Worm Algorithm for large-scale QMC simulations in continuous space

Massimo Boninsegni

Department of Physics University of Alberta

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Collaborators

Nikolay Prokof'ev UMass, Amherst

Boris Svistunov UMass, Amherst

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Powerful approach to Monte Carlo simulations of many-body systems

• D. M. Ceperley, Rev. Mod. Phys. **67**, 295 (1995)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Powerful approach to Monte Carlo simulations of many-body systems

- D. M. Ceperley, Rev. Mod. Phys. **67**, 295 (1995)
	- **Accurate**: *no* adjustable parameter (microscopic Hamiltonian *only* input)
	- **Unbiased**: *no* a priori assumption needed (e.g., trial wave function)
	- **Numerically exact** for Bose systems
	- Allows direct computation of most thermodynamic quantities of interest
		- Energetics and structure
		- Superfluid density and condensate fraction
		- Imaginary-time correlations

Powerful approach to Monte Carlo simulations of many-body systems

- D. M. Ceperley, Rev. Mod. Phys. **67**, 295 (1995)
	- **Accurate**: *no* adjustable parameter (microscopic Hamiltonian *only* input)
	- **Unbiased**: *no* a priori assumption needed (e.g., trial wave function)
	- **Numerically exact** for Bose systems
	- Allows direct computation of most thermodynamic quantities of interest
		- Energetics and structure
		- Superfluid density and condensate fraction
		- Imaginary-time correlations

Shortcomings:

Efficiency:

- sampling of many-particle permutation scales unfavorably with system size
- **Canonical ensemble** only
- No **simultaneous** evaluation of diagonal and off-diagonal correlations

Powerful approach to Monte Carlo simulations of many-body systems

- D. M. Ceperley, Rev. Mod. Phys. **67**, 295 (1995)
	- **Accurate**: *no* adjustable parameter (microscopic Hamiltonian *only* input)
	- **Unbiased**: *no* a priori assumption needed (e.g., trial wave function)
	- **Numerically exact** for Bose systems
	- Allows direct computation of most thermodynamic quantities of interest
		- Energetics and structure
		- Superfluid density and condensate fraction
		- Imaginary-time correlations

Shortcomings:

Efficiency:

- sampling of many-particle permutation scales unfavorably with system size
- **Canonical ensemble** only
- No **simultaneous** evaluation of diagonal and off-diagonal correlations

Worm Algorithm: addresses and solves above issues

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Basics of Worm Algorithm

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Basics of Worm Algorithm About *Ira* and *Masha*

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Basics of Worm Algorithm About *Ira* and *Masha* Monte Carlo sampling moves

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Basics of Worm Algorithm

About *Ira* and *Masha*

Monte Carlo sampling moves

Canonical and Grand Canonical Implementations

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Basics of Worm Algorithm About *Ira* and *Masha* Monte Carlo sampling moves Canonical and Grand Canonical Implementations

Applications:

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Basics of Worm Algorithm About *Ira* and *Masha* Monte Carlo sampling moves Canonical and Grand Canonical Implementations

Applications: **Superfluid transition in 4He**

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Basics of Worm Algorithm About *Ira* and *Masha* Monte Carlo sampling moves Canonical and Grand Canonical Implementations

Applications:

Superfluid transition in 4He

Superfluidity at or near extended defects in solid He

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Basics of Worm Algorithm

About *Ira* and *Masha* Monte Carlo sampling moves Canonical and Grand Canonical Implementations

Applications:

Superfluid transition in 4He

Superfluidity at or near extended defects in solid He **Importance of exchanges** at phase boundaries

Basics of Worm Algorithm About *Ira* and *Masha* Monte Carlo sampling moves Canonical and Grand Canonical Implementations

Applications:

Superfluid transition in 4He Superfluidity at or near extended defects in solid He **Importance of exchanges** at phase boundaries

Open Issues

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Goal: obtaining accurate thermodynamics for many-particle systems \circ

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- **Goal**: obtaining accurate thermodynamics for many-particle systems \circ
- Feynman's **space-time** formulation of quantum statistical mechanics

- **Goal**: obtaining accurate thermodynamics for many-particle systems \circ
- Feynman's **space-time** formulation of quantum statistical mechanics
	- *Statistical Mechanics: A set of Lectures*, Addison-Wesley (1972)

- **Goal**: obtaining accurate thermodynamics for many-particle systems
- Feynman's **space-time** formulation of quantum statistical mechanics
	- *Statistical Mechanics: A set of Lectures*, Addison-Wesley (1972)
- **Thermal averages** of physical operators at finite temperature *T =* 1*/β*

- **Goal**: obtaining accurate thermodynamics for many-particle systems
- Feynman's **space-time** formulation of quantum statistical mechanics
	- *Statistical Mechanics: A set of Lectures*, Addison-Wesley (1972)

Thermal averages of physical operators at finite temperature *T =* 1*/β*

$$
\langle \hat{\mathcal{O}} \rangle = \frac{\text{Tr}(\hat{\mathcal{O}}\hat{\rho})}{\text{Tr}\hat{\rho}} = \frac{\int dR \; \mathcal{O}(R) \; \rho(R,R,\beta)}{\int dR \; \rho(R,R,\beta)}
$$

 $\rho(R, R, \beta) = \langle R | e^{-\beta \hat{K}} | R \rangle$ many-body density matrix $|R\rangle \equiv |\mathbf{r}_1 ... \mathbf{r}_N\rangle$ system configuration $\hat{K} = \hat{H} - \mu \hat{N}$ *grand canonical Hamiltonian* $Z = \int dR \rho(R, R, \beta)$ grand partition function

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- **Basic strategy**: Many-body density matrix **not known** \mathbf{O} for any non-trivial many-body system
	- Obtained through **path integration** (R. P. Feynman, 1953).

$$
Z = \int \mathcal{D}R(u) \, \exp\left[-\frac{1}{\hbar}S[R(u)]\right]
$$

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- **Basic strategy**: Many-body density matrix **not known** for any non-trivial many-body system
	- Obtained through **path integration** (R. P. Feynman, 1953).

$$
Z = \int \mathcal{D}R(u) \, \exp\left[-\frac{1}{\hbar}S[R(u)]\right]
$$

- *uh* "*imaginary time*" $(k_B = 1 \text{ here})$ \circ
- **Integration** over all possible continuous, *β-*periodic many-particle paths \circ

$$
S[R(u)] = \int_0^{\beta \hbar} du \left\{ \sum_{i=1}^N \frac{m}{2\hbar^2} \left(\frac{d\mathbf{r}_i}{du} \right)^2 + V(R(u)) \right\}
$$

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- **Basic strategy**: Many-body density matrix **not known** for any non-trivial many-body system
	- Obtained through **path integration** (R. P. Feynman, 1953).

$$
Z = \int \mathcal{D}R(u) \, \exp\left[-\frac{1}{\hbar}S[R(u)]\right]
$$

- *uh* "*imaginary time*" $(k_B = 1 \text{ here})$ \circ
- **Integration** over all possible continuous, *β-*periodic many-particle paths \circ

$$
S[R(u)] = \int_0^{\beta \hbar} du \left\{ \sum_{i=1}^N \frac{m}{2\hbar^2} \left(\frac{d\mathbf{r}_i}{du} \right)^2 + V(R(u)) \right\}
$$

- **Euclidean Action** *S* associated to path balance between *kinetic* (path curvature) $\mathsf O$ and *potential* energy (depends on interactions) along path
	- **Smooth**, straight paths have generally **higher** probability
	- Paths of **high potential energy** have **low** probability

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

UNIVERSITY OF RFR

Quantum Statistics

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Quantum Statistics

Example 4 particles in 1d

Exchanges occur *only* through PBC

x

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Quantum Statistics

Example 4 particles in 1d

Exchanges occur *only* through PBC

Paths are β -periodic, i.e., $R(\beta)=R(0)$

- However, individual particle positions can undergo **exchanges**
- **Crucial** ingredient of the physics of ensembles of indistinguishable particles
- Underlie phenomena such as **BEC and Superfluidity**
- Ascribing *physical content* to paths is tempting but *dangerous*

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Sample many-particle paths *R*(*u*) through configuration space, based on the probability distribution proportional to $exp[-S(R(u))/\hbar]$ -- **Metropolis Algorithm**

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Sample many-particle paths *R*(*u*) through configuration space, based on the probability distribution proportional to $exp[-S(R(u))/\hbar]$ -- **Metropolis Algorithm**

Evaluate thermal expectation values as *statistical* averages of quantities of interest computed along paths

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Sample many-particle paths *R*(*u*) through configuration space, based on the probability distribution proportional to $exp[-S(R(u))/\hbar]$ -- **Metropolis Algorithm**

- **Evaluate thermal expectation values** as *statistical* averages of quantities of interest computed along paths
- \circ Action integral must be **discretized** \rightarrow time step error inevitable in continuum

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Sample many-particle paths *R*(*u*) through configuration space, based on the probability distribution proportional to $exp[-S(R(u))/\hbar]$ -- **Metropolis Algorithm**

- **Evaluate thermal expectation values** as *statistical* averages of quantities of interest computed along paths
- Action integral must be **discretized** → time step error inevitable in continuum
	- Discretization: $R(u) \equiv \{R_0, R_1, ..., R_{M-1}\}, R_M \equiv PR_0$ (*P permutation of particle labels*) $M\tau = \beta$, τ is the *time step* Simplest approximate action (we can do better but it is not needed now):

$$
S[R(u)] \approx \sum_{i=1}^{N} \sum_{l=0}^{P-1} \frac{m(\mathbf{r}_{il} - \mathbf{r}_{il+1})^2}{2\tau\hbar^2} + \tau \sum_{l} V(R_l)
$$

(*Note*: in the absence of interaction any discretized form is *exact*)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Wednesday, 26 June, 13

UNIVERSITY OF

.RF

Discrete Action

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013
Discrete Action

Probability with which a *discrete* path *R*(*u*) is sampled

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Discrete Action

Probability with which a *discrete* path *R*(*u*) is sampled

$$
P \propto \exp\left[-S[R(u)]\right] = \prod_{i=1}^{N} \prod_{l=0}^{M-1} \rho_{\circ}(\mathbf{r}_{il}, \mathbf{r}_{il+1}, \tau) \times \prod_{l=0}^{M-1} e^{-\tau V(R_l)}
$$

where

$$
\rho_{\text{o}}(\mathbf{r}, \mathbf{r}', \tau) = \left(2\pi\hbar^2\tau/m\right)^{-1/d} \exp\left[-\frac{m(\mathbf{r} - \mathbf{r}')^2}{2\hbar^2\tau}\right]
$$

is the density matrix of a *free particle*, and

$$
V(R) = U(R, \tau) - \mu N
$$

In the simplest version, U is the *total potential energy*, does not depend on τ (In some approximations, it does)

NIVERSITY OF

RF

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Sampling through elementary move that modifies portions of single-particle paths

• Permutations are sampled by *explicit construction of permutation cycles*

Sampling through elementary move that modifies portions of single-particle paths

• Permutations are sampled by *explicit construction of permutation cycles*

Sampling issues

• In the presence of *repulsive, hard core potentials*, any such sampling of permutations is bound to become inefficient (*high likelihood of rejection*)

Sampling through elementary move that modifies portions of single-particle paths

• Permutations are sampled by *explicit construction of permutation cycles*

Sampling issues

• In the presence of *repulsive, hard core potentials*, any such sampling of permutations is bound to become inefficient (*high likelihood of rejection*)

Problems

- **Superfluid fraction** connected to *winding* of paths through boundaries
- Occurrence of *nonzero* winding requires *macroscopic* permutation cycles (length ~ *N*1/*d*)
- Effort required to sample macroscopic permutation cycles scales **exponentially** with *N*
- Extrapolation of results to thermodynamic limit problematic
- Even for finite systems (quantum droplets), efficient sampling of permutations can be crucial
- Ambiguous interpretation of results (*no* superfluidity *or* ergodicity problem ?)

Worm Algorithm (of *Ira* and *Masha*)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Worm Algorithm (of *Ira* and *Masha*)

Generalize configuration space, from that of the partition function to that of the **Matsubara Green function**

$$
G(\mathbf{r}_1, \mathbf{r}_2, t) = \frac{g(\mathbf{r}_1, \mathbf{r}_2, t)}{Z} = -\langle \hat{\mathcal{T}}[\hat{\psi}(\mathbf{r}_1, t) \hat{\psi}^{\dagger}(\mathbf{r}_2, 0)] \rangle
$$

Worm Algorithm (of *Ira* and *Masha*)

Generalize configuration space, from that of the partition function to that of the **Matsubara Green function**

$$
G(\mathbf{r}_1, \mathbf{r}_2, t) = \frac{g(\mathbf{r}_1, \mathbf{r}_2, t)}{Z} = -\langle \hat{\mathcal{T}}[\hat{\psi}(\mathbf{r}_1, t) \hat{\psi}^{\dagger}(\mathbf{r}_2, 0)] \rangle
$$

One open world line with two dangling ends (*worm*)

- *Z-* and *G-*sectors are identified
- Sampling of paths occurs through simple set of complementary moves

$$
P_{\rm op} = \min\left\{1, \, \frac{C \, m_{\rm o} N M \, e^{\Delta U - \mu m \tau}}{\rho_{\rm o}(\mathbf{r}_I, \mathbf{r}_M, m \tau)}\right\}
$$

$$
P_{\rm cl} = \min\left\{1, \frac{\rho_{\rm o}(\mathbf{r}_I, \mathbf{r}_M, m\tau)e^{\Delta U + \mu m \tau}}{Cm_{\rm o}NM}\right\}
$$

 Z

 $\tilde{}$

 $\hat{\mathcal{S}}$

 $\tilde{}$

 $\hat{\mathcal{S}}$

 Z

 $\overline{}$

 $\mathbf{x} = \mathbf{y}$, where $\mathbf{y} = \mathbf{y}$

 Z

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Configurations with open WL contribute to the **Matsubara Green function**

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Configurations with open WL contribute to the **Matsubara Green function**

• All **non-trivial topological path updates** occur in G-sector

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Configurations with open WL contribute to the **Matsubara Green function**

• All **non-trivial topological path updates** occur in G-sector

Swap moves enjoy relatively high acceptance, even with hard core potentials

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- Configurations with open WL contribute to the **Matsubara Green function**
	- All **non-trivial topological path updates** occur in G-sector

Swap moves enjoy relatively high acceptance, even with hard core potentials

When *Ira* and *Masha* reconnect, a *Z-*sector configuration is obtained, and most observables computed -- large permutation cycles *automatically occur*

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- Configurations with open WL contribute to the **Matsubara Green function**
	- All **non-trivial topological path updates** occur in G-sector

Swap moves enjoy relatively high acceptance, even with hard core potentials

- When *Ira* and *Masha* reconnect, a *Z-*sector configuration is obtained, and most observables computed -- large permutation cycles *automatically occur*
- **Reconnection is one of the attempted moves** (no need to wait for it !)

- Configurations with open WL contribute to the **Matsubara Green function**
	- All **non-trivial topological path updates** occur in G-sector

Swap moves enjoy relatively high acceptance, even with hard core potentials

- When *Ira* and *Masha* reconnect, a *Z-*sector configuration is obtained, and most observables computed -- large permutation cycles *automatically occur*
- **Reconnection is one of the attempted moves** (no need to wait for it !)
- Number of particles fluctuate (*canonical implementations possible*)

- Configurations with open WL contribute to the **Matsubara Green function**
	- All **non-trivial topological path updates** occur in G-sector

Swap moves enjoy relatively high acceptance, even with hard core potentials

- When *Ira* and *Masha* reconnect, a *Z-*sector configuration is obtained, and most observables computed -- large permutation cycles *automatically occur*
- **Reconnection is one of the attempted moves** (no need to wait for it !)
- Number of particles fluctuate (*canonical implementations possible*)

Can I and M get "stuck" away from each other?

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- Configurations with open WL contribute to the **Matsubara Green function**
	- All **non-trivial topological path updates** occur in G-sector

Swap moves enjoy relatively high acceptance, even with hard core potentials

- When *Ira* and *Masha* reconnect, a *Z-*sector configuration is obtained, and most observables computed -- large permutation cycles *automatically occur*
- **Reconnection is one of the attempted moves** (no need to wait for it !)
- Number of particles fluctuate (*canonical implementations possible*)

Can I and M get "stuck" away from each other?

Statistics of spatial distances between *I* and *M* given by *one-body density matrix*

- Decaying exponentially in a non-BEC
- Going to a constant in a BEC (but high acceptance probability of reconnection)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

UNIVERSITY OF **RER**

Example: 4He in two dimensions, *T*=0.6 K

Application: Superfluid Transition in 4He

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

NIVERSITY OF

RERTA

Superfluid Transition in 4He (cont'd)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013
Superfluid Transition in 4He (cont'd)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Superfluid Transition in 4He (cont'd)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Application: Search for BEC in Solid 4He MB, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **96**, 105301 (2006)

Exponential decay of one-body density matrix seen at low *T*, large *r* for perfect hcp 4He crystal

Absence of BEC Independent of pressure

Absence of SF No long permutation cycles

Application: vacancies in Solid 4He

MB, A. Kuklov, L. Pollet, N. Prokof'ev, B. Svistunov and M. Troyer, PRL **97**, 080401 (2006)

Activation energy for vacancies and interstitials can be obtained straightforwardly from **exponential decay** of **Matsubara Green function**

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Application: Possible superfluidity at grain boundaries in solid 4He

L. Pollet, MB, A. Kuklov, N. Prokof'ev, B. Svistunov and M. Troyer, Phys. Rev. Lett. **98**, 135301 (2007).

- \circ By direct simulation, evidence is obtained that L_z a grain boundary in direct contact with a superfluid at the melting pressure is **thermodynamically stable**.
- Superfluid behavior of a generic GB at temperatures of the order of 0.5 K is observed. Indeed, a **generic GB is found to be superfluid**, although insulating GBs exist as well, for particular relative orientations of the crystallites.
- Simulations performed on systems including as many as **13,000** particles (*yes, that many are needed*)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Application: Possible superfluidity in the core of a screw dislocation in solid 4He

MB, A. Kuklov, L. Pollet, N. Prokof'ev, B. Svistunov and M. Troyer, Phys. Rev. Lett. **99**, 035301 (2007).

Simulations of single screw dislocation inside hcp 4He crystal show evidence of spatially modulated *Luttinger liquid* (1d supersolid ?)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

MB, L. Pollet, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **109**, 025302 (2012).

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

MB, L. Pollet, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **109**, 025302 (2012).

$$
\hat{H} = -\frac{1}{2} \sum_{i} \nabla_i^2 + \sum_{i < j} \frac{1}{|\mathbf{x}_i - \mathbf{x}_j|}^3
$$

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

MB, L. Pollet, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **109**, 025302 (2012).

$$
\hat{H} = -\frac{1}{2} \sum_{i} \nabla_i^2 + \sum_{i < j} \frac{1}{|\mathbf{x}_i - \mathbf{x}_j|}^3
$$

Bosons with dipole moment aligned perpendicularly to plane \circ

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

MB, L. Pollet, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **109**, 025302 (2012).

$$
\hat{H} = -\frac{1}{2} \sum_{i} \nabla_i^2 + \sum_{i < j} \frac{1}{|\mathbf{x}_i - \mathbf{x}_j|}^3
$$

- Bosons with dipole moment aligned perpendicularly to plane $\mathsf O$
- Natural units, inter-particle distance r_s and $t = T/T^*$ $(T^* = 1/r_s^2)$ parameters \circ

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

MB, L. Pollet, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **109**, 025302 (2012).

$$
\hat{H} = -\frac{1}{2} \sum_{i} \nabla_i^2 + \sum_{i < j} \frac{1}{|\mathbf{x}_i - \mathbf{x}_j|}^3
$$

- Bosons with dipole moment aligned perpendicularly to plane $\mathsf O$
- Natural units, inter-particle distance r_s and $t = T/T^*$ $(T^* = 1/r_s^2)$ parameters \circ

 $r_s = 0.067$, $t = 0.9$

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

MB, L. Pollet, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **109**, 025302 (2012).

$$
\hat{H} = -\frac{1}{2} \sum_{i} \nabla_i^2 + \sum_{i < j} \frac{1}{|\mathbf{x}_i - \mathbf{x}_j|}^3
$$

- Bosons with dipole moment aligned perpendicularly to plane $\mathsf O$
- Natural units, inter-particle distance r_s and $t = T/T^*$ $(T^* = 1/r_s^2)$ parameters $\mathbf O$

boltzmannons

 $r_s = 0.067$, $t = 0.9$

Boltzmann system *crystallizes* regardless of cell geometry and/or initial particle arrangement

MB, L. Pollet, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **109**, 025302 (2012).

$$
\hat{H} = -\frac{1}{2} \sum_{i} \nabla_i^2 + \sum_{i < j} \frac{1}{|\mathbf{x}_i - \mathbf{x}_j|}^3
$$

- Bosons with dipole moment aligned perpendicularly to plane $\mathsf O$
- Natural units, inter-particle distance r_s and $t = T/T^*$ $(T^* = 1/r_s^2)$ parameters $\mathbf O$

boltzmannons bosons

 $r_s = 0.067$, $t = 0.9$

Boltzmann system *crystallizes* regardless of cell geometry and/or initial particle arrangement

Bose system *superfluid*, as *long* cycles of exchanges of identical particles occur

MB, L. Pollet, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. **109**, 025302 (2012).

$$
\hat{H} = -\frac{1}{2} \sum_{i} \nabla_i^2 + \sum_{i < j} \frac{1}{|\mathbf{x}_i - \mathbf{x}_j|}^3
$$

- Bosons with dipole moment aligned perpendicularly to plane \circ
- Natural units, inter-particle distance r_s and $t = T/T^*$ $(T^* = 1/r_s^2)$ parameters \circ

boltzmannons bosons

 $r_s = 0.067$, $t = 0.9$

Boltzmann system *crystallizes* regardless of cell geometry and/or initial particle arrangement

Bose system *superfluid*, as *long* cycles of exchanges of identical particles occur

Thermodynamic equilibrium structure *crucially* depends on quantum statistics System can lower its energy by forming a *quasi*-BEC and losing *solid* order

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Standard microscopic model, based on Aziz pair potential \circ

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- Standard microscopic model, based on Aziz pair potential \circ
- *T* = 0.5 K, density 0.0248 Å ⁻³ (equilibrium *superfluid* phase at *P* ~ 15 bars) \circ

- Standard microscopic model, based on Aziz pair potential \circ
- *T* = 0.5 K, density 0.0248 Å ⁻³ (equilibrium *superfluid* phase at *P* ~ 15 bars) \bullet

"Bolium" (N. Prokof'ev)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Standard microscopic model, based on Aziz pair potential \circ *T* = 0.5 K, density 0.0248 Å ⁻³ (equilibrium *superfluid* phase at *P* ~ 15 bars)

"Bolium" (N. Prokof'ev)

108-atom Boltzmann system *crystallizes* regardless of cell geometry and/or initial particle arrangement

Standard microscopic model, based on Aziz pair potential \circ *T* = 0.5 K, density 0.0248 Å ⁻³ (equilibrium *superfluid* phase at *P* ~ 15 bars)

"Bolium" (N. Prokof'ev)

- 108-atom Boltzmann system *crystallizes* regardless of cell geometry and/or initial particle arrangement
- *Spontaneous crystallization*

Standard microscopic model, based on Aziz pair potential \circ *T* = 0.5 K, density 0.0248 Å ⁻³ (equilibrium *superfluid* phase at *P* ~ 15 bars) \bullet

"Bolium" (N. Prokof'ev)

- 108-atom Boltzmann system *crystallizes* regardless of cell geometry and/or initial particle arrangement
- *Spontaneous crystallization*
- *Pressure near zero bars* \overline{O}

Standard microscopic model, based on Aziz pair potential \circ *T* = 0.5 K, density 0.0248 Å ⁻³ (equilibrium *superfluid* phase at *P* ~ 15 bars) \bullet

"Bolium" (N. Prokof'ev)

- 108-atom Boltzmann system *crystallizes* regardless of cell geometry and/or initial particle arrangement
- *Spontaneous crystallization*
- *Pressure near zero bars*
- Bose system *superfluid* (uniform $\mathbf O$ density)

Standard microscopic model, based on Aziz pair potential \circ *T* = 0.5 K, density 0.0248 Å ⁻³ (equilibrium *superfluid* phase at *P* ~ 15 bars)

"Bolium" (N. Prokof'ev)

- 108-atom Boltzmann system *crystallizes* regardless of cell geometry and/or initial particle arrangement
- *Spontaneous crystallization*
- *Pressure near zero bars*
- Bose system *superfluid* (uniform $\mathbf O$ density)

Simulation results strongly suggest that 4He *would be a crystal* at this *T*, if its atoms were indeed *distinguishable*. Here too, Bose statistics strongly affects the phase diagram of this Bose system, *not just at the liquid-solid phase boundary*.

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

Sign problem (neither improved not worsened by WA) \circ

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- **Sign problem** (neither improved not worsened by WA) O
	- Fixed-node restriction (Ceperley, 1992) in principle applicable to WA)

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- **Sign problem** (neither improved not worsened by WA) O
	- Fixed-node restriction (Ceperley, 1992) in principle applicable to WA)
- **Continuous Time** (is there any way of avoiding the time step error in continuos O space ?)

- **Sign problem** (neither improved not worsened by WA) O
	- Fixed-node restriction (Ceperley, 1992) in principle applicable to WA)
- **Continuous Time** (is there any way of avoiding the time step error in continuos \circ space ?)
- Can run into problems whenever **multi-particle updates** are needed (e.g., at first O order phase transitions)

- **Sign problem** (neither improved not worsened by WA) O
	- Fixed-node restriction (Ceperley, 1992) in principle applicable to WA)
- **Continuous Time** (is there any way of avoiding the time step error in continuos O space ?)
- Can run into problems whenever **multi-particle updates** are needed (e.g., at first \circ order phase transitions)
- **Dynamical information** (linear response theory and analytic continuation) $\mathbf O$

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013

- **Sign problem** (neither improved not worsened by WA)
	- Fixed-node restriction (Ceperley, 1992) in principle applicable to WA)
- **Continuous Time** (is there any way of avoiding the time step error in continuos space ?)
- Can run into problems whenever **multi-particle updates** are needed (e.g., at first \circ order phase transitions)
- **Dynamical information** (linear response theory and analytic continuation) \circ

Main Reference

MB, N. Prokof'ev and B. Svistunov, Phys. Rev. E **74**, 036701 (2006)

- **Sign problem** (neither improved not worsened by WA)
	- Fixed-node restriction (Ceperley, 1992) in principle applicable to WA)
- **Continuous Time** (is there any way of avoiding the time step error in continuos space ?)
- Can run into problems whenever **multi-particle updates** are needed (e.g., at first \circ order phase transitions)
- **Dynamical information** (linear response theory and analytic continuation) \circ

Main Reference

MB, N. Prokof'ev and B. Svistunov, Phys. Rev. E **74**, 036701 (2006)

Thank you !

Advances in Quantum Monte Carlo techniques Institute for Nuclear Theory, Seattle, July 2013