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Warm Dense Matter
Somewhere between weakly coupled plasma and condensed matter physics

Coulomb coupling: Γ ≡ (q2/a)/kBT ∼ 1
Degeneracy temperature: Θ ≡ kBT/εF ∼ 1
Thermal DeBroglie Wavelength: λT/a ≡ (~/mkBT )1/2/a > 1

(http://www.qtp.ufl.edu/ofdft/problem/wdmissue.shtml, 2012)
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Density Functional Theory

Kohn-Sham DFT:

EVKS [n] = minψ→n(r)〈ψ | T̂ | ψ〉+ EH [n] + Exc [n] +
∫
V (r)n(r)dr

where n(r) =
∑
α | φα |2

Local Density Approximation:

Exc [n] =

∫
dd rn(r)exc(r) ≈

∫
dd rn(r)ehomxc,0 (n(r)) ≡ E LDA

xc [n]

Mermin Formulation:

n(r ,T ) =
∑
α

f (εα − µ(T )) | φα(r) |2

Orbital-Free DFT (OFDFT):

E [n] = T [n] + U[n] + V [n] = Ts [n] + UH [n] + Exc [n] + V [n]
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One Component Plasma (OCP) a.k.a. Homogeneous Electron Gas (HEG)
a.k.a. Jellium
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∑
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Wigner-Seitz radius:

4π

3
a3 ≡ 1

n
rs ≡ a/aB

lim
rs→0

=⇒ Kinetic term dominates

lim
rs→∞

=⇒ Potential term dominates

Coulomb Coupling Parameter,

Γ ≡ e2/(akBT ) ∼ 1/(rsT )

Degeneracy Temperature,

Θ ≡ T/TF ∼ r 2
s T

DeBroglie Wavelength,

λT/a ≡ (~/mkBT )1/2/a ∼ 1/(rsT
1/2)
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Previous Semi-Classical Work

Purely Classical

Analytics:
Debye-Hückel Theory
(Abe, 1959)
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Previous Semi-Classical Work

Purely Classical

Analytics:
Debye-Hückel Theory
(Abe, 1959)

Numerics:
Long-range Coulomb
interaction through
Ewald Potential
(Hansen, 1973)
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Previous Semi-Classical Work

Purely Classical

Analytics:
Debye-Hückel Theory
(Abe, 1959)

Numerics:
Long-range Coulomb
interaction through
Ewald Potential
(Hansen, 1973)

Quantum Corrections

Wigner-Kirkwood
Expansion in ~
(Hansen and
Vieillefosse, 1975)
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Previous Semi-Classical Work

Purely Classical

Analytics:
Debye-Hückel Theory
(Abe, 1959)

Numerics:
Long-range Coulomb
interaction through
Ewald Potential
(Hansen, 1973)

Quantum Corrections

Wigner-Kirkwood
Expansion in ~
(Hansen and
Vieillefosse, 1975)

Exchange Correction
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Previous Quantum Work

T = 0

Variational Monte Carlo
(VMC) (Ceperley, 1978)

Diffusion Monte Carlo (DMC)
(Ceperley and Alder, 1980;
Ortiz, Harris, and Ballone,
1999; Zong, Lin, and Ceperley,
2002; Drummond, Radnai,
Trail, Towler, and Needs,
2004)

T 6= 0

Path Integral Monte Carlo
(Jones and Ceperley, 1996;
Cândido, Bernu, and Ceperley,
2004)

Stoner Model

netism in quantum crystals. According to this theory, in the
absence of point defects, at low temperatures the electrons
will almost always be near a lattice site. If the system is
constrained to stay in the neighborhood of the two perfect
lattice positions Z and PZ where P is a permutation of par-
ticle labels, the exchange frequency equals the splitting be-
tween the antisymmetric spatial state and the symmetric spa-
tial state: 2JP=EA!ES!0. The spin Hamiltonian comes
about from making the total wave function antisymmetric:

Hspin = !!
P

"! 1#PJPP̂spin, "2#

where the sum is over all cyclic (ring) exchanges described
by a cyclic permutation P, and P̂spin is the corresponding
spin exchange operator. (Although more complex products
of several ring exchanges are possible, in cases considered,
they are negligible.) The sign, "!1#P, implies that an ex-
change of even number of electrons is antiferromagnetic and
an odd number of electrons is ferromagnetic. Ring exchange
models have been used to describe correlated electron sys-
tems, such as high temperature superconductors,13 quantum
Hall systems14 as well as electrons15 and helium atoms16
confined in planes.
One might expect that pair electron exchanges would

dominate over higher-body exchanges. Since the bcc lattice
is bipartite, a simple Néel antiferromagnetic state would
seem to be favored. Rather surprisingly, it has been found17
that in 3d solid 3He, which also forms a bcc lattice, ex-
changes of 2, 3, and 4 particles have roughly the same order
of magnitude and must all be taken into account to under-
stand the magnetic ordering. This is known as the multiple
spin exchange model (MSE). The resulting spin order is
more complex since the order is frustrated by the competing
exchanges. We wish to determine whether such a model is
relevant for the 3dWC.
Figure 2 shows the pair correlation functions for solid 3He

and the electron gas near the crystallization density. Because

the g"r#’s are so similar, one might expect their exchanges
frequencies would be similar and hence have the same mag-
netic ordering. We also note that the Lindemann’s ratio, the
mean squared displacement in units of the nearest neighbor
spacing, for bulk helium and the Wigner crystal are also
similar near melting (0.32 and 0.30, respectively). However,
note the g"r#’s are very different at small r because the po-
tentials are so different; the helium-helium interaction is
much more repulsive at short distances.
In this paper, we determine the magnetic interaction in the

Wigner crystal, based on Thouless’12 theory of exchange.
Path Integral Monte Carlo (PIMC) as suggested by
Thouless12 and Roger18 has proved to be a reliable way to
calculate these parameters directly from the Coulomb inter-
action. The theory and computational method have been
tested thoroughly on the magnetic properties of bulk helium
obtaining agreement with measured properties.19 We15 have
also used this method to calculate exchange frequencies in
the 2dWC. Here we report results for the 3dWC.

II. COMPUTATIONAL DETAILS

The Path Integral method for calculating exchange fre-
quencies is based on the ratio:

fP""# =
$Z%e!"H%PZ&
$Z%e!"H%Z&

, "3#

where Z represents the many-body configuration of electrons
sitting on the bcc lattice sites and PZ is a permutation of
those sites. Then under general assumptions, the exchange
frequencies are given by:

fP""# = tanh"JP"" ! "0## , "4#

where "0 is the amount of imaginary time to initiate the
exchange. The ratio fP is determined by a specialized Path
Integral Monte Carlo method and Eq. (4) is inverted to de-
termine JP.

FIG. 1. (Color online) Phase diagram of the 3D electron gas
showing the region of stability of the crystal (Ref. 7), the polariza-
tion transition from QMC calculations (Ref. 5), and the antiferro-
magnetic transition (this work).

FIG. 2. (Color online) The pair correlation function for the
3dWC (solid line) "rs=100# and for bcc 3He (dashed red line) also
at melting "24.23 cm3/mol#. The functions are nearly identical,
though the electrons can get significantly closer together than he-
lium atoms can.

CÂNDIDO, BERNU, AND CEPERLEY PHYSICAL REVIEW B 70, 094413 (2004)

094413-2

(Cândido et al., 2004)
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Numerical Path Integrals

Start with many-body partition function Z,

Z(β) = Tr(e−βH) =

∫
dR〈R|e−βH|R〉 =

∫
dRρ(R,R, β)

Use the convolution property of density matrices M times,

ρ(R0,RM , β) =

∫
dR1 . . . dRM−1ρ(R0,R1, τ) . . . ρ(RM−1,RM , τ)

where τ = β/M.
Performing a Trotter breakup,

ρ(R,R ′, τ) = lim
J→∞

(e−δtV e−δtT )J where δt ≡ τ/J

= ρ0(R,R ′, τ)〈e−
∫ τ

0 dtV (R(t))〉BRW

where ρ0(R,R ′, τ) = 1

(4πλτ)3N/2 e
−(R−R′)2/4λτ . Observables are

sampled using Metropolis Monte Carlo as

〈Ô〉 =
1

Z

∫
dRρ(R)O(R) ≈ 1

N

N∑
i

Õ(R)
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The Pair Action

Using only pairwise interactions, straight line paths will contribute the most,

〈e−
∫ τ

0 dtV (R(t))〉BRW = 〈
∏
i<j

e−
∫ τ

0 dtv(rij (t))〉BRW

≈
∏
i<j

〈e−
∫ τ

0 dtv(rij (t))〉BRW

Write v(r) = vs(r) + vl(r) giving,

ρ(ri , rj , r
′
i , r
′
j , τ) = ρs(ri , rj , r

′
i , r
′
j , τ)ρl(ri , rj , r

′
i , r
′
j , τ)

Find components using combination of coordinate transformations, Legendre
polynomials, and the Random Phase Approximation. Short-ranged piece is solved for at a
higher temperature, and ”squared” down to the desired temperature. Long-ranged piece
is solved for in Fourier space (as in Ewald summation). At the end of the day gives errors
∼ τ 3.
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Particle Statistics

ρB/F (R,R ′, β) =
1

N!

∑
P

(±1)P
∫

dR1 . . . dRM−1ρD(R,R1, τ) . . . ρD(RM−1,PR ′, τ)

For Bosons, this is not an
issue since the sign of all
permutations is +1.
However, for Fermions, we
run into the Sign Problem:

Nearly identical
weights of alternating
sign

Efficiency decreases
as, e−2βN(fF−fB )

Circumvented with
fixed-node
(constrained path)
approximation
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Restricted Paths

The Bloch equation for ρF reads,

∂ρF (R,R?; t)

∂t
= −Hρ(R,R?; t)

where ρF (R,R?; 0) = Aδ(R − R?)

It can be shown that we may replace this initial condition with
zero boundary conditions

R?, the reference point, remains fixed for each integrated
world line.

Nodal Surface,
Ωβ(R?) ≡ {Rt | ρF (Rt ,R?; t) = 0 and 0 ≤ t ≤ β}

Let us further inspect the nodal hypersurface and the
workings of the constrained path integral. Since the fermi-
onic density matrix is odd under particle exchanges Pij,

!F!R0,PijR;"#" = − !F!R0,R;"#" , !6"

the density matrix is zero if two fermions are at the same
position ri=r j, irrespective of the temperature, the reference
point R0, and the interactions between the particles. There-
fore, the Pauli surface

P = !
i,j

i!j

#$R$ri = r j% !7"

is always a submanifold of the nodal surface $R0,#, whereas
the dimensionality of the Pauli surface is dim P=Nd−d.

In terms of a complete set of fermionic eigenfunctions
%&!R" with eigenvalues E&, the fermionic density matrix is
given by

!F!R0,R;"#" = &
&

e−#E&%&
!!R0"%&!R" , !8"

which, in the case of a nondegenerate ground state %0!R",
converges in the limit T→0 to !F!R0 ,R ;"#='"
=%!!R0"%!R". Therefore, the nodal surface $R0,# of the
finite-temperature density matrix becomes independent of
the reference point R0 in the zero-temperature limit and con-
verges to the nodal surface of the ground-state wave function
$ : = #$R$%0!R"=0%.

In Fig. 1!a" a random cut through the nodal hypersurface
of the ground-state wave function %!r1 , . . . ,rN"
=N det!eikirj"i,j=1,. . .,N of N=49 spinless fermions in a two-
dimensional periodic box is shown. This particular particle
number corresponds to a set of momenta k1 . . . ,kN on a grid
(k=2) /L !L is the linear dimension of the box" forming a
closed shell in momentum space and therefore to a nonde-
generate ground state 'see inset of Fig. 1!a"(. The cut is ob-
tained by fixing N−1 particles at random positions and track-
ing down the nodes of the wave function, moving the
remaining particle over the system. The algorithms used to
find the nodes of free fermion and Feynman backflow wave
functions studied later on is described in detail in the Appen-
dix. Since the Pauli surface is a lower-dimensional submani-
fold of the nodal surface, the fixed N−1 particles are located
on the nodal lines. We find that the nodes are very smooth,
forming pockets on the order of the average interparticle
spacing rs. An investigation of the nodal structures of the
finite-temperature density matrix17 shows that this observa-
tion holds at any temperature and that the nodal surfaces
smoothly approach the ground-state nodes in the limit T
→0.

The workings of the constrained path integral are
sketched in Fig. 1. In every time slice *, one particular par-
ticle r1 sees the nodal constraint structure $R0,# :
= #$R$!!R0 ,R ;*"=0% determined by the positions
r2!*" , . . . ,rN!*" of the N−1 other particles on this time slice.
Due to the meanderings of the world lines of the N−1 par-
ticles, the nodal surfaces form a “tent” in space-time attached
to the particle world lines since the Pauli surface is always a
lower-dimensional nodal hypersurface. Since !F(R ,R!*" ;*)

!0 for all 0+*+"#, this nodal tent acts as a hard-core
boundary for the world line of the particle r1 and the particle
is not allowed to penetrate or collide with the tent. A world-
line configuration, as shown in Fig. 1, does not violate the
constraints and contributes to the Ceperley path integral.

In a recent tutorial paper,22 the fermion sign problem has
been studied within both the conventional sign-full and the
Ceperley path integrals. It turns out that even for the free
Fermi gas, for which every student in physics knows the
canonical solution, the constrained path integral turns into a
highly nontrivial affair. Remarkably, in momentum space the
constrained path integral directly leads to a one-to-one cor-
respondence between the Fermi gas and a system of classical
atoms forming a Mott insulating state in the presence of a
commensurate optical lattice of infinite strength, living in a
harmonic potential trap of finite strength.22 This analogy is
literal and the only oddity is that we are talking about an
optical lattice system in momentum space. We immediately
rediscover our canonical picture of the Fermi gas simply be-
cause the dynamics of the world lines becomes trivial due to
the conservation of single-particle momentum. However, the
workings of the nodal constraints in the real-space formula-
tion remain puzzling to a great extent.22

Let us start with the case of free fermions in one space
dimension, where the physics of quantum matter can be re-

FIG. 1. !Color" !a" Cut through the nodal hypersurface of the
ground-state wave function of N=49 free, spinless fermions in a
two-dimensional box with periodic boundary conditions. The set of
momentum states corresponding to a nondegenerate ground state is
shown in the inset. The cut is obtained by fixing N−1 fermions at
random positions !green dots" and moving the remaining particle
!yellow dot" over the system. The nodal-surface cut is given by the
interface between red and blue regions, corresponding to negative
and positive values of the wave function, respectively, whereas ab-
solute values are encoded in the color shading. The nodal lines
connect the N−1 fixed particles since the !Nd−d"-dimensional
Pauli surface is a lower-dimensional submanifold of the
!Nd−1"-dimensional nodal hypersurface. !b" Sketch of an allowed
world-line configuration contributing to the Ceperley path integral.
In every time slice *, one particular particle !yellow dot" sees a
nodal surface determined by the positions of the other particles on
this time slice. Due to the meanderings of the world lines of the
other N−1 particles !green", the nodal surfaces form a tent in space-
time attached to the particle world lines. This nodal tent acts as a
hard-core boundary for the world line of the remaining particle
!yellow line".

FERMIONIC QUANTUM CRITICALITY AND THE FRACTAL… PHYSICAL REVIEW B 78, 035104 !2008"

035104-3

(Krüger and Zaanen, 2008)

Defining the Reach,

Υβ(R?) ≡ {Rt | ∃γ : R? → Rt where ρF (Rt ,R?; t) 6= 0 ∀t , 0 ≤ t ≤ β}
We are left with the following expression for the density matrix,

ρF (RB ,R?;β) =

∫
dR0ρF (R0,R?; 0)

∫ γ⊂Υβ (R?)

γ:R0→Rβ

dRte
−S[Rt ]
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Nodes
Introduce a trial density matrix ρT is introduced which approximates the actual nodal
structure. For us, ρT (R,R?; t) = det ρij?↑(t) det ρij?↓(t) are free particle density matrices
where,

ρij(t) = (4πλt)−dN/2 exp− (ri − rj?)2

4λt

As an example consider 3 particles in 2D harmonic trap:
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Practical Considerations

Nodal Distances

No Measure

UN(xt , xt+τ ) = − log [1− exp (−dtdt+τ

λτ
)]

Pauli Surface

Hybrid Measurement (slowest step)

Reference Point Freezing

Due to path’s dependence on reference
slice

Worsens as temperature lowers

Becomes ”non-ergodic”
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Possible Sources of Error

Controlled:

Statistical (Run for longer)

Time-step (Arises from pair action and constraint. Can extrapolate to τ → 0)

Finite-size (correction expected to be valid provided S(k) ∼ k2 as k → 0)

∆VN = V∞ − VN =
e2

4π2

∫
S(k)− 1

k2
dk − 2πe2

Ω

∑
k 6=0

SN(k)− 1

k2

∆TN = T∞ − TN =
~2

4m(2π)3

∫
k2u(k)dk − ~2

4mΩ

∑
k 6=0

k2uN(k)

∆E3DHEG = ∆VN + ∆TN =
~ωp

2N
=

√
3

r 3
s

1

N

(see Chiesa et. al., PRL 97, 076404 (2006))

Uncontrolled: Fixed-node

Using free-particle density matrices, ρij(t) = (4πλt)−dN/2 exp− (ri−rj? )2

4λt

Believe should be good for homogeneous systems, but will confirm.

Ergodicity problem at low temperatures, high densities
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Parallelization
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One Component Plasma in Warm-Dense Regime
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Energy

Etot(T ) ≡ E0(T ) + Exc (T )
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5

TABLE III: Zero-temperature extrapolations, lim
T→0

Etot(T ), of finite-

temperature PIMC calculations for the unpolarized (ξ = 0.0). We com-

pare Etot(0) directly to previous QMC studies where possible (a, [1]),

(b, [2]), (c, [3]), otherwise the Perdew-Zunger parameterization (d, [4])

is used.

rs Etot(0) lim
T→0

Etot(T ) Ec(0) lim
T→0

Ec(T )

1.0 1.1726(2)b 1.16(1) −0.1210(2) −0.13(1)

2.0 0.0041(4)a 0.003(2) −0.0902(4) −0.091(2)

4.0 −0.1547(1)d −0.1542(5) −0.0637(1) −0.0632(5)

6.0 −0.1422(1)d −0.1425(2) −0.0509(1) −0.0512(2)

8.0 −0.1228(1)d −0.1228(1) −0.0428(1) −0.0428(1)

10.0 −0.10687(2)b −0.10643(8) −0.03734(2) −0.03690(8)

40.0 −0.0352375(6)c −0.035153(3) −0.0137104(6) −0.013626(3)

TABLE IV: Zero-temperature extrapolations, lim
T→0

Etot(T ), of finite-

temperature PIMC calculations for the polarized (ξ = 1.0). We compare

Etot(0) directly to previous QMC studies where possible (a, [1]), (b, [2]),

(c, [3]), otherwise the Perdew-Zunger parameterization (d, [4]) is used.

rs Etot(0) lim
T→0

Etot(T ) Ec(0) lim
T→0

Ec(T )

1.0 2.2903(1)d 2.29(1) −0.0632(1) −0.07(1)

2.0 0.2517(6)a 0.251(2) −0.0480(6) −0.048(2)

4.0 −0.1040(1)d −0.1042(6) −0.0346(1) −0.0348(6)

6.0 −0.1230(1)d −0.1228(3) −0.0280(1) −0.0278(3)

8.0 −0.1134(1)d −0.1130(2) −0.0239(1) −0.0235(2)

10.0 −0.1013(1)a −0.1013(1) −0.0209(1) −0.0209(1)

40.0 0.0351348(7)c −0.034894(8) 0.0618048(7) −0.008224(8)

For all simulations, we use a nodal constraint to circumvent the fermion sign problem. As noted in the main

article, the relative importance of this approximation is unclear. Here we estimate it by performing the much longer

simulations including the minus sign. We have done so for a few select densities and temperatures and find good

agreement with the fixed-node results. This comparison is shown in Tables V and VI for the spin-unpolarized and

-polarized HEG, respectively.

TABLE V: Comparison of signful calculation Eexact
tot with the fixed-node

calculations Etot for the unpolarized (ξ = 0.0) gas at select densities and

temperatures. The average value of the sign is shown for reference.

rs Θ �sign� Eexact
tot Etot

1.0 1.0 0.0002(10) −17(123) 5.21(2)

4.0 1.0 0.0040(7) 0.08(16) 0.083(1)

(a-c) are QMC, d is the
Perdew-Zunger fit to QMC.
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Energy

ec (T ) ≡ Exc (T ) − ex (T )
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TABLE III: Zero-temperature extrapolations, lim
T→0

Etot(T ), of finite-

temperature PIMC calculations for the unpolarized (ξ = 0.0). We com-

pare Etot(0) directly to previous QMC studies where possible (a, [1]),

(b, [2]), (c, [3]), otherwise the Perdew-Zunger parameterization (d, [4])

is used.

rs Etot(0) lim
T→0

Etot(T ) Ec(0) lim
T→0

Ec(T )

1.0 1.1726(2)b 1.16(1) −0.1210(2) −0.13(1)

2.0 0.0041(4)a 0.003(2) −0.0902(4) −0.091(2)

4.0 −0.1547(1)d −0.1542(5) −0.0637(1) −0.0632(5)

6.0 −0.1422(1)d −0.1425(2) −0.0509(1) −0.0512(2)

8.0 −0.1228(1)d −0.1228(1) −0.0428(1) −0.0428(1)

10.0 −0.10687(2)b −0.10643(8) −0.03734(2) −0.03690(8)

40.0 −0.0352375(6)c −0.035153(3) −0.0137104(6) −0.013626(3)

TABLE IV: Zero-temperature extrapolations, lim
T→0

Etot(T ), of finite-

temperature PIMC calculations for the unpolarized (ξ = 0.0). We com-

pare Etot(0) directly to previous QMC studies where possible (a, [1]),

(b, [2]), (c, [3]), otherwise the Perdew-Zunger parameterization (d, [4])

is used.

rs Ec(0) lim
T→0

Ec(T )

1.0 −0.1210(2) −0.13(1)

2.0 −0.0902(4) −0.091(2)

4.0 −0.0637(1) −0.0632(5)

6.0 −0.0509(1) −0.0512(2)

8.0 −0.0428(1) −0.0428(1)

10.0 −0.03734(2) −0.03690(8)

40.0 −0.0137104(6) −0.013626(3)

TABLE V: Zero-temperature extrapolations, lim
T→0

Etot(T ), of finite-

temperature PIMC calculations for the polarized (ξ = 1.0). We compare

Etot(0) directly to previous QMC studies where possible (a, [1]), (b, [2]),

(c, [3]), otherwise the Perdew-Zunger parameterization (d, [4]) is used.

rs Etot(0) lim
T→0

Etot(T ) Ec(0) lim
T→0

Ec(T )

1.0 2.2903(1)d 2.29(1) −0.0632(1) −0.07(1)

2.0 0.2517(6)a 0.251(2) −0.0480(6) −0.048(2)

4.0 −0.1040(1)d −0.1042(6) −0.0346(1) −0.0348(6)

6.0 −0.1230(1)d −0.1228(3) −0.0280(1) −0.0278(3)

8.0 −0.1134(1)d −0.1130(2) −0.0239(1) −0.0235(2)

10.0 −0.1013(1)a −0.1013(1) −0.0209(1) −0.0209(1)

(a-c) are QMC, d is the
Perdew-Zunger fit to QMC.
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Correlation

Pair Correlation
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Correlation

Structure Factor
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Functional Fit (The Functional)

We need a functional Exc(rs,T ) that behaves correctly in known limits

Analytic: High-temperature reproduces Debye-Huckel and 1st order quantum
correction

lim
T→∞

Exc(rs,T ) = UDH + UQ +O(T−3/2)

Analytic: Low-temperature reproduces ground-state and Fermi liquid theory
prediction

lim
T→0

Exc(rs,T ) = Exc(rs, 0)−O(T 2)

Numeric: High-density approaches random phase approximation (RPA) limit

Avoid complicated cancelling T 2 logT coming from ec and ex .

Easiest through a Padé fit.
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Functional Fit (The Functional)

We need a functional

Exc(rs,T ) ≡ Exc(rs, 0)− P1

P2

where

P1 ≡ (A2u1 + A3u2)T 2 + A2u2T
5/2,

P2 ≡ 1 + A1T
2 + A3T

5/2 + A2T
3,

Ak(rs) ≡ exp [ak log rs + bk + ck rs + dk rs log rs]

with u1 and u2 chosen such that

lim
T→∞

Exc(rs,T ) = UDH + UQ +O(T−3/2)

lim
T→0

Exc(rs,T ) = Exc(rs, 0)−O(T 2)

avoiding cancelling T 2 logT coming from ec and ex . 24 parameters - 6 constraints = 18
free parameters
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Functional Fit (The Fit)

ξ = 0, rs = 10
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Functional Fit (The Fit)

ξ = 0, rs = 1
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Next Steps

Direct comparison with and use in
FTDFT/OFDFT for a real system

Use Mermin equations to build up ensemble
using E0

Test against current orbital free functionals

Test Other Nodal Structures

Variational improvement through free energy

Experiment with different nodal structures
(Backflow)

Extend to higher densities / lower temperatures

May require algorithmic improvement
(reference point freezing)

Numerical (analytic?) RPA calculation at
finite-temperature for small rs
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Free Energy Minimization

DFT-MD
FPIMC (free particle nodes)

FPIMC (optimized nodes)
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Proof of concept

Larges changes in observables as a
result of optimization

Seemingly no ergodic issue (at tested
temperatures)

Need for creative models
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Summary
Conclusions:

Free particle nodes effective
I Calculations match well in classical limit
I Smoothly approach zero-temperature calculations
I Match exact results at temperatures with greatest deviation from ground-state results

Precisely determined properties for the 3D-HEG in the warm-dense regime

Functional fit to exchange-correlation energy in warm-dense regime

Future Directions:

Direct comparison with and use in FTDFT/OFDFT

Experiment with different nodal structures

Determination of phase boundaries

Measurement of other quantities (local field corrections, momentum distribution)

2D gas

Application to inhomogeneous other systems
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Pair Product Action

ρ(R,R ′, τ) = lim
J→∞

(e−δtV e−δtT )J = ρ0(R,R ′, τ)〈e−
∫ τ

0 dtV (R(t))〉BRW

where ρ0(R,R ′, τ) = 1

(4πλτ)3N/2 e
−(R−R′)2/4λτ . Using only pairwise interactions, straight

line paths will contribute the most,

〈e−
∫ τ

0 dtV (R(t))〉BRW ≈
∏
i<j

e−τ
∫ 1

0 dtv([1−t]rij+tr′ij ) ≈
∏
i<j

〈e−
∫ τ

0 dtv(rij (t))〉BRW

This will be exact in the dilute limit when the correlation between any two particles is
independent of other particle positions. Write,

v(r) = vs(r) + vl(r)
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Pair Product Action (Short Range)

The short-range pair Bloch equation gives,

Hρs = [−λ∇2 + vs(rij)]ρs = −ρ̇s

Writing r̄ =
mi ri+mjrj
mi+mj

, r = ri − rj , we have ρs(r , r̄ , r
′, r̄ ′, τ) = ρ0(r̄ , r̄ ′, τ)ρs′(r , r

′, τ).

Expand in a Legendre series,

ρs′(r , r
′, τ) = ρ0(r , r ′, τ)〈e−

∫ τ
0 dtV (R(t))〉BRW = ρ0(r , r ′, τ)e−us (r,r′,τ)

=
1

4πrr ′

∞∑
l=0

(2l + 1)ρl(r , r , τ)Pl(cos(θ))

Comparing terms and using the semi-classical approximation, we have,

ρl(r , r
′, τ/2n) = ρ0l(r , r

′, τ/2n)e−τ/2n
∫ 1

0 dtv([1−t]rij+tr′ij )

Finally, using ]he more efficient coordinates
s ≡| r − r ′ |, z ≡| r | − | r ′ |, q ≡ (| r | + | r ′ |)/2, we may write,

us(r , r
′, τ) =

1

2
(us(r , r , τ) + us(r

′, r ′, τ)) +

kmax∑
k=1

k∑
j=0

ukj
s (q, τ)z2js2(k−j)
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Pair Product Action (Long Range)

The full many-body Bloch equation gives,

Hρ = [−λ∇2 +
∑
i<j

[vs(rij) + vl(rij)]ρ = −ρ̇

with local energy EL ≡ ρ̇+Hρ
ρ

= 0 for solution ρ. Guess the solution to be

ρ(τ) = ρs(τ)ρl(τ) = ρs(τ)e−Ul by defining the long-range action to be Ul ≡ −lnρl .
Move to Fourier space, employ the random phase approximation (RPA), and numerically
solve for Fourier components, e.g.,∑

j

∇jU∇jU =
∑
j

[
∑
kσ′

ike ikrj ρσ
′
−ku

σjσ
′

k ][
∑
qσ′′

iqe iqrj ρσ
′′
−qu

σjσ
′′

q ]

=
∑
kq

∑
σ′σ′′σ′′′

ρσ
′
−ku

σ′′′σ′
k ρσ

′
−qu

σ′′′σ′′
q ρσ

′′′
q+k

≈
∑
kq

∑
σ′σ′′σ′′′

ρσ
′
−ku

σ′′′σ′
k ρσ

′
−qu

σ′′′σ′′
q (Nσ′′′δk+q)

≈
∑
k

∑
σ′σ′′σ′′′

ρσ
′
−kρ

σ′
k uσ

′′′σ′
−k uσ

′′′σ′′
k Nσ′′′
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