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Introduction

Exploration of the possibility to get rid of the single-electron
orbital-based picture of electronic structure, in favour of a picture
based on electron pairs (or geminals).
A geminal-based picture seems to have quantum chemists (the
ones that I know) salivating as it corresponds to their fondest
conceptions of chemical bonds forming and breaking.
Personally, I wouldn’t know. For me, it’s an interesting wave
function ansatz.
In order to dampen expectations: it’s all a bit premature, as we
have just explored (and got numerical results) for a tiny bit of all
feasible geminal product wave functions. The rest is speculative
and awaits further scrutiny.
More details can be found in Journal of Chemical Theory and
Computation 9, 1394 (2013) and Computational and Theoretical
Chemistry 1003, 101 (2013). This inludes ample references to
previous work along similar lines.
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Antisymmetrized product of single electron states

Independent electron wave function or Slater determinant:

|Φ〉 =
N∏

h=1

c†h|0〉

N occupied s.p. states

c†h =
M∑

i=1

xh;ia
†
i

Spin orbitals ψi(x) , with x ≡ rσ
|Φ〉 = Antisymmetrized product of single-electron states
Next: build single, double, triple,.., excitations on top of reference
state |Φ〉

INT2013 () Geminal product April 4, 2013 3 / 29



Antisymmetrized product of two-electron states

Alternative reference state ? Most obvious generalization:
consider Antisymmetrized product of two-electron states
Two-electron states, or pair states, or geminals:

b†p =
M∑

i,j=1

xp;i,j a†i a
†
j

where xp;i,j = −xp;j,i .

General APG state: |ΨAPG〉 =
∏P

p=1 b†p|0〉, where N = 2P.
Computationally intractable...
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Strongly orthogonal geminals

Commutation relations:

[bp′ ,b†p] = δp,p′ − 4
∑
i,j,j ′

x∗p′;i,j ′xp;i,ja
†
j aj ′

Last term reflects the fact that the b†p’s are composite bosons, and
is present for p 6= p′ even when the pair states are orthogonal,

〈0|bp′b†p|0〉 = 2
∑
i,j

x∗p′;i,jxp;i,j = δp,p′

Possible way out: partition s.p. space into P orthogonal
subspaces, one for each geminal. So each geminal is buit with
s.p. states that lie exclusively in one subspace. The geminals are
strongly orthogonal in the sense that x∗p′;i,j ′xp;i,j = 0 unless p = p′.
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Strongly orthogonal geminals

Antisymmetrized product of strongly orthogonal geminals

|ΨAPSG〉 =
P∏

p=1

b†p|0〉

is now very manageable because [bp′ ,b†p] ∼ δp,p′ , e.g.,

bp′ |ΨAPSG〉 =

 P∏
p(6=p′)=1

b†p

bp′b†p′ |0〉 =

 P∏
p(6=p′)=1

b†p

 |0〉
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Strongly orthogonal geminals

More compact notation: any fermion pair wave function can be
written, after a unitary transformation on s.p. space, in its
canonical form

b†p =

M/2∑
k=1

xp;k a†p;ka†
p;k̄

i.e. the s.p. states are paired off in pairs (k , k̄).
The pairing scheme is in general different for each geminal, but in
the case of strongly orthogonal geminals the pairing takes place in
different subspaces. So there is one global set of (k , k̄) pairs, and
the general APSG wave function can be written as
|ΨAPSG〉 =

∏P
p=1 b†p|0〉 with b†p =

∑M/2
k=1 xp;k a†ka†

k̄
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Antisymmetrized product of interacting geminals

In APSG the pairs live in different subspaces and are totally
noninteracting, which is a rather severe assumption. We can
restore correlation between the pairs by lifting the strong
orthogonality constraint.
We do keep the same pairing scheme for all geminals and end up
with ”antisymmetrized products of interacting geminals”:

|ΨAPIG〉 =
P∏

p=1

b†p|0〉 =
P∏

p=1

M/2∑
k=1

xp;k a†ka†
k̄

 |0〉
So formally the same expression as APSG, but without
partitioning s.p. space (so general xp;k amplitudes).
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Antisymmetrized product of interacting geminals

Can we handle APIG ? Not in general but, as it turns out, in a lot
more cases than just APSG.
APIG wave functions lie in DOCI space, i.e. the Hilbert space
spanned by the Slater determinants built with doubly occupied
(k , k̄) pairs:

|ΨDOCI〉 =
∑

k1..kP

Ck1..kP (a†k1
a†

k̄1
)..(a†kP

a†
k̄P

)|0〉

Combined with orbital optimization, DOCI is quite good at
describing static correlations in strongly correlated systems. But,
of course, dimension goes exponentially with increasing system
size...
DOCI is our benchmark for evaluating performance of various
APIG ansatzes.
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Permanents

APIG wave function

|ΨAPIG〉 =
P∏

p=1

M/2∑
k=1

xp;k a†ka†
k̄

 |0〉
is determined by the (P ×M/2) coefficient matrix xp;k . Rows=
geminals. Columns=DO pairs.
At least, APIG has a ”simple” expression for its DO Slater
components:

〈0|(ak̄P
akP )..(ak̄1

ak1)|ΨAPIG〉 = Per
(
xp;k

)p=1..P
k=k1..kP

This is in terms of permanents:

Per
(
xp;k

)p=1..P
k=k1..kP

=
∑
π∈SP

x1;kπ(1)
..xP;kπ(P)
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Feasible classes of geminals

Bad news: permanents, in contrast to determinants, have no link
with linear algebra. Evaluation of a permanent scales
exponentially with its dimension.
Only certain classes of xp;k are feasible (giving rise to easy
permanents). We identified two main types:

1 ”Limited reference-orbital” geminals.
2 Inverse rank-2 geminals (Cauchy form). Important subclass:

solutions of exactly solvable Richardson-Gaudin hamiltonians.

Combinations are also possible...
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Variational calculation versus projected Schrödinger
equation

Even if individual APIG wave-function components are easy to
calculate, a fully fledged variational calculation by minimizing
〈ΨAPIG|H|ΨAPIG〉 is (except in the Richardson-Gaudin case) not
feasible, since a factorial number of permanents come into play.
This can be avoided by the (coupled cluster inspired) idea of a
projected Schrödinger equation to determine the parameters of
the geminals:

〈Φtest |H|ΨAPIG〉 = E〈Φtest |ΨAPIG〉

For |Φtest〉 one can take e.g. a doubly-occupied Slater determinant
|Φ0〉 =

∏P
i=1(a†i a

†
ī
)|0〉 and its single-pair excitations

|Φaā
i ī
〉 = (a†aa†ā)(aīai)|Φ0〉. Other choices are possible.
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 25

This gives a system of coupled-cluster-like nonlinear equations. 
  

  

E = Φ0 Ĥ ΨAPIG

0 = Φii
aa Ĥ ΨAPIG − E Φii

aa ΨAPIG

0 = haa − hii( )+ ′Kaa − ′Kii( )+ J ja − Jij( ) − K ja − Kij( )( )
j=1
j≠i

P

∑
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

pi
a

+ ′Kia 1− pi
a( )

2⎛
⎝
⎜

⎞
⎠
⎟+ ′Kab − ′Kib pi

a( ) pi
b

b=P+1
b≠a

K

∑ + ′Kij − ′K ja pi
a( ) pj

a

j=1
j≠i

P

∑

+ ′K jb pij
ab − pi

a p j
b( )

b=P+1
b≠a

K

∑
j=1
j≠i

P

∑
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Variational calculation versus projected Schrödinger
equation

For H =
∑

i,j tija
†
i aj + 1

2
∑

i,j,k ,l Vijkla
†
i a
†
j alak :

hmn = tmn + tm̄n̄

Jmn = Vmnmn + Vmn̄mn̄ + Vm̄nm̄n + Vm̄n̄m̄n̄

Kmn = Vmnnm + Vmn̄n̄m + Vm̄nnm̄ + Vm̄n̄n̄m̄

K ′mn = Vmm̄nn̄ − Vmm̄nn̄

(last one is recognized as a pairing matrix element)
Limited number of permanents:
pa

i = wave function coefficient of |Φaā
i ī
〉 = permanent of xp;k with

p = 1..P and k = 1..P but column i replaced with column a.
pab

ij = wave function coefficient of double pair excitation = etc.
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1-reference-orbital geminals

In the class of limited reference-orbital geminals, APJroG, each
geminal can contain at most a small number J of orbital pairs from
a reference Slater determinant |Φ0〉 (at present always taken as
the lowest energy SD).
The most basic of this type is for J = 1, the AP1roG geminal class:

|ΨAP1roG〉 =
P∏

i=1

a†i a
†
ī

+

M/2∑
a=P+1

xp;aa†aa†ā

 |0〉
This is actually an exponential-type wave function, as one can
show that

|ΨAP1roG〉 = exp

 P∑
i=1

M/2∑
a=P+1

xi;aa†aa†āaīai

 |Φ0〉

For J > 1, APJroG wave functions are not (obviously) expressible
in exponential form.
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APIG

P

K

APr2roG
........................................................................

APr2G
........................................................................................................................................................................................................................................

APr1G=̂AGP
..............................................................................................................................................................................................................................................................................

AP1roG

APSG

GVB-PP

�
�✠

❅
❅❘

❄

❄

❄

❄

✲

✲

arbitrary ..
.
..
.
..
.
dependent

fixed identity matrices (with entries +1)

✲x y: x includes y as a special case
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Results for AP1roG wave functions

Combined with the projected Schrödinger equation (up to single
-pair excitations), the resulting equations are equivalent with
CC-D(DO). These are non-spin symmetry breaking pairing
schemes, i.e. pairing is spin-up/down for each spatial orbital.
Amazingly, we find for various small Coulomb systems, even at
this simplest level, a very accurate reproduction of DOCI results.
Energies of 2-, 4-, and 10-electron systems agree to within 10−5

a.u.. Caveat: orbital optimization is very important here (see
later). For all 2-electron systems, this is no surprise: should be
exact in any geminal theory with optimized orbitals. For the
4-electron systems, the stretched He dimer result shows the
size-extensivity, provided the orbital optimization is taken into
account, which provides a continuous accomodation between
”delocalized” molecular orbitals and localized atomic orbitals.
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Preliminary Results for AP1roG.  Energies in milliHartree. 
System Basis Ra

  ΔDOCI   ΔDOCI
opt   ΔAP1roG

opt    %Ec  

2-electron systems 
H2 STO-6G 2.0 -39.641 -39.641 -39.641 100.0% 
H2 6-31G** 2.0 -27.663 -38.860 -38.860 100.0% 
He 6-31G** – -32.194 -32.205 -32.205 100.0% 

HeH+ 6-31G** 2.0 -20.610 -36.596 -36.596 100.0% 
4-electron systems 

Be 6-31G – -33.321 -46.264 -46.261 98.9% 
He2 6-31G** 4.0 -26.047 -64.147 -64.147 99.5% 
He2 6-31G** 200.0 -23.669 -64.409 -64.409 100.0% 

10-electron systems 
Ne 6-31G – -36.151 -43.382 -43.384 37.4% 
Ne 6-311G* – -70.388 -84.528 -84.524 36.3% 
CH4 STO-6G 2.05311 -25.004 -62.653 -62.646 78.2% 
CH4 6-31G 2.05311 -21.072 -75.953 -75.946 63.0% 
(H2)5 STO-6G 2.0/2.5 -26.004 -162.208 -162.273 86.7% 
(H2)5 STO-6G 2.0/3.0 -22.881 -182.020 -182.083 94.4% 
(H2)5 STO-6G 2.0/4.0 -20.568 -195.507 -195.535 98.9% 
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Results for AP1roG wave functions

Here and in the following, we took the optimized orbitals from
DOCI.
10-electron systems: close reproduction of DOCI remains, but
only a limited fraction of the total correlation energy is reproduced,
when dynamical correlations are more important (Ne, CH4).
Dynamical correlations should be added (methods to do this are
available).
But looking at the stretching of a linear chain of H2 molecules,
AP1roG performs well, along with DOCI.
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Results for AP1roG wave functions

Let’s try a typical ”strong electron correlation” example: an
equidistant linear chain of n H-atoms. At small distance,
delocalized orbitals (metallic regime). When stretched, a
massively degenerate ground state (2n) is the correct picture.
Next figure: H8 chain, ANO-2s basis set.
(a) Energy versus distance between H-atoms. DOCI=AP1roG.
Qualitatively same behaviour as FCI (”fat” curve, somewhat
deeper). Dangerous region at about 4 a.u. (transition from
metallic to insulating regime). HF is, of course, disastrous. MP2
and CCSD (with HF as reference) also fail here. (For CC, it would
require 8p-h excitations to get it right?)
(b) fraction of FCI correlation energy. Upper panel: CCSD,
showing serious spike at transition distance. Lower panel:
AP1roG faithfully follows DOCI.
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Results for AP1roG wave functions

The same H8 chain. What with CCSD and CCD results with the
DOCI optimized orbitals? Still serious trouble at 4 a.u..
(a) Deviation with FCI: dotted line is CCSD with HF orbitals. Other
lines are CCSD and CCD with the DOCI optimized orbitals.
(b) Comparison between DOCI and, AP1roG/APSG/GVB-PP:
AP1roG faithfully reproduces DOCI over all distances. APSG and
GVB-PP start getting wrong at distances about 3 a.u. and 5 a.u.,
respectively.
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Role of orbital optimization

DOCI and related geminal-based methods are strongly orbital
dependent. As an example: for the CH4 calculation we plot the
gradual change in energy from canonical HF orbitals to the DOCI
optimized orbitals; and from the FCI natural orbitals to the DOCI
optimized orbitals. Full: DOCI energy. Dashed: AP1roG energy
with the same orbitals.
Conlusion: AP1roG is almost equivalent to DOCI provided that the
optimized orbitals are used. AP1roG is less sensitive to orbital
changes than the DOCI result.
Lower panel: energy difference between Ap1roG and DOCI.
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Cauchy and Richardson-Gaudin classes

Another class of easy permanents: Inverse rank-2 matrices:

xp;k =
1

λp − εk

Borchardt’s theorem (1855) states that

Per(xp;k )p=1..P
k=1..P =

Det(x2
p;k )p=1..P

k=1..P

Det(xp;k )p=1..P
k=1..P

Expressible in terms of determinants, which are cheap to evaluate.
Wave function:

|ΨCauchy 〉 =
P∏

p=1

M/2∑
k=1

1
λp − εk

a†ka†
k̄

 |0〉
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Cauchy and Richardson-Gaudin classes

This class contains the AGP wave function as a special case (take
λp constant).
It is precisely the form of exact solutions to the reduced BCS
hamiltonian (or more generally, Richardson-Gaudin type
hamiltonians.
In this case, the λp should obey a set of nonlinear equations.
Then also the 2-DM is known as a cheap expression in terms of
the parameters.
No complete calculations yet.
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 31

Example: The Richardson-Gaudin (RG) Hamiltonians describes competition 
between electron-pairing and independent electrons. Used to describe 
superconducting nanograins. The RG Hamiltonians do not describe open 
shells.  [R. W. Richardson, Phys. Lett. A v3, 277 (1963).] 

 

  
Ĥ = ε i aiα

+ aiα + aiβ
+ aiβ( )

i
∑ + g ajα

+ ajβ
+ aiβaiα

ij
∑ "pairing" model  

Solve with Bethe ansatz: 

  

Ψmodel = Bp
+

p=1

P

∏
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ N −2P electron Slater determinant

Bp
+ =

1
2ε i −λp

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟aiβ

+ aiα
+

i
∑

0 =1+ g 1
2ε i −λpi

∑ +2g 1
λp −λqq≠p

∑

ε i = parameters defining the Hamiltonian
λp = pairing energies; "quasimomenta"
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Summary and conclusions

Exploration of the feasible geminal-based descriptions of
electronic structure.
Promising initial results for AP1roG, but a lot has still to be done...
AP2roG and AP3roG are worked out theoretically and in the
pipeline.
Inclusion of dynamical correlations?
Cauchy form of geminals needs more scrutiny, in conjunction with
Bethe ansatz for exactly solvable models.
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