Gorkov-Green's function approach to open-shell systems

Vittorio Somà (TU Darmstadt & EMMI)

Based on:

- Somà, Duguet, Barbieri, PRC 84 064317 (2011)
- Somà, Barbieri, Duguet, PRC 87 011303(R) (2013)
- Barbieri, Cipollone, Somà, Duguet, Navrátil, arXiv:1211.3315
- Somà, Barbieri, Duguet, arXiv:1304.xxxx
- Somà, Cipollone, Barbieri, Duguet, Navrátil, in preparation

INT Workshop

Advances in many-body theory: from nuclei to molecules

Seattle, 4 April 2013

Limited to to doubly-closed-shell ± 1 and ± 2 nuclei

Cong-term goal: predictive nuclear structure calculations

- → With quantified theoretical errors

Sestimation of theoretical errors in *ab initio* methods

Paths to open-shell systems

Two ways to address (near)-degenerate systems

- (a) Multi-reference approaches
 - e.g. IMSRG + CI, MR-CC, microscopic VS-SM
- (b) Single-reference approaches → explicit account of pairing mandatory

Self-consistent Gorkov-Green's functions:

- Bogoliubov algebra + Green's function theory
- Address explicitly the non-perturbative physics of Cooper pairs
 - ---- Formulate the expansion scheme around a Bogoliubov vacuum
 - Breaking of particle-number conservation (eventually restored)

Gorkov's framework

Auxiliary many-body state

- ••• Mixes various particle numbers $|\Psi_0\rangle \equiv \sum_i c_A |\psi_0^A\rangle$
- → Introduce a "grand-canonical" potential $\Omega = H \mu A$
- \Rightarrow $|\Psi_0\rangle$ minimizes $\Omega_0 = \langle \Psi_0 | \Omega | \Psi_0 \rangle$ under the constraint $A = \langle \Psi_0 | A | \Psi_0 \rangle$

even

 \longrightarrow Observables of the N system $\Omega_0 = \sum_{A'} |c_{A'}|^2 \Omega_0^{A'} \approx E_0^A - \mu A$

Set of 4 Green's functions

[Gorkov 1958]

$$\begin{aligned} i G_{ab}^{11}(t,t') &\equiv \langle \Psi_0 | T \left\{ a_a(t) a_b^{\dagger}(t') \right\} | \Psi_0 \rangle &\equiv \left\| \begin{array}{c} a \\ b \\ b \\ \end{array} \right. \\ i G_{ab}^{12}(t,t') &\equiv \langle \Psi_0 | T \left\{ a_a(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle &\equiv \left\| \begin{array}{c} a \\ b \\ b \\ \end{array} \right. \\ i G_{ab}^{12}(t,t') &\equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle &\equiv \left\| \begin{array}{c} a \\ b \\ b \\ b \\ \end{array} \right. \\ i G_{ab}^{22}(t,t') &\equiv \langle \Psi_0 | T \left\{ \bar{a}_a^{\dagger}(t) \bar{a}_b(t') \right\} | \Psi_0 \rangle &\equiv \left\| \begin{array}{c} a \\ b \\ b \\ b \\ \end{array} \right. \\ \end{aligned}$$

Spectrum and spectroscopic factors

Separation energy spectrum

$$G_{ab}^{11}(\omega) = \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{V}}_{a}^{k*} \bar{\mathcal{V}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\}$$

Lehmann representation

where

$$\mathcal{U}_{a}^{k*} \equiv \langle \Psi_{k} | a_{a}^{\dagger} | \Psi_{0} \rangle$$
$$\mathcal{V}_{a}^{k*} \equiv \langle \Psi_{k} | \bar{a}_{a} | \Psi_{0} \rangle$$

and

$$\begin{bmatrix} E_k^{+\,(A)} \equiv E_k^{A+1} - E_0^A \equiv \mu + \omega_k \\ E_k^{-\,(A)} \equiv E_0^A - E_k^{A-1} \equiv \mu - \omega_k \end{bmatrix}$$

Spectroscopic factors

$$SF_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a}^{\dagger} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{U}_{a}^{k} \right|^{2}$$
$$SF_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{V}_{a}^{k} \right|^{2}$$

[figure from J. Sadoudi]

✿ Gorkov equations → energy *dependent* eigenvalue problem

$$\sum_{b} \begin{pmatrix} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{pmatrix} \Big|_{\omega_{k}} \begin{pmatrix} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{pmatrix}$$

✿ 1st order → energy-independent self-energy

$$\Sigma_{ab}^{11\,(1)} = \qquad \stackrel{a}{\bullet} - - - \stackrel{c}{-d} \bigcirc \downarrow \omega' \qquad \qquad \Sigma_{ab}^{12\,(1)} = \qquad \stackrel{a}{c}$$

Operation Of the self-energy of the self-energy

Transformed into an energy *independent* eigenvalue problem

$$\begin{pmatrix} T - \mu + \Lambda & \tilde{h} & C & -D^{\dagger} \\ \tilde{h}^{\dagger} & -T + \mu - \Lambda & -D^{\dagger} & C \\ C^{\dagger} & -D & E & 0 \\ -D & C^{\dagger} & 0 & -E \end{pmatrix} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{R}_{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{R}_{k} \end{pmatrix}$$

$$\otimes \text{Numerical scaling} \qquad m_{p,1} \approx \begin{pmatrix} N_{b} \\ 3 \end{pmatrix} \propto \frac{N_{b}^{3}}{6}$$

$$\sum_{\substack{M_{p} \\ \hline M_{p} \\ \hline M_{p}$$

Tame the dimension growth

How do we select the poles?
We do not...

$$\begin{pmatrix} T - \mu + \Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\ \tilde{h}^{\dagger} & -T + \mu - \Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\ \mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\ -\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E \end{pmatrix} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k} \end{pmatrix} = \omega_{k} \begin{pmatrix} \mathcal{U}^{k} \\ \mathcal{V}^{k} \\ \mathcal{W}_{k} \\ \mathcal{Z}_{k} \end{pmatrix}$$

- Conserves moments of spectral functions
- → Equivalent to exact diagonalization for $N_1 \rightarrow dim(E)$

Testing Krylov projection

Self-consistency and scaling

Sc Fully (dashed) vs. partially (solid) SC

- Scaling does not depend on A
- Partial self-consistency grasps most of the correlations
- → MBPT(2) inadeguate

Towards medium/heavy open-shell

♀ ⁷⁴Ni

→ NN interaction: chiral N³LO SRG-evolved to 2.0 fm⁻¹

[Entem and Machleidt 2003]

- → Very good convergence
- \implies From N=13 to N=11 \rightarrow 200 keV

(Extrapolation to infinite model space from [Furnstahl, Hagen, Papenbrok 2012] and [Coon et al. 2012])

 \bigcirc NN only

- Systematic along isotopic/isotonic becomes available
- ---- Overbinding (increasing with A): need for three-body forces

✿ Inclusion of 3NF as effective 2NF

Average over the 3rd nucleon in each nucleus

Additional term in the Galitskii-Koltun sum rule [Cipollone et al. 2013]

$$E_0^{\mathcal{A}} = \frac{1}{4\pi i} \int_{C\uparrow} d\omega \operatorname{Tr}_{\mathcal{H}_1} \left[\mathbf{G}^{11}(\omega) \left[\mathbf{T} + (\mu + \omega) \mathbf{1} \right] \right] - \frac{1}{2} \langle \Psi_0 | W | \Psi_0 \rangle$$

♦ 3N interaction: chiral N²LO (400 MeV) SRG-evolved to 2.0 fm⁻¹ [Navrátil 2007]

- → Fit to three- and four-body systems only
- → Modified cutoff to reduce induced 4N contributions [Roth et al. 2012]

Calcium isotopic chain

• First *ab initio* calculation of the whole Ca chain with NN + 3N forces

- → 3NF bring energies close to experiment
- → Induced 3NF and full 3NF investigated

Calcium isotopic chain

- → Original 3NF correct the energy curvature
- Good agreement with IM-SRG (quantitative when 3rd order included)

Potassium isotopic chain

Sexploit the odd-even formalism: application to K

Neutron-rich extremes of the nuclear chart

- Good agreement with measured S2n
- Towards a quantitative *ab initio* description of the medium-mass region

Pairing gaps

Three-point mass differences

$$\Delta_n^{(3)}(A) = \frac{(-1)^A}{2} \left[E_0^{A+1} - 2E_0^A + E_0^{A-1} \right]$$

Pairing gaps

Inversion of odd-even staggering

Second order and 3NF necessary to invert the staggering

Pairing gaps

Comparison with other microscopic SM and EDFs

[Holt, Menéndez, Schwenk 2013]

[Lesinski, Hebeler, Duguet, Schwenk 2012]

- General agreement with other methods
- Initial 3NF increase the gaps with respect to NN + induced 3NF

Benchmarks and chiral EFT interactions

- ◆ *Ab initio* calculations as a test for chiral EFT interactions
- ODifferent approaches agree in O and Ca chains

Shell structure evolution

One-neutron separation energies

Shell structure evolution

Second ESPE collect fragmentation of "single-particle" strengths from both N±1

$$\epsilon_{a}^{cent} \equiv h_{ab}^{cent} \delta_{ab} = t_{aa} + \sum_{cd} \bar{V}_{acad}^{NN} \rho_{dc}^{[1]} + \sum_{cdef} \bar{V}_{acdaef}^{NNN} \rho_{efcd}^{[2]} \equiv \sum_{k} S_{k}^{+a} E_{k}^{+} + \sum_{k} S_{k}^{-a} E_{k}^{-}$$
[Baranger 1970, Duguet and Hagen 2011]
Separation energies

$$(Centroids)$$

$$($$

Towards medium/heavy nuclei

- Second order compresses spectrum
- Many-body correlations
 screened out from ESPEs

Conclusions and outlook

Gorkov-Green's functions:

- Manageable route to (near) degenerate systems
- *Ab initio* description of medium-mass chains
- → 2NF + 3NF: towards predictive calculations
- Spectra: study of shell structure evolution

Improvement of the self-energy expansion

- Proper coupling to the continuum
- Formulation of particle-number restored Gorkov theory
- Towards consistent description of structure and reactions

Collaborators:

Carlo Barbieri (University of Surrey, UK) Andrea Cipollone (University of Surrey, UK)

Thomas Duguet (CEA Saclay, France)

Petr Navrátil (TRIUMF, Canada)

Funding:

German Research Foundation

Computing resources:

Centre de Calcul Recherche et Technologie

UNIVERSITY OF