

1

THE ISOOR BEDING ONLIGAL EFT

U. van Kolck Institut de Physique Nucléaire d'Orsay and University of Arizona

Supported in part by CNRS, Université Paris Sud, and US DOE

Why?

Chiral "EFT" potentials based on Weinberg's power counting widely used in nuclear physics because of their supposed link to QCD

Problem: Weinberg's power counting inconsistent with renormalization Solution: Certain counterterms appear at lower order than expected; subleading terms should be treated in perturbation theory

Kaplan, Savage + Wise '96, …, Nogga, Timmermans + Nogga '05, …

VS.

The problem doesn't exist: Renormalization not important Epelbaum + Meissner '06, …, Epelbaum + Gegelia '09, …

Anyway, there is a solution for the problem that doesn't exist: Relativity essential in a non-relativistic problem Epelbaum + Gegelia '12

(Oh, yeah, this solution doesn't completely solve the problem that doesn't exist ---counterterms still need to be promoted--- but that is a detail which barely needs acknowledgement…)

the talk yesterday

www.getcliparts.com

Outline

Effective field theory & model spaces

- O Pre-story: ChiPT
- \Box The story
- Conclusion & Outlook

Weinberg, Wilson, ...

$$
T = T^{(\infty)}(Q) \sim N(M) \sum_{v=v_{\min}}^{\infty} \sum_{i} \tilde{c}_{v,i}(\Lambda) \left[\frac{Q}{M} \right]^{v} F_{v,i} \left(\frac{Q}{m}, \frac{\Lambda}{m} \right)
$$

normalization

$$
\frac{\partial T}{\partial \Lambda} = 0
$$
from loops

$$
v = v(d, n, ...)
$$
power counting"
log. # loops L

For
$$
Q \sim m
$$
, truncate ...
\n
$$
T = T^{(\overline{v})} \left[1 + \mathcal{O}\left(\frac{Q}{M}, \frac{Q}{\Lambda}\right) \right] \implies \frac{\Lambda}{T^{(\overline{v})}} \frac{\partial T^{(\overline{v})}}{\partial \Lambda} = \mathcal{O}\left(\frac{Q}{\Lambda}\right) \ll 1
$$
\ncontrolled
\n
$$
\frac{\text{controlled} \times M}{\text{realistic estimate of errors comes from variation } \Lambda \in [M, \infty)} \left\{ \begin{array}{l} \text{want } \Lambda \geq M \\ \text{realistic estimate of errors comes from variation } \Lambda \in [M, \infty) \end{array} \right\}
$$

www.getcliparts.com

する

Cutoffs define "model spaces"

 $\Lambda \geq M$ $\tilde{\lambda} \stackrel{\sim}{\ll} Q$ To minimize "model space" error (to "converge"), want

Popular examples

o \Box **0000000000** n 0.1 ö 3_H **COOCCOOO** \circ \circ \circ Idaho $\mathrm{N}^3\mathrm{LO}$ $|\Delta E/E|$ $0.1 \begin{array}{ccccc}\n\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\end{array}$ $0.01 \hbar\omega$ λ $\rm ^3H$ (MeV/c) (MeV) Idaho ${\rm N^3LO}$ 162 \blacksquare 28 $•35$ 181 $\frac{|\Delta E/E|}{0.01}$ \blacktriangle 45 206 0.001Λ (MeV/c) 247 \bullet 65 ∞ \Box 80 274 400 $\frac{1}{2}$ 100 306 □ Δ 150 375 500 $\sqrt{200}$ 433 600 0.0001 $\frac{1500}{\Lambda (\text{MeV/c})}$ 2000 2500 700 500 1000 3000 0.001 800 scaling 1000 1200 $\begin{tabular}{l} \hline \hline \hline \end{tabular} \begin{tabular}{l} \hline \end{tabular} \begin{tabular}{l} \hline \end{tabular} \begin{tabular}{l} \hline \end{tabular} \end{tabular} \begin{tabular}{l} \hline \end{tabular} \begin{tabular}{l} \hline \end{tabular} \end{tabular} \begin{tabular}{l} \hline \end{tabular} \begin{tabular}{l} \hline \end{tabular} \end{tabular} \begin{tabular}{l} \hline \end{tabular} \end{tabular} \begin{tabular}{l} \hline \end{tabular} \begin{tabular}{l} \hline \end{tabular} \end{$ $0.0001 \overline{20}$ गाममा ┯┯┯┱ 50 60 70 80 $0.1 10$ 30 40 90 **AAAAA**AAAAAAAAA λ_{sc} (MeV/c) ${}^{3}H$ λ^2 $=\frac{\lambda^2}{\Lambda}\sim\frac{1}{L}$ Idaho N^3LO $|\Delta E/E|$ Λ (MeV/c) 0.01 400 \Box 000000 500 \circ 600 for much more see 700 Furnstahl, Hagen + Papenbrock '12 800 0.001 1000 More et al. '13 1200 $0.0001 -$ 200 250 300 8 50 100 350 150 λ (MeV/c) www.getcliparts.com

Extrapolations in a HO basis

Chiral EFT

$Q \sim m_{\pi} \ll M_{\text{oCD}} \sim 1$ GeV

 $N = \left(\begin{array}{c} p \end{array}\right)$

n

 $=\begin{pmatrix} P \\ n \end{pmatrix} \qquad \Delta = \begin{pmatrix} \Delta \\ \Delta^0 \end{pmatrix}$

 $\left(p\right)$

+ d.o.f.s: pions, nucleons, deltas $(m_\Delta - m_N \sim 2 m_\pi)$

2

• symmetries: Lorentz, P, T, chiral $=\begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{pmatrix}=\begin{pmatrix} (\pi^+ + \pi^-)/\sqrt{2} \\ -i(\pi^+ - \pi^-)/\sqrt{2} \\ \pi^0 \end{pmatrix}$

 $(\pi^+ + \pi^-)$

 $+$ + $-$

 π + π

 π , $=$ $-$ **l** π π

 π ₃) π

 $(\pi^+ - \pi^-)$

 $+$ $-$

0

 $i(\pi^+ - \pi^-)/\sqrt{2}$

$$
f_{\pi} \simeq 92 \,\text{MeV} = \mathcal{O}\left(M_{\text{QCD}}/4\pi\right)
$$

1

π

π

2

3

spontaneously broken: non-linear realization

Weinberg '68 Callan, Coleman, Wess + Zumino '69

9

chiral invariants

(chiral) covariant

$$
\mathbf{D}_{\mu} = \left(\frac{\partial_{\mu}\pi}{2f_{\pi}}\right) \left(1 - \frac{\pi^2}{4f_{\pi}^2} + \ldots\right)
$$

2 2 *f* $\partial_{\mu} \equiv \partial_{\mu} - 2i \mathbf{T} \cdot \frac{\partial}{\partial c} \times D_{\mu}$ π $\begin{pmatrix} \pi & \pi \end{pmatrix}$ $\equiv \partial_{\mu} - 2i \mathbf{T} \cdot \left(\frac{\kappa}{2 f_{\pi}} \times \mathbf{D}_{\mu} \right)$ derivatives $D_{\mu} \equiv \partial_{\mu} - 2i \mathbf{T} \cdot \left(\frac{\pi}{2 \epsilon} \times D \right)$ baryon, isospin **T**

+ chiral breaking as in quark mass terms

++

 $\left(\right. \Delta^{++} \left. \right)$

 $\Delta = \left | \begin{array}{c} \Delta^+ \ \Delta^0 \end{array} \right |$

+

−

 $\begin{pmatrix} 1 \ 0 \end{pmatrix}$

non-derivative interactions proportional to masses

$$
m_{\pi}^2 = \mathcal{O}\left(\left(m_u + m_d\right)M_{\mathcal{QCD}}\right)
$$

Pre-story: ChiPT

Weinberg '79 Gasser + Leutwyler '84 Manohar + Georgi '84

…

Example: pion sector (similar in one-nucleon sector)

$$
\mathcal{L}_{f=0} = 2f_{\pi}^{2} \mathbf{D}_{\mu} \cdot \mathbf{D}^{\mu} - \frac{1}{2} m_{\pi}^{2} \pi^{2} \left(1 - \frac{\pi^{2}}{4f_{\pi}^{2}} + ... \right) \mathbf{R}
$$

+ $c_{1} f_{\pi}^{2} \left(\mathbf{D}_{\mu} \cdot \mathbf{D}^{\mu} \right)^{2} + c_{2} f_{\pi}^{2} \mathbf{D}_{\mu} \cdot \mathbf{D}_{\nu} \mathbf{D}^{\mu} \cdot \mathbf{D}^{\nu} + c_{3} m_{\pi}^{2} \mathbf{D}_{\mu} \cdot \mathbf{D}^{\mu} \pi^{2} (1 + ...) + c_{4} \frac{m_{\pi}^{4}}{f_{\pi}^{2}} \pi^{4} (1 + ...)$
+...

$$
\sum_{\substack{n=1\\n \text{odd } n}}^{\infty} + ... = \frac{1}{f_{\pi}^{4}} \int_{0}^{4} \frac{d^{4}l}{(2\pi)^{4}} \frac{(l, k, m_{\pi})^{2}}{l^{2} - m_{\pi}^{2} - i\varepsilon} \frac{(l, k, m_{\pi})^{2}}{(l + k)^{2} - m_{\pi}^{2} - i\varepsilon}
$$
\n
$$
\sum_{\substack{n=1\\n \text{odd } n}}^{\infty} \frac{1}{f_{\pi}^{2}(4\pi f_{\pi})^{2}} \left\{ \frac{\mathbf{\Phi}}{\mathbf{A}}^{4} + \Lambda^{2}(\#\kappa^{2} + \#\m_{\pi}^{2}) + (\#\kappa^{4} + \#\m_{\pi}^{2}\kappa^{2} + \#\m_{\pi}^{4}) \left[\ln\left(\frac{\Lambda}{m_{\pi}}\right) + \#\ln\left(\frac{k}{m_{\pi}}\right) \right] + \mathcal{O}\left(\frac{Q^{6}}{\Lambda^{2}}\right) \right\}
$$
\n
$$
\text{forbidden by} \qquad \sum_{\substack{n=1\\n \text{odd } n}}^{\infty} \frac{1}{\int_{0}^{2} (4\pi f_{\pi})^{2}} \left(\frac{\mathbf{\Phi}}{\mathbf{A}} \right)^{2} \left(\frac{\mathbf
$$

Generalizing,

$$
\mathcal{L}_{EFT} = \sum_{\{n,p,f\}} c_{\{n,p,f\}} \left(\frac{\mathbf{D}, \mathbf{D}, m_{\Delta} - m_{N}}{M_{QCD}} \right)^{n} \left(\frac{m_{\pi}^{2}}{M_{QCD}^{2}} \frac{\pi^{2}}{f_{\pi}^{2}} \right)^{n/2} \left(\frac{\psi^{+}\psi}{f_{\pi}^{2}M_{QCD}^{2}} \right)^{1/2} f_{\pi}^{2}M_{QCD}^{2}
$$
\n
$$
\text{calculated from QCD: lattice, ...} = \mathcal{O}\left(\varepsilon, \frac{\alpha}{4\pi}\right) \qquad \text{isospin conserving} \qquad \text{(NDA)}
$$
\n
$$
= \sum_{\Delta=0}^{\infty} \mathcal{L}^{(\Delta)} \qquad \Delta \equiv n + p + \frac{f}{2} - 2 \equiv d + \frac{f}{2} - 2 \geq 0 \qquad \text{``chiral symmetry} \qquad \text{chiral symmetry}
$$
\n
$$
T = T^{(\infty)}(Q) \sim N(M_{QCD}) \sum_{\nu = \nu_{\min}}^{\infty} \sum_{i} \tilde{c}_{\nu,i}(\Lambda) \left[\frac{Q}{M_{QCD}} \right]^{\nu} F_{\nu,i} \left(\frac{Q}{m_{\pi}}, \frac{\Lambda}{m_{\pi}} \right)
$$
\n
$$
\nu = 2 - A + 2L + \sum_{i} V_{i} \Delta_{i} \geq \nu_{\min} = 2 - A
$$
\n
$$
\# \text{ nucleons} = 0, 1 \quad \text{# loops} \quad \# \text{ vertices of type } i
$$

The story*

The era of the scriptures The era of the scriptures

Weinberg '90, '91, '92 Ordonez + v.K. '92 v.K. '94 Ordonez, Ray + v.K. '94, '96 Brockmann, Kaiser + Weise '96 Gerstendoerfer, Kaiser + Weise '97 Friar '99

Kaiser '99 …

2

 $\underline{1}$

…

0 *l*

$$
\left\{\frac{V}{V}\right\} = i \int \frac{d^4 l}{(2\pi)^4} V \frac{1}{l^0 + k^2 / m_N - l^2 / m_N - i\epsilon} \frac{1}{-l^0 + k^2 / m_N - l^2 / m_N - i\epsilon} V
$$

$$
\left\{\frac{1}{K} \sum_{m_N} \frac{d^3 l}{(2\pi)^3} V \frac{m_N}{l^2 - k^2} V \right\} \dots
$$

infrared enhancement: no ChiPT expansion for T for $A \geq 2$

potential = sum of subdiagrams without IR enhancement: amenable to ChiPT expansion, cutoff absorbed in counterterms of NDA size

Weinberg's recipe ("W PC"): truncate potential, solve dynamical equation exactly [and, as always, check assumptions…]

* Not a history, not even Whiggish

$$
V(\Lambda) \sim N(M) \sum_{v=v_{\min}}^{\infty} \sum_{i} \hat{c}_{v,i}(\Lambda) \left[\frac{Q}{M} \right]^{\nu} f_{v,i} \left(\frac{Q}{m}, \frac{\Lambda}{m} \right)
$$

$$
\nu = 2 - A + 2L + \sum_{i} V_{i} \Delta_{i} \ge \nu_{\min} = 2 - A
$$

not an observable: in general depends on cutoff, form of dynamical equation, choice of nucleon fields, etc.

$$
V(\Lambda) \sim N(M) \sum_{v=v_{\min}}^{\infty} \sum_{i} \hat{c}_{v,i}(\Lambda) \left[\frac{Q}{M} \right]^{\nu} f_{v,i} \left(\frac{Q}{m}, \frac{\Lambda}{m} \right)
$$

$$
\nu = 2 - A + 2L + \sum_{i} V_{i} \Delta_{i} \ge \nu_{\min} = 2 - A
$$

not an observable: in general depends on cutoff, form of dynamical equation, choice of nucleon fields, etc.

- \triangleright Potential to O(Q^3) with and to O(Q^4) without delta isobar derived
- Fit of NN phase shifts to $O(Q^3)$ with delta encouraging; similar accuracy (or lack thereof) for three cutoffs from 500 to 1000 MeV
- TPE potential to O(Q^3) without delta improves Nijmegen PWA
- \triangleright Pions perturbative in F waves and higher

Weinberg '92 Rho '93 Park, Min + Rho '94 … Beane, Lee + v.K. '95

…

17

Also, many processes with external probes:

- o pion elastic scattering
- o electroweak currents
- o pion photoproduction
- o pion production
- o Compton scattering

o …

The Reformation The Reformation

 $\binom{I}{I}$ = $\binom{I}{I_Y}$

 $=$ $($ $)$ $+$

 $\widehat{\chi}\bigg\rangle = / \sqrt{1 + \widehat{\chi}}$

 $\left(T_{Y}\right)$

Amplitude in 1S0 solved in semi-analytic form for W LO:

 T_Y

χ

Kaplan, Savage + Weise '96 Cohen + Phillips '97 Kaplan '97

… v.K. '97 Kaplan, Savage + Weise '98 Gegelia '98 Bedaque, Hammer + v.K. '98, ...

…

$$
\frac{4\pi}{m_N}I(k) = \#\Lambda + \#\frac{m_N}{4\pi f_\pi} \frac{m_\pi^2}{f_\pi} \ln\left(\frac{\Lambda}{m_\pi}\right) + \mathcal{O}\left(\frac{k^2}{\Lambda}\right)
$$

$$
c(m_{\pi}^{2}) = C_0 + D_2 m_{\pi}^{2} + \dots
$$

W PC: LO NLO

NDA fails for chiral symmetry-breaking operators: W PC not entirely correct

Detailed study of

renormalization, validity of NDA, perturbativity of subLOs, power counting, etc. in simpler pionless EFT for $Q < m_{\pi}$

Some lessons:

- 1) fine-tuning necessary for large scattering lengths can be incorporated into PC for amplitude
- 2) non-perturbative renormalization intrinsically different from renormalization of corresponding perturbative series
- 3) one gains no understanding of the renormalization of the A-body system by just monkeying around with higher-order terms in the A-1-body system
- 4) NDA has very limited usefulness; e.g., three-body force of very high order by NDA, but renormalization requires it at LO
- 5) subleading interactions must be treated in perturbation theory
- 6) fully consistent theory works well for very low-energy processes involving (at least) light nuclei and cold atoms, incorporating universal properties such as the Efimov effect, Phillips and Tjon lines, Wigner SU(4), ...; yet, mostly ignored by nuclear physics community

Moral: faced with W PC vs RG, choose RG

Proposal for perturbation approach to pion exchange in chiral EFT ("KSW PC")

Some Results

- 1) manifestly consistent PC
- 2) rescues NDA for chiral symmetry-breaking operators
- 3) converges only for Q < 100-150 MeV; at that point pion tensor force no longer perturbative

But, since Weinberg's PC inconsistent, then what?

Epelbaum, Gloeckle + Meissner '98 … Entem + Machleidt '03

The Counter-Reformation

I he Counter-Retormation

Ekstroem et al., last week

…

24

Elevate cutoff to physical quantity constrained to $M_{_{NN}} < \Lambda < M_{_{OCD}}$

Faced with W PC vs RG, choose W's PC

Countless improvements under W PC:

- 1) elimination of redundant operators
- 2) correction of some mistakes
- 3) smart choice of regulator (cutoff not on transferred momentum, to decouple effects of short-range interactions on various partial waves)
- 4) careful treatment of relativistic corrections

… N) fits to NN data at O(Q^4) without delta of similar quality as purely phenomenological pots

(But also some steps back, e.g., no deltas until recently, different regulators for different loops)

… Goes Viral Chiral "EFT" becomes input of choice for a new generation of ab initio methods for light and medium-mass nuclei **GOES VIPGI**

The Reckoning? The Reckoning?

Beane, Bedaque, Savage + v.K. '02 Nogga, Timmermans + v.K. '06 Pavon Valderrama + Ruiz Arriola '06 Birse '06

…

…

25

Conjecture: $M_{NN} > m_{\pi}$

Long + v.K. '08 Yang, Elster + Phillips '09 Pavon Valderrama '10, '11 Long + Yang '11, '12

so that one can think of T as an expansion around the chiral limit, only necessary resummation being that of the tensor force:

- \circ singlet channels ~ KSW (solves the W problem with chiral symmetry breaking)
- \circ triplet channels \sim W (solves the KSW problem of convergence)

However, W's PC fails also in triplets!

26

That means some counterterms deemed to be subLO because of NDA are actually LO!

Nogga, Timmermans + v.K. '05

27

Add needed 200 counterterms 150 at this order, 100 e.g., 50 $\begin{bmatrix} 50 \\ -50 \\ -50 \end{bmatrix}$ $V_{l=1, i=0} = \frac{c_1}{(2, 3)} pp$ $_{=1, j=0} = \frac{c_1}{(2\pi)^3} pp'$ 1 $\textbf{-}100$ $\overline{^{l=1,~j=0}}$ $\overline{^{l=1,~j=0}}$ $\overline{^{l=1,~j=0}}$ -150 -200 10 12 14 16 18 20 $\overline{2}$ 6 8 4 Λ [fm⁻¹] 200 cf. 150 3 100 $\left[\text{fm}^2\right]$ 50 $V_{l=0, j=1} = \frac{c}{\sqrt{2}}$ $t_{0,j=1} = \frac{c_t}{(2\pi)^{2}}$ *t* $\boldsymbol{0}$ $\overline{^{0,j=1}}^{\,-\,}\left(2\pi\right) ^{3}$ $\frac{1}{2}$ -50 -100 -150 -200 12 14 16 18 20 2 6 8 4 10 $\Lambda \left[\text{fm}^{-1} \right]$

0.012

0.011

1000

 \boldsymbol{P}_0 č \boldsymbol{P}_2 0.2 ۰. 0.15 0.1 2000 3000 4000 5000 1000 2000 3000 4000 5000 Λ [MeV] Λ [MeV]

Yang, Elster + Phillips '09

28 That means some counterterms deemed to be subNNLO because of NDA are actually NNLO or lower!

Root of the problem:

pion exchanges (long-ranged, contribute to waves higher than S) are singular (sensitive to short-range physics, require counterterms)

This has **P.** Othing to do with relativity...

(For the opposite opinion, see Epelbaum + Gegelia '12)

New, emerging PC:

LO:

OPE plus needed counterterms

(one per wave where OPE is non-perturbative, singular, attractive)

subLOs:

 NPE given by ChPT plus counterterms given by NDA with respect to the lowest order they appear at, treated in perturbation theory

(contrast with Epelbaum + Gegelia '09, who suggest: if you cannot take a large cutoff when treating certain subLOs non-perturbatively, don't take a large cutoff.)

(Details still being worked out, e.g. at ESNT Saclay workshop two weeks ago)

 $\boxed{T^{(0)}}$

…

 $E^{(1)} = \langle \psi^{(0)} | V^{(1)} | \psi^{(0)} \rangle$

smaller

new PC

Fits to data Pavon Valderrama '10, '11 Long + Yang '11, 12

bands (not error estimates): coordinate-space cutoff variation 0.6 – 0.9 fm

cyan: NNLO in Weinberg's scheme

Pavon Valderrama '10

Conclusion & Outlook

- \triangleright much has been learned about EFT in a non-perturbative context
- \triangleright non-analytic parts of long-range pots derived
- \triangleright a chiral EFT NN amplitude consistent with RG being constructed
- \triangleright compared to the NN amplitude obtained with W PC: it contains more counterterms (thus parameters) at a given order but subLOs require perturbation theory (sorry, but that is what physics asks of you)
- > details still being worked out, but first results suggest possibility of better fits to data than W PC; perhaps a "realistic" amplitude emerges at NNNLO?
- \triangleright few-body forces and currents remain to be studied; effects could be substantial since they are tied to NN amplitude