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MOTIVATION 6

Some technical details of diffusion Monte Carlo (DMC) method
will be discussed

e Symmetric trial w.f. for a solid phase

e Algorithm with linear complexity in number of particles

N

e Calculation of pure estimators in DMC



CRYSTAL: NONSYMMETRIC W.F [

The easiest (de facto standard) way to introduce the symmetry
of a crystal is to multiply the Jastrow two-body correlation
terms by a Nosanow one-body term fi (r;, rlc““t ) which localizes
a particle r; at its corresponding lattice site riatt:

,lvb(rlv"'? Hfl r;, I latt X Hf2 rjark’

1<k

The lower index in f() denotes how many particles are in-
volved (one-body, two-body correlation terms) and the upper
index shows number of lattice sites involved. The standard
choice for the one-body term is the a Gaussian localization

fll (ri; I‘éa’tt') _ exp{—oc(r,,; N I‘,l,;att')Q}

with the strength o« being a variational parameter.



NON-SYMMETRIC W.F. 8

The advantages of the Nosanow-Jastrow function are

e properly describes the limit of strong localiztion

e where the w.f. is Gaussian close to position of the mini-
muim

e provides good estimate for the energy in the crystal state
The disadvantages of the Nosanow-Jastrow function are
e has symmetry of distinguishable particles

e i.e. for bosons the wave function should be symmetric
under exchange

e not able to describe off-diagonal properties: ODLRO?
superfluid?



EXAMPLE: TWO PARTICLE SYSTEM

-2
) 1 0 X 1 2

1
Schematic representation of the w.f. for one-dimensional sys-
tem of N = 2 particles |¢(x1,x2)|?. Positions of lattice sites

are r'ett- — 1 and zlaett- = 1.



CRYSTAL: SYMMETRIC ONE-BODY W.F 10

A simple way to construct a symmetric w.f. is to use a one-
body term

N
w(rlﬂ"'arN) — Hfl rzarllatta . la,tt >< Hf2 r]ark
=1

1<k

[1] For example, for a Gaussian localization
N

fl (rzv s 3 r%‘/’tt ) o Zexp{—oz(rz, r%att )2}

[=1

2| Another way to generate symmetric one-body term is to
use a periodic function, e.g.

fl (r;, rlf”tt : rﬁ%tt = cos> 27 (x;a1 + Y02 + zia3)]



EXAMPLE: TWO PARTICLE SYSTEM 11

2

-2 =l 0 1 2
X.

Schematic representation of the w.f. for one-dimensional sys-
tem of N = 2 particles |[¢)(x1,x2)|?. Positions of lattice sites

are zlott- = 1 and zglett = 1.



CRYSTAL: SYMMETRIC ONE-BODY W.F 12

Instead of the previous one-body example,

N [/ Niatt.
w(rla "'arN) — H ( Z exp{—oz( _ r%att ) XH f? rjark

1=1 [=1 i<k

we propose to construct the trial wave function in the fol-
lowing form:

Nlatt

P(ry, ..., r H (Zexp{ o(r; — riatt) })fog(rj,rk)

j<k

which differs by the indices of the summation.



EXAMPLE: TWO PARTICLE SYSTEM 13

-2
=2 o | 0 1 2

X,
Schematic representation of the w.f. for one-dimensional sys-

tem of N = 2 particles |¢(x1,x2)|?. Positions of lattice sites

are z'ott- — 1 and zlaett- = 1.



SYMMETRIC W.F. 14

The symmetrized w.f. of a crystal

has a proper symmetry for a quantum system
is symmetric under exchange of two particles
is not a one-body or two-body term, but a /N-body term

permits evaluation of off-diagonal long-range properties:
OBDM, superfluid density

independent choice of number of particles N and lattice
sites Nj i+

allows to study incommensurate geometry/defects: va-
cancies N < Njygtt.



EX: HELIUM LIQUID-SOLID TRANSITION 15

We use the following w.f. for a study of liquid-solid phase
transition in “He

N Niatt N
Yy = Hf2(Tij) X H Zf(‘r’b_lk‘) (1)
i) ko
pair co;rrelations lattice C(;\r:ﬁnement
where

N is the number of particles, found at r;

Njatt is the number of lattice sites, located at [

fo is a pair-correlation factor

fi is the localization function fi(r) = exp (—%77“2)

| | Yaroslav Lutsyshyn, Dieter Bauer, Claudio Cazorla, GEA,
Jordi Boronat, to appear soon



JASTROW TWO-BODY TERMS

6
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Variational energy in the optimization of the two-parameter

wave function. Density 22.2nm™° is well below the transition



JASTROW TWO-BODY TERMS

Optimization for density in the coexistence regime, p = 25.8 nm™
the energy landscape has two separated minima.




JASTROW TWO-BODY TERMS

~ . 2 . .
Solid phase, p = 29.3nm™°, the local minimum at v = 0 has

disappeared.



(SUPERSOLID? HELIUM

OBDM of solid “He at densities p = 0.491 (circles) and p =
0.535 073 (squares) and N = 180 particles. stand for a calcu-
lation at p = 0.4910 2 Open V - Nosanow w.f. C. Cazorla, GEA,
J. Casulleras and J. Boronat New J. Phys. 11 013047 (2009)




DIPOLES ON 2D PLANE

2
7y =290 \ nongymm. wif,

4

10000 005 010 015 020 025

One-body density matrix of the perfect 2D crystal at density
nré = 290 as a function of the number of particles N; the solid
line — nonsymmetric trial wave function I. L. Kurbakov, Yu. E.
Lozovik, AGE, and J. Boronat Phys. Rev. B 82, 014508 (2010).




VACANCIES

Condensate fraction (a), superfluid fraction (b) for a crystal with
vacancies or interstitials (N # N¢;) at the phase transition density

9 . . .
nr§ = 290. Solid and open | |symbols stand for the and

phases, respectively.




CONCLUSIONS 1/3

22

A simple (N? complexity) symmetric wave function can
be used for describing a system of bosons

Allows calculation of quantum long-range properties
Describes liquid-solid phase transition
Permits calculation of defects N # Nj44:., for example

— vacancies

— intestitials



MOTIVATION 23
e Standard diffusion Monte Carlo method has N? complexity

e The quadratic dependence originates from calculations of all
N(N — 1)/2 possible pairs in the system. Such calculations
are done when:

1. Potential energy of a long-range interaction potential
is calculated

2. Two-body Jastrow terms are calculated (in calculation
of Metropolis weight of a configuration, or in Drift
force, or in contribution to the local energy)

e (Can this be increased to permit investigation of large system
sizes?

e At least for short-range interaction? For example, d-interacting
gas in one dimension?



PHONONS AND JASTROW W.F. 24

e two-body Jastrow term contains long-range correlations

e from hydrodynamic considerations|l]|, the ground-state
wave function contains long-range two-body Jastrow cor-
relations:

57(r) o exp(—Ci/r?)
7°(r) o exp{-Ciy/r}
3P (r) o sin®[n|r|/(2L)

where coefficient C'; depends on the speed of sound.

[1] L. Reatto and G.V. Chester, Phys. Rev. 155, 88 (1967).



JASTROW TWO-BODY TERMS

The DMC code can be made scalable it the two-body Jastrow
is truncated at some distance R4, < L/2. The complexity of
the algorithm is N(Npeign. — 1)/2, where Npeign. &= nRY s
the number of neighbor particles.




TEST: EXACT LIEB-LINIGER MODEL

N bosonic particles of mass m interacting with contact o-function
pseudopotential in a one dimensional system are described by the
Lieb-Liniger Hamiltonian:

" - N 52 N
H=-2L% 2 +qp Y 6(z — %)
i=1 ¢ i< j

The effective quasi-one-dimensional coupling constant is
Inversely proportional to the one-dimensional s-wave scattering
length

_ _2n?
91D = “naip

The model solved exactly by
E. H. Lieb and W. Liniger in (1963)
Phys. Rev. 130, 1605 (1963)

Elliott H. Lieb



DIFFERENT REGIMES 21

The characteristic parameter of the problem is v = ¢/p which
defines the strength of particle-particle interactions. Here ¢ is
one-dimensional couping constant and p is the linear density.

Lieb I
"Bogolinbov" branch

Lieb IT
"soliton" branch

In particular, when

e 7 — 0 interactions are weak, system behaves as a weakly
interacting Bose gas (Gross-Pitaevskii regime)

e 7 — o0 interactions are strong, system behaves as an
ideal Fermi gas (Tonks-Girardeau regime)



ONE-DIMENSIONAL FERMI GAS

The Slater determinant of one-dimensional plane waves
- D97 . . .
901(2:) = "L % can be writen in form of a Vandermonde matrix.

<2 - 27

901(21) @N(Zl) 1 ezle (ezle)N_l
\I](le---azN): = ZH(€iTZi_eiTZJ)

p1(21) ... en(an) | eFen | (w1

= |1 sign(z; — z;) [1 [sin (2 — 2;)| = A(21, ..., 2n5) 11 [sin T (2 — 2;)|
i <J 1<J 1<J

e The wave function of an ideal Fermi gas simplifies into a pair
product of |sin 7 (z; — z;)| terms with antisymmetric multiplier A

e The parity of given configuration can be written in a very simple

N
form: (—=1)% = [] sign(z; — 2;)
1<J

e Fermionic N3 problem is reduced to N? bosonic complexity!



BOSONS: MAPPING OF THE WAVE FUNCTION

Apart from the symmetrizing A factor wave function of a one-
dimensional ideal Fermi gas looks like a wave function of a
Bose system

W(z1,y...,28) = A(21, ..., 2n) 11 | sin T (25 — 25))|
]

Here enter special properties of one-dimensional geometry:

e The only way to exchange two particles is to pass drag
one particle through the other.

e Pauli exclusion principle can be mimicked by a strong
short-range repulsion



TONKS-GIRARDEAU GAS: WF

The absolute value of the wave function
of an ideal Fermi gas is exactly the same
as the wave function of Bose particles
interacting via infinitely strong short-
range interaction (Girardeau 1960)

‘IJB(Zl, cens ZN) - ‘\pr(zl, cany ZN)|

e All diagonal properies (density profile, pair distribution
function, etc) are exactly the same

e Energies and chemical potential are exactly the same
h2 k%,
2m

e Non-diagonal properties (one-body density matrix, mo-
mentum distribution, etc) are different



TG GAS: MOMENTUM DISTRIBUTION

fermions

(ideal Fermi gas)
bosons

(Tonks-Girardeau gas)

%
\
N
\
\

Momentum distribution n; of a homogeneous ideal Fermi gas and

Here kr = m™n 1s the Fermi momentum.



TESTING THE ENERGY

- - - exact- - -
——vMC B
——bdMCc XK

The DMC code can be made scalable it the two-body Jastrow
is truncated at some distance R4, < L/2. The complexity of
the algorithm is N(Npeign. — 1)/2, where Npeign. &= nRY s

‘max

the number of neighbor particles.



CORRELATION FUNCTIONS (EXACT)

(left) Density-density pair distribution function go(z)

(right) and static structure factor Sg.




TEST: STATIC STRUCTURE FACTOR

exact

VMC

mixed
extrapolation 1
extrapolation 2
pure

0.3
K/ 2k_

ow-momentum part of the static structure factor. Solid line -
L tu t of the static structure factor. S

exact thermodynamic result; Monte Carlo results with NV = 25
particles, estimators: diamonds - variational, circles - mixed,

pluses and crosses - extrapolation 1 and 2, squares - pure



OPEN PROBLEM 35

good Linear in N complexity can be achieved (NN,cigny) -
calculation at a single step

Long-range / phononic correlations are spoiled
cood Pure estimators fix it

Not the end of the story, DMC time step should be ad-
justed as NV is increased



SCHRODINGER EQUATION 36

Imaginary time evolution is governed by Schrodinger equa-

tion 5
- p(R,7) = (H ~ E)p(R,7),
The formal solution ¥(R,7) = e_(ﬁ_E)"’?,b(R, 0) can be ex-
panded in eigenstate functions of the Hamiltonian Ho,, = E,, ¢,.

ordered as Fg < E1 < ...

YR, 7) =D cndn(R,7) = ) cndn(R,0)eFn=5)7
n=0 n=0

e For large times (R, T) — co ¢o(R,0) e~ (Fo=E)7
e In the long time limit the wave function is projected to the
ground state and E approaches Ej



IMPORTANCE SAMPLING 37
e The efficiency is improved by sampling f(R,7) = ¥ (R)yY(R, T
where ¥ (R) is a known trial w.f.

e The equivalent differential equation is

9,

_Ef(R’ 7‘) — —DARf(R, 7') + DVR(Ff(RvT))

+(E"(R) - E) f(R,7),

e The local energy E'*°¢(R) = v (R)HYr(R)

e The drift force F = ﬁVszT(R)



DMC ALGORITHM 38

Non-negative f(R,7) is interpreted as population density

Nw
distribution f(R,7) = Y Cd(R — Rj(7)) of walkers with
i=1

coordinates R;(7)
DMC algorithm for a primitive time propagation:

Diffusion delocalizes according to the kinetic part
RO (t + A7) = R(7) + x, with x random value having a
gaussian distribution exp{—x?/(4DAT)}

Drift force pushes the walkers to most important areas of
the phase space R(®(t + A7) = R(7) + DF(R)AT

Branching corrects the trial w.f. and does the projection

fO(R, T+ A1) = exp{—(E"*(R) — E) A7} f(R,T)



TIMESTEP SLOWDOWN

39

The branching term f®) (R, 7+ A7) = exp{—(E"*(R) —

E)AT} f(R,T)

The short time expansion requires cg AT < 1

Typical variance of the total energy og o< N1/2

Limitation on the timestep A7 o« N~

1/2




CONCLUSIONS 2/3

40

e Linear in N complexity can be achieved (N N,cignp) -
calculation at a single step

Long-range / phononic correlations are spoiled
e Pure estimators fixes it

Additionally, an effective N*T1/2 order is added due to
time step limitations, leading to
— effective N?° order in a standard formulation,

— effective N1-° Nyeignpy order for short-range potential
& Jastrow.



PURE ESTIMATORS 41

Diffusion Monte Carlo method has advantages of being:

e exact (at least conceptually) for calculation of the ground-
state energy

e able to calculate in a pure way local properties (e.g. po-
tential energy, pair distribution function, static structure
factor, density profile, etc.)

Still DMC suffers from the following disadvantages:

non-local correlation functions are obtained as a mixed
estimator (one-body density matrix, momentum distri-
bution, etc.)

e Extrapolation technique can be used with no guarantee,
e.g. zero/finite condensate fraction.

e Other Monte Carlo methods overcome this problem (e.g.
PIMC, PIGS, ...)

Is it possible to calculate OBDM in a pure way?



OBDM 42

The one-body density matrix p;(|r; —rs|) is a non-local quan-
tity and is related to the probability of inserting a particle
at position ro after destroying a particle at position ri; while
keeping coordinates of all other particles fixed

In terms of the ground-state wave function ¢g(R) the one-body
density matrix is defined as

Pl(|I‘|) — f¢0(1’1 RO ""rN)¢0(r17r27 "'arN) dr;...dry
[lgo(r1,..;en)[? dry..dry

for convenience we consider a homogeneous system, so that
p1 depends on one argument r = |r; — ra].



PURE ESTIMATOR FOR OBDM 1/3 43

The pure expression for the one-body density matrix can be
written as

Yr(ritr,;ry,..,rn) go(ritr,re,..,ry) Yr(R)po(R) dry..dry

1(|I‘|): Yr( r1 ,ra,...,vrn) Yr(ri+r,ro,..,ry)
R
f qf;((R)) dI'l...dI'N

e For long times of integration, the DMC procedure gener-
ates a series of configurations satisfying the probability

distribution f(R) = ¥1r(R)¢po(R).

e last term corresponds to sampling over distribution f(R)



PURE ESTIMATOR FOR OBDM 2/3 44

The pure expression for the one-body density matrix can be
written as

fwT(rl—l—r,rz,--,PN) ¢o(ri+r,ra,. ,ry) Yr(R)po(R) dry..dry

1(|I’|): Yr( r1 ,ra2,...,vrn) Yr(ri+r,ro,..,ry)
R
f 'zbb;((R)) dI'l...dI‘N

e Another piece is calculated directly from the known trial
wave function ¥p(ry +r,re,...,rN)/Ur(r1,re, ..., TN)

e Average of this term alone over f(R) would provide a
mixed estimator.



PURE ESTIMATOR FOR OBDM 3/3 45

The pure expression for the one-body density matrix can be
written as

f¢T ri+r,ro,..,ry) §150(r1—|-r re,..,'N) ¢T(R)¢O(R) dI‘l..dI'N

1(‘1_’) ¢T( ry ,ra,. ,I‘N) ﬁT(I‘H—I‘ ra,. aI'N)
qb R

e The third piece is the ratio of ground state and trial wave
functions at a displaced position

Go(r1 +r,ro,....,rN)/Up(r1 + 1,10, ..., TN ).
e [t was shown in [1] that for a non-displaced position the
ratio can be obtained as a number of sons of the walker

W(R) — W(rlar% "'7rN) — gbO(rlarQa “'7rN)/wT(rlar2a
e The problem is that there is no walker in (r{+r,rs,...,rxN)

1] K. S. Liu, M. H. Kalos, G. V. Chester PRA 10, 303 (1974)



VIRTUAL WALKER 46

e For local quantities (r = 0) number of sons W(R) are
obtained by following the walker in imaginary time

CbO(rlarQa SO, rN)/wT(rl, o, ...,I‘N) — W(R’ 7-),7- 5 00

e For non-local quantities, we introduce a wvirtual walker
with artificially displaced coordinates r; + r,ro,...,ryn
and accumulate its weight in the branching process.
do(r1 +r,ro,...,rN)/Up(ry + 1,10, ...,ry) = W(R',7),7 —
00

e The walker is virtual in the sense that it does not con-
tribute to any other observable.



JASTROW TWO-BODY TERMS

- - - exact- - -
——vMC B
——bdMCc XK

In order to verify the pure estimators we heavily spoil the wave
function.




OBDM: Imaginary-time convergence

BOSONS

FERMIONS

The average “number of sons” (W (R")) yr) of a virtual walker
Zero imaginary time - mixed estimator, infinite imaginary time
- pure estimator.




OBDM: bosons

exact
- - -VMC

mixed
- — extrapolation 1
-+ -+ extrapolation 2

Bosonic one-body density matrix. Solid line - exact wave func-
tion, long-dashed line - variational estimator, short-dashed line
- mixed estimator, dash-dot and dash-dot-dot - extrapolations

1 and 2, square symbols - pure estimator



OBDM: fermions

exact
- - -VMC
mixed
- = extrapolation 1
-+ = extrapolation 2
O pure

Fermionic one-body density matrix. Solid line - exact wave
function, long-dashed line - variational estimator, short-dashed
line - mixed estimator, dash-dot and dash-dot-dot - extrapola-

tions 1 and 2, square symbols - pure estimator



CONCLUSIONS 3/3 51

Pure estimators of local quantities can be obtained by
following imaginary-time evolution of walkers

Pure estimators of non-local quantities can be obtained
by following imaginary-time evolution of virtual walkers



THANK YOU VERY MUCH
FOR YOUR ATTENTION!
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CONDITION FOR ONE-DIMENSIONALITY

The gas behaves dynamically as one- |
dimensional when the excitations of s |

/ |
the levels of the transverse P o o
- - 60 nm
confinement are not possible:

e Condition for the energy i

% — %hwosc < hwose 4/’; - ///;’ .
* Condition for the temperature %) %//\

kBT < hwosc
Figure Is taken from
T.Esslinger et al./Zurich

Comparison of the frequencies of

o the dipole and breathing modes
confirms the achievement of the

quasi-one-dimensional regime.
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CORRELATION FUNCTIONS

The one-body density matrix quantifies correlations of the field-
operator between two points in space

N A U (x14+z,...,.e8)¥Po(x1,....,.2N ) dza...dx
1(x) = (¥1(@)¥(0)) = S T

The pair distribution function gives the possibility to find a parti-
cle at a distance x from another particle

ga ) = (B ()W (@) B () B(0)) = NN [LToleOutnst) P dyo o

n? [1¥o(z1,....xNn) |2 dzy1...dzN

The static structure factor is related to the Fourier transform of
the pair distribution function S(k) =1+ n [ e**(ga(z) — 1) dz

The momentum distribution is the Fourier transform of the one-
body density matrix n(k) = n [ e*%g;(z) dz

The value at zero distance of the three-body correlation function

gives the probability of finding three particles at the same position
_ N(N-=1)(N=2) [|%0(0,0,0,24,....,xN5)|* dzg...dzN
_ ns f |‘I’0($1,...,$N)|2 dl‘ldﬂjN

in space g3(0)



TRAPPED IDEAL FERMI / TONKS-GIRARDEAU GAS

pte\

o.‘\\i‘\\\

WA

5 4 -3 2 -1 0 1 2 3 4 5
x/ahO

N—1 _
4 S— S re — . 2 X7 — 1 2“210
¢ Known exactly: n(x)—j;) @i (x)|* , with ¢, (x) iagn € H,(x)

e Show oscillations (shell structure)

e Some non-trivial features: maxima for N particles coincide
exactly with minima of N 4+ 1 particles.



ZIG-ZAG 2N° ORDER PHASE TRANSITION:1D DIPOLES

harm. osc.

= [(1=0.2

-s= =03

=04

] 1 —-v—ii=05
,-‘ " fi=0.6

—-a-fi=0.8

Quantum system:

'?vv"V‘er“"v¥

Monte Carlo
- — -harmonic 0sc.

Classical system:
® Monte Carlo
b/2, exact

Et.o-atttoe
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GEA, Giovanna Morigi, Gabriele De Chiara, and J. Boronat Ground
state of low-dimensional dipolar gases Linear and zigzag chains Phys.
Rev. A 78, 063622 (2008); GEA. Astrakharchik, G. De Chiara, Gio-
vanna Morigi and J. Boronat, Thermal and quantum fluctuations in low
dimensional dipolar chains, J. Phys. B 42, 154026 (2009)



