyne | -1.50     | $-1.22 \pm 0.12$                | -0.28      | $-1.56 \pm 0.10$                      | 0.06       |
|               |           | -                               |            |                                       |            |

CCSD(T)/CBS ATZV - AQZV Takatani et al. JCP 2010

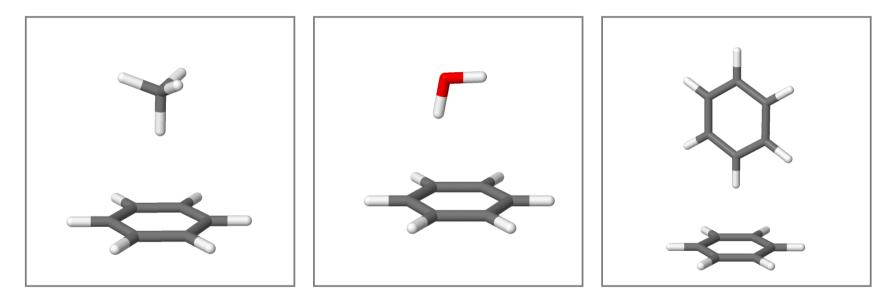
|               |           |                    |            | -                              |
|---------------|-----------|--------------------|------------|--------------------------------|
| Complex       | Reference | $FN-DMC^a$         | $\Delta^a$ | FN-DMC <sup>b</sup> $\Delta^b$ |
| Ammonia dimer | -3.15     | $-3.19 {\pm} 0.09$ | 0.04       | $-3.22 \pm 0.10$ 0.07          |
| Water dimer   | -5.07     | $-5.34 {\pm} 0.09$ | 0.27       | $-5.15 \pm 0.10$ 0.08          |
| HF dimer      | -4.58     | -                  | -          | $4.68 \pm 0.10$ 0.10           |
| Methane dimer | -0.53     | $-0.48 {\pm} 0.08$ | -0.05      | -0.44±0.10 -0.09               |
| Ethene dimer  | -1.48     | $-1.38 {\pm} 0.13$ | -0.10      | -1.47±0.09 -0.01               |
| Ethene/ethyne | -1.50     | $-1.22 \pm 0.12$   | -0.28      | -1.56±0.10 0.06                |
|               |           |                    |            |                                |

Korth et al. JPCA 2009

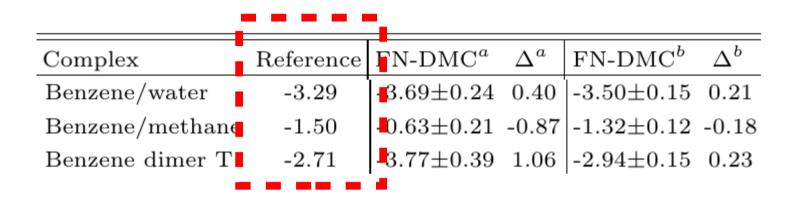
ME: -0.008 MUE: 0.116

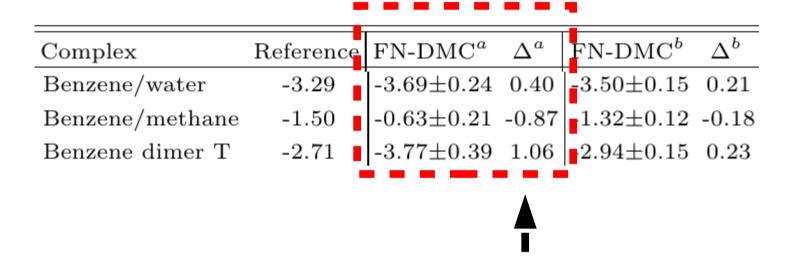
#### **OUR DATA**

|               |           |                    |            | I.               |            |
|---------------|-----------|--------------------|------------|------------------|------------|
| Complex       | Reference | $FN-DMC^{a}$       | $\Delta^a$ | $FN-DMC^b$       | $\Delta^b$ |
| Ammonia dimer | -3.15     | $-3.19 {\pm} 0.09$ | 0.04       | $-3.22 \pm 0.10$ | 0.07       |
| Water dimer   | -5.07     | $-5.34 {\pm} 0.09$ | 0.27       | $-5.15 \pm 0.10$ | 0.08       |
| HF dimer      | -4.58     | -                  | -          | $-4.68 \pm 0.10$ | 0.10       |
| Methane dimer | -0.53     | $-0.48 {\pm} 0.08$ | -0.05      | $-0.44 \pm 0.10$ | -0.09      |
| Ethene dimer  | -1.48     | $-1.38 {\pm} 0.13$ | -0.10      | $-1.47 \pm 0.09$ | -0.01      |
| Ethene/ethyne | -1.50     | $-1.22 \pm 0.12$   | -0.28      | $-1.56 \pm 0.10$ | 0.06       |
|               |           |                    |            |                  |            |


Korth et al. JPCA 2009

ME: -0.008 ME: 0.035 MUE: 0.116 MUE: 0.068 I.e. FN-DMC agrees to within subchemical accuracy w.r.t. benchmark data believed to be (esentially) exact.


This makes FN-DMC competitor of CCSD(T) and in large complexes, it will benefit from the scaling.


#### Larger complexes

CCSD(T) not yet assessed! Just best energy estimates... believed to be OK ~+-0.3 kcal/mol



| Complex         | Reference | $FN-DMC^{a}$       | $\Delta^a$ | $\mathrm{FN}	ext{-}\mathrm{DMC}^b$ | $\Delta^b$ |
|-----------------|-----------|--------------------|------------|------------------------------------|------------|
| Benzene/water   | -3.29     | $-3.69 {\pm} 0.24$ | 0.40       | $-3.50 \pm 0.15$                   | 0.21       |
| Benzene/methane |           |                    |            | $-1.32 \pm 0.12$                   |            |
| Benzene dimer T | -2.71     | $-3.77 {\pm} 0.39$ | 1.06       | $-2.94{\pm}0.15$                   | 0.23       |





Korth et al. JPCA 2009

#### MUE: 0.76

#### OUR DATA

| Complex         | Reference | $FN-DMC^{a}$       | $\Delta^a$ | $\mathrm{FN}\text{-}\mathrm{DMC}^{b}$ | $\Delta^b$ |
|-----------------|-----------|--------------------|------------|---------------------------------------|------------|
| Benzene/water   | -3.29     | $-3.69 {\pm} 0.24$ | 0.40       | $-3.50 {\pm} 0.15$                    | 0.21       |
| Benzene/methane | -1.50     | $-0.63 \pm 0.21$   | -0.87      | $-1.32 \pm 0.12$                      | -0.18      |
| Benzene dimer T | -2.71     | $-3.77 {\pm} 0.39$ | 1.06       | $-2.94{\pm}0.15$                      | 0.23       |

Korth et al. JPCA 2009

#### MUE: 0.76 MUE: 0.213

# **Optimal Protocol**

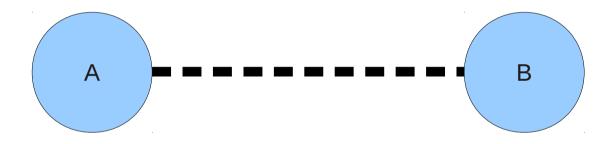
- Geometries from S22 (except HF dimer)
- BFD ECP's
- Augmented bases TZV aug part is a must!
- B3LYP orbitals (no orbital opt)
- VMC opt of J only, 3 body Schmidt-Moskowitz, Poly pade
  - Linear combination of Energy & Variance
    - esentially energy minimization / 95% of energy
- DMC: T-moves, conservative dt=0.005 a.u.,
  - 0.1 kcal/mol or smaller error bar

#### Just accepted in JCTC http://pubs.acs.org/doi/abs/10.1021/ct4006739

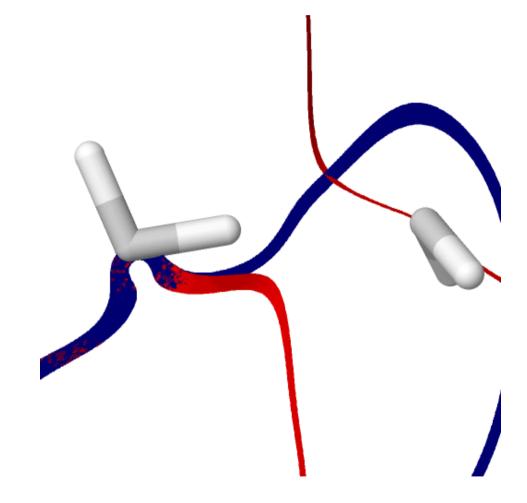
- The total energies are not converged,
  - Finite variance, one determinant,...
- Energy differences are converged

- The total energies are not converged,
  - Finite variance, one determinant,...
- Energy differences are converged
- Why?

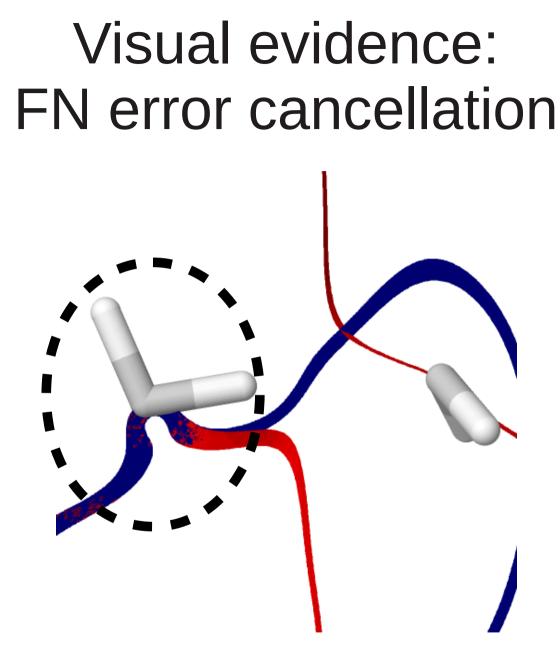
- The total energies are not converged,
  - Finite variance, one determinant,...
- Energy differences are converged
- Why?
  - Efficient FN error cancellation


- The total energies are not converged,
  - Finite variance
- Energy differences are converged
- Why?
  - Efficient FN error cancellation
  - Closed shells no multireference nature of the wave functions arises upon dissociation of the molecular complexes constituents – equal footing description
  - Other...

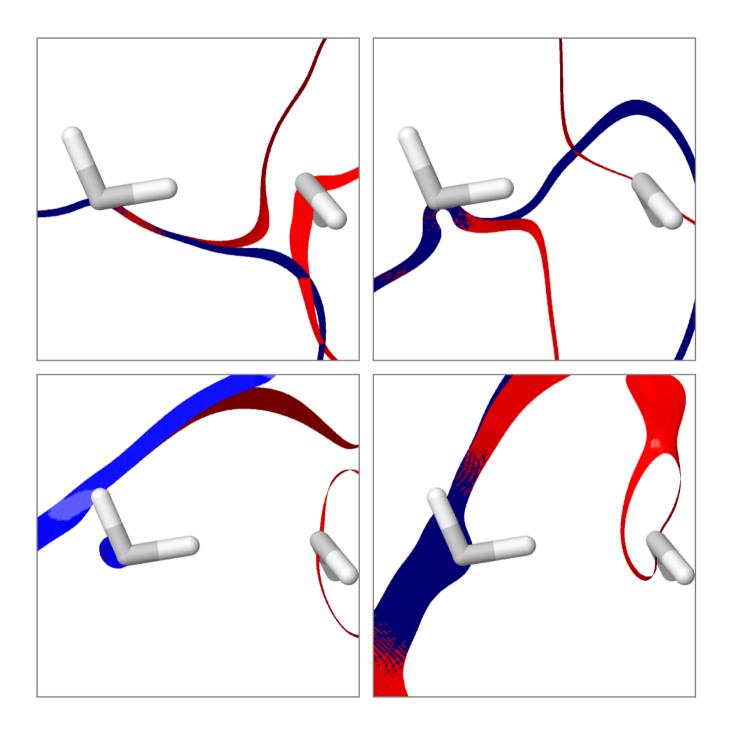
#### **FN error cancellation**

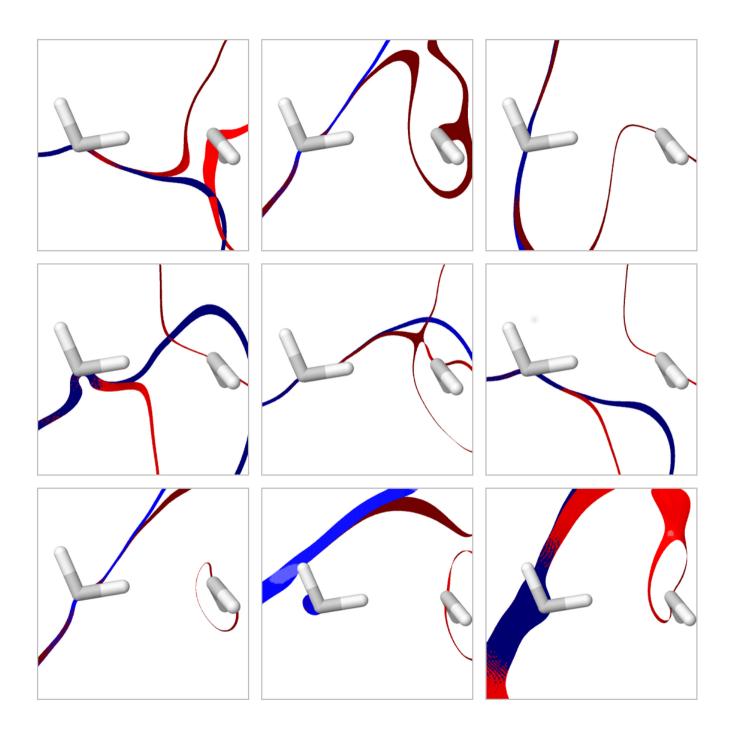

#### Anderson, Korth et al, ...

| Complex       | Reference | $\mathrm{FN}\text{-}\mathrm{DM}\mathrm{C}^a$ | $\Delta^a$ | FN  | $-\mathrm{DMC}^{b}$ | $\Delta^b$ |
|---------------|-----------|----------------------------------------------|------------|-----|---------------------|------------|
| Ammonia dimer | -3.15     | -3.19±0.09                                   | 0.04       | -3. | $22 \pm 0.10$       | 0.07       |
| Water dimer   | -5.07     | $-5.34 \pm 0.09$                             | 0.27       | -5. | $15 \pm 0.10$       | 0.08       |
| HF dimer      | -4.58     | -                                            | -          | -4. | $68 \pm 0.10$       | 0.10       |
| Methane dimer | -0.53     | $-0.48 {\pm} 0.08$                           | -0.05      | -0. | $4\pm 0.10$         | -0.09      |
| Ethene dimer  | -1.48     | $-1.38 \pm 0.13$                             | -0.10      | -1. | $17 \pm 0.09$       | -0.01      |
| Ethene/ethyne | -1.50     | $-1.22 \pm 0.12$                             | -0.28      | -1. | $56 {\pm} 0.10$     | 0.06       |
|               |           |                                              | _          | !   |                     |            |


#### Weak interation => FN error constant, cancels out




#### Visual evidence, water dimer Slice cuts through multidimensional nodal surface




Monomer, dimer



Monomer, dimer





#### Too fresh... quantitative analysis under way...

#### FUNDAMENTAL QUESTIONS AGAIN

What is the current state of the art of QMC as compared to other many-body techniques? Is it possible to imagine QMC as a reliable standard to be used also by nonexperts in the near future? What is the cost/benefit ratio compared, for instance, to DFT calculations?

Modified from http://www.int.washington.edu/PROGRAMS/13-2a/Questions.html

# My answer in domain of NCI

- QMC now allows routine use & attains predictive power with benchmark accuracy as CCSD(T)
  - At least for comparable closed shell complexes with comparably complex bonding pattern/s
- I believe that NCI may be easily studied by non-QMC-expert using this approach as the provided protocol is esentially a black-box recipe
- More work required/under way, to support...
  - Testing on more complexes, (S22, cd, ...)
  - Predictive calculations
  - Physics nodes, nonlinearities?

#### Thank you!

matus.dubecky@upol.cz