
PIMC vs DMC 

•  No wavefunction 
needed—better black 
box. 

•  Non-zero temperature 
BUT 
•  Sampling more 

complicated 
–  Permutations 
–  Ergodicity 

•  Wavefunction gives 
zero variance 

•  Can optimize the trial 
function (and nodes) 

BUT 
•  Branching inefficient 

for large systems 
•  Population bias 
•  Mixed estimators a 

problem Is a good application of PIMC 
disordered condensed-matter 
systems? e.g. Liquids 
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Energy of low density H2 

Militzer, Ceperley, Phys Rev. E63, 66404 (2001). 

• Molecules form 
spontaneously 

• Includes 
vibrational, 
rotational, 
translational 
degrees of freedom. 

 
• Absolute accuracy 
in energy is 0.1eV. 

rs=10 
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Theory vs. experiment 
NOVA (Livermore 
CA) laser shock 
experiments  
Science 281, 1178, 
1998. 
 
• Liquid is 50% more 
compressible than 
thought. 
 
• Important 
implications for fusion 
(makes fusion much 
easier.) 

• PIMC is not very 
accurate. About the 
same EOS as DFT. 

Exact limit 
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Experiment vs PIMC/DFT simulations 

•  Older laser 
(NOVA) shocks 
are incompatible 
with microscopic 
theory. 

•  Chemical models 
are not predictive 
in this regime. 

•  Z-pinch 
experiments of 
Knudson et al., 
PRL 87, 225501 
(2001) 
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“Direct” Fermion Path Integrals 
•  Path integrals map quantum mechanics into a system of cross-

linking closed “polymers.” 
 
 
 
R0=PRM,  P permutation, 
S(Ri, Ri+1) is “boltzmannon action”  
 
•  Bosons are easy: simply sample P. 
•  Fermions: sample the “action” and carry (-1)P   as a weight. 
•  Observable is even P - odd P.  scales exponentially in N and T-1! 
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Fixed-Node method with PIMC 
•  Get rid of negative walks by canceling them with positive 

walks. We can do this if we know where the density matrix 
changes sign. Restrict walks to those that stay on the 
same side of the node.   

•  Fixed-node identity. Gives exact solution if we know the 
places where the density matrix changes sign: the nodes. 

•  Classical correspondence exists!!  
•  Problem: fermion density matrix appears on both sides of 

the equation.  We need nodes to find the density matrix.  
•  But still useful approach. (In classical world we don’t know 

V(R).) 
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Proof of the fixed node method 
1.  The density matrix satisfies the Bloch 

equation with initial conditions. 

2.   One can use more general boundary 
conditions, not only initial conditions, 
because solution at the interior is uniquely 
determined by the exterior-just like the 
equivalent electrostatic problem.  

3.  Suppose someone told us the surfaces where 
the density matrix vanishes (the nodes). Use 
them as boundary conditions. 

4.  Putting an infinite repulsive potential at the 
barrier will enforce the boundary condition. 

5.  Returning to PI’s, any walk trying to cross 
the nodes will be killed. 

6.  This means that we just restrict path 
integrals to stay in one region.  
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Ortho-para H2 example 
In many-body systems it is hard to visualize statistics. 
•  The simplest example of the effect of statistics is the H2 

molecule in electronic ground state. 
•  Protons are fermions-must be antisymmetric. 
1.  Spins symmetric (áá). spatial wf antisymmetric (ortho)   “fermions” 
2.  Spins antisymmetric  (âá- áâ). spatial wf symmetic  (para) “bosons” 
3.  Non symmetrical case (HD)         “boltzmannons” 

All 3 cases appear in nature! 
•  Go to relative coordinates:   r= r1-r2 
•  Assume the bond length is fixed |r|=a. Paths are on surface of 

sphere of radius a. 
PIMC task is to integrate over such paths with given symmetries. 
For a single molecule there is no potential term, a “ring polymer” 

trapped on the surface of a sphere. 
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Paths on a sphere 
1. “boltzmannons”Ring 

polymers on sphere O(r èr) 

2. “bosons”  2 types of paths 
allowed.  O(r è r) + O(r è -r) 

3. ”fermions” 2 types of paths 
allowed O(r è r)  - O(r è -r)    
Low efficiency as    

1 0( )E Ee βζ − −=
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Restricted paths for ortho H2 
•  Fix origin of path: the reference point. 
•  Only allow points on path with a positive 

density matrix. paths staying in the 
northern hemisphere:   r(t).r(0)>0 

•  Clearly negative paths are thrown out. 
•  They have cancelled against positive 

paths which went south and then came 
back north to close. 

•  The symmetrical rule in “t”: r(t).r(t’)>0  
is incorrect. 

•  Spherical symmetry is restored by 
averaging over the reference point: the 
north pole can be anywhere. 

•  Can do many H2 the same way.  
•  Ortho H2 is much more orientable than 

either HD or para H2. 

D. Ceperley 



Restricted Path Integral Applications 

•  Homogenous electrons/plasma (Ethan to discuss) 

•  High Temperature hydrogen/helium (interior of 

planets)(Pierleoni, Bernu, Militzer, Magro,…) 

•  Carbon  (Militzer & Driver) 

•  Liquid/solid 3He  (Jonathon?) 

•  Electron-hole liquid  (Shumway) 

•  BEC of fermions  (Akkineni) 
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Nodal Properties 
If we know the sign of the exact density matrix(the nodes), we 

can solve the fermion problem with the fixed-node method. 
•  If ρ(R) is real, nodes are ρ(R)=0 where R is the 3N 

dimensional vector.  
•  Nodes are a 3N-1 dimensional surface. (Do not confuse with  

single particle orbital nodes!) 
•  Coincidence points ri  = rj are  3N-3 dimensional hyper-planes 
•  In 1 spatial dimension these “points” exhaust the nodes. 

fermion problem is easy to solve in 1D   with the “no crossing 
rule.” 

•  Coincidence points (and other symmetries) only constrain 
nodes in higher dimensions, they do not determine them. 

•  The nodal surfaces define nodal volumes. How many nodal 
volumes are there? Conjecture: there are typically only 2 
different volumes (+ and -) except in 1D. (but only 
demonstrated for free particles.) 

•  At high T, nodes are free particle-like, Vornoi polyhedra. 
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For a density matrix 
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Reference Point 
•  Scalar averages can only be taken at the 

reference point. New feature compared with 
boson path integrals. 

•  Partition function and all derivatives (energy) 
use information from the whole path. 

•  We lose time slice symmetry if nodes are time 
dependent.  But this is probably necessary to 
fix phase of density matrix. 

•  Reference point moves are expensive and 
ultimately cause RPIMC to get “stuck” for 
T<EF/10.  

•  One can use a 2 reference points.  This 
restores time-reversal symmetry and means 
we only need nodes for t<β/2. 

•  More than 2 reference points will bring back 
the “sign” problem.  

•  Shumway tried a “wagon-wheel”; correct? 
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RPIMC with approximate nodes 
•  In almost all cases, we do not know the “nodal” 

surfaces. 
•  We must make an an ansatz. 
•  This means we get a fermion density matrix (function 

with the right symmetry) which satisfies the Bloch 
equation at all points except at the node. 

•  That is, it has all the exact “bosonic” correlation 
•  There will be a derivative mismatch across the nodal 

surface unless nodes are correct. 
•  In many cases, there is a free energy bound.  Proved at 

high temperature and at zero temperature and when 
energy is always lower.  

•  Maybe one can find the best nodes using the variational 
principle.  (variational density matrix approach)  
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Free particle nodes 
•  For non-interacting (NI) particles the nodes are the finite 

temperature version of a Slater determinant: 

 
At high T, nodes are hyperplanes. 
At low T, nodes minimize the kinetic energy. 

Nodes have “time dependence”.  
•  Problems: no spin-coupling in nodes, no formation of 

electronic bound states. 
•  Militzer-Pollock compute g(r,r’;t) with Hartree eqs.         

(VDM or variational density matrix) 
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Variational Density Matrix 
•  Approximate density 

matrix by a determinant 
of single  particle 
Gaussians. 

•  Follow evolution of center 
and width in imaginary 
time using a variational 
ansatz. 

•  Introduces electron-proton 
coupling in density matrix. 

•  Exact at high 
temperature. 

•  Goes to SCF at zero 
temperature. 

•  Only used for restriction 
not for the action. 

H atom example 

Militzer and Pollock, PRE 61, 3470 (2000). D. Ceperley 



Nodal optimization 

•  General scheme: work with a determinant(s) with 
parameters. 

•  Minimize RPIMC energy (or overlap) wrt nodal 
parameters (use the gradients) 

•  Compute forces on these parameters and update.  
What estimator to use? 
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Momentum distribution 
•  For bosons the momentum distribution shows evidence 

of BEC.   
–  Long exchange cycles n(r) long range n0 >0 

•  What is effect for fermions? Run logic in reverse. 
–  For NI fermions, n(k) has discontinuity at kF. 
–  Hence 
–  We must have cancellation of long-range positive 

and negative exchanges! 
–  Negative permutations allowed/required off-

diagonal. 
•  Algorithm : cond-mat/0310401 
•  Exchanges are needed to get a Fermi-liquid. 
•  In contrast to boson Pis, long exchanges do not lead to 

a phase transition or superfluidity.  

( )2( ) cos( ) /F Fn r k r k r∝
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Fermion superfluidity 
•  Liquid 3He becomes superfluid at very low temperatures 

(Tc ~ 1mK). 
•  With the exact nodal restriction this must also happen 

within RPIMC, because we can calculate the free 
energy. 

•  What happens to the paths at this phase transition? 
•  SPECULATION: there is a “Cooper” pairing of up and 

down spin exchanges, similar to a polymer blend 

•  Not tried in 3He  because of difficulties of length, 
temperature  and knowledge of nodes. 
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Exciton superfluidity 
•  What system is the most appropriate to 

observe superfluidity of fermions? 
(strongest pairing) 

•  Consider the simplest 1-band model of 
particles and holes in a semiconductor. 

•  Assume masses are isotropic and the 
same; only the charge is different. 

•  At low temperature a particle and hole 
can bind together to form an exciton 
(like a hydrogen atom) which is a boson. 

•  If the exciton density is high enough, 
they can bose condense.: Tρ3/2<2.7 

•  Shumway-Ceperley (1999) observed this 
transition for excitons. 

•  What do the paths look like? 
•  Observed in Oct 2003 in atom traps! 
•  However, RPIMC has problems with 

nodes: can we find a single determinant 
continuous from high T to low T? 

BCS region 
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Pairing Nodes 
•  Free fermion nodes does not allow pairing because 

nodes of two species are independent. 
–  Consider two types of fermions, a&b.   
–  Possible exchanges are {I, PaPb} and {Pa , Pb}. 
–  The permutation PaPb  represents an exciton 

exchange but it is forbidden if nodes are 
independent since the path will cross  

   “a” nodes or “b” nodes first. 
•  Instead we used paired nodes: A{ Πkg(ak-bk)} where  

g(r) is a pairing function (we used a Gaussian). 
•  Nodes are time-independent è winding number 

formula for superfluid response. 
•  We can define 2 different responses. Let Wx be 

winding number of species x. 
–  movement of walls: <(Wa+Wb)2>  
–  magnetic field: <(Wa-Wb)2>  
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BEC of excitons    [rs=6  T<Tc] 

Winding exchange (3,6) Pair exchange (2,2) 

Blue=electron   lavendar=hole 

Superconductivity is (cooper pairing) of paths. 

Problem with pairing nodes 
D. Ceperley 



Generalization for complex actions 

How does the the real machinery generalize to 
complex action? 

Can we generalize the concept of nodal surfaces? 
For insulators we expect that electrons are localized 

(quantum mechanics is “nearsighted”) so 
boundary conditions should not matter. 

How about metals? 
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The nodes and phases under interchange 
 

Real or Real-like Wavefunction 
 

       Complex Wavefunction       
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Phase of density matrix 
Step structure 
reappears in the 
thermo-dynamic 
limit! Lin thesis 
(2001) 
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Kruger and Zaanen PRB 2008 
 backflow nodes=quantum phase transition 

“The collapse of the Fermi liquid at a quantum critical point as observed in the heavy 
fermion metals is necessarily associated with a qualitative change of the nodal surface from 
a smooth to a fractal geometry.” 
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Dictionary of the Quantum-Classical Isomorphism 
Quantum Classical 
Bose condensation Delocalization of ends 
Boson statistics Joining of polymers 
Exchange frequency Free energy to link 

polymers 
Free energy Free energy 
Imaginary velocity Bond vector 
Kinetic energy Negative spring energy 
Momentum distribution FT of end-end 

distribution 
Particle Ring polymer 
Potential energy Iso-time potential 
Superfluid state Macroscopic polymer 
Temperature Polymer length 
Pauli Principle Restricted Paths 
Cooper Pairing Paired Fermion Paths 
Fermi Liquid Winding restricted paths 
Insulator Nonexchanging paths 

Attention: some 
words have 
opposite meanings. 
 
 
We need to enlarge 
this dictionary 
 
 
  
 
 
“fermion 
dictionary”? 
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