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{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ
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which is evaluated as
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cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3
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The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)

Vittorio Somà (TU Darmstadt & EMMI)

Based on:

◦  Somà, Duguet, Barbieri, PRC 84 064317 (2011)
◦  Somà, Barbieri, Duguet, PRC 87 011303(R) (2013)
◦  Barbieri, Cipollone, Somà, Duguet, Navrátil, arXiv:1211.3315
◦  Somà, Barbieri, Duguet, arXiv:1304.xxxx
◦  Somà, Cipollone, Barbieri, Duguet, Navrátil, in preparation



Towards a first-principle description of nuclei

Light nuclei Medium-mass nuclei Medium-mass nuclei

NCSM, GFMC, .... Miscroscopic SM, .... GF, CC, IM-SRG, ....

Usual expansion schemes fail 
to account for pairing correlations

Advances in ab initio techniques
Advances in ab initio techniques

Configuration interaction limited 
to small valence/model spaces

Limited to to doubly-closed-shell ± 1 and ± 2 nuclei
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Error estimates in ab initio calculations

✪ Long-term goal: predictive nuclear structure calculations

➟ With quantified theoretical errors

➟ Consistent description of structure and reaction

1) Hamiltonian                             ✘

2) Many-body expansion           ✘

3) Model space truncation         ✔

4) Numerical algorithms            ✔

✪ Estimation of theoretical errors in ab initio methods

Gorkov GF



Paths to open-shell systems

(a) Multi-reference approaches

(b) Single-reference approaches

✪ Two ways to address (near)-degenerate systems

➟ e.g. IMSRG + CI, MR-CC, microscopic VS-SM

➟ explicit account of pairing mandatory

➟ Formulate the expansion scheme around a Bogoliubov vacuum

✪  Address explicitly the non-perturbative physics of Cooper pairs

➟ Breaking of particle-number conservation (eventually restored)

✪  Bogoliubov algebra + Green’s function theory

Self-consistent Gorkov-Green’s functions:



Gorkov’s framework
✪ Auxiliary many-body state

➟ Introduce a “grand-canonical” potential

➟ Mixes various particle numbers

➟ Observables of the N system
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FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-

dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.
Let us make the hypothesis that ideal one-nucleon pick-

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads
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⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6
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and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.
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⌦ = H � µA (19)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (20)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (21)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (20) applied
to n = 1 leads to [12, 13, 21]
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X
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[1]
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1

4

X

rstv
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where V̄ 2N
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prtqsv are anti-symmetrized matrix el-
ements and where
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0 i =
X
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V p
µ
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0 |a†ra†saqap| A

0 i , (23b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the

kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].

Equation (21) demonstrates that the centroid matrix
is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (21); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.

On the practical side, Eq. (21) underlines that the av-
eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (25) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (25) with a density matrix
reflecting the presence of correlations in the system.

Using that the even-even ground state the one-nucleon
transfer is performed on is a J⇧ = 0+ state, Wigner-
Eckart’s theorem allows one to obtain the explicit de-
pendence of spectroscopic amplitudes on mp and Mµ,
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as
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where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (23)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (23) applied
to n = 1 leads to [12, 13, 21]
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where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where
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X
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⇤ V q

µ , (25a)
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denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (24) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (24); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (24) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (28) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic

✪ Set of 4 Green’s functions [Gorkov 1958]35

are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g
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e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
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a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
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d

a
↓ ω′ ,

(C16)
and reads
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∫
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2π
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V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as
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where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (21)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (26a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (26b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (26c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
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Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (21)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as
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0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]
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and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated

35

are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (16)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (19)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (20)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (21a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (21b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (21c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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minimizes under the constraint➟
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⌦ = H � µA (19)

A = h 0|A| 0i (20)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (21)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (22)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (21) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (23)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (24a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (24b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (22) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (22); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (22) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (26) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (26) with a density matrix
reflecting the presence of correlations in the system.
Using that the even-even ground state the one-nucleon
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Eventually, standard Dyson’s equation is generalized as
set of coupled equations involving the two types of prop-
agators and self-energies. These are known as Gorkov’s
equations [45] and read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G(0)
ac (ω) Σ̃cd(ω)Gdb(ω) . (34)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
one-body normal and anomalous Green’s functions in
terms of unperturbed ones. If the method is self-
consistent, the final result does not depend on the choice
of the auxiliary potential, which disappears from the
equations once the propagators are dressed with the cor-
responding self-energies. From a practical point of view
it is useful to track where the auxiliary potential enters
and how its cancelation is eventually worked out. This
point is addressed in Section IVA, where the solution of
Gorkov’s equations is discussed. In particular, and since
such a solution is to be found through an iterative pro-
cedure, one is eventually interested in choosing a good
auxiliary potential as a starting point.

Let us further remark that, as the auxiliary potential
(29) has a one-body character, i.e. it acts as a mean field,
the search for the ground state of ΩU corresponds to solv-

ing a Bogoliubov-like problem, as becomes evident when
writing the unperturbed grand potential in its Nambu’s
form

[ΩU ]ab =

(

Tab + Uab − µ δab Ũ †
ab

Ũab −Tab − Uab + µ δab

)

.

(35)
In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
(HFB) problem and then uses the resulting propagators
GHFB

ab as the unperturbed ones. Notice that the self-
energy corresponding to this solution, ΣHFB , eventually
differs from the first-order self-energy Σ(1) as soon as
higher orders are included in the calculation because of
the associated self-consistent dressing of the one-body
propagators.

G. Lehmann representation

Let us consider a complete set of normalized eigen-
states of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (36)

and which span the Fock space F . Inserting the corre-
sponding completeness relation, G11(t, t′) becomes

G11
ab(t, t

′) = −iθ(t− t′)
∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉 ei[Ω0−Ωk](t−t′) + iθ(t′ − t)
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉 e−i[Ω0−Ωk](t−t′) .

Using the integral representation of the theta function
and reading out the Fourier transform, one obtains the
propagator in energy representation under the form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (37)

One can proceed similarly for the other three Gorkov-
Green’s functions and obtain the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Uk
a Uk∗

b

ω − ωk + iη
+

V̄k∗
a V̄k

b

ω + ωk − iη

}

, (38a)

G12
ab(ω) =

∑

k

{
Uk
a Vk∗

b

ω − ωk + iη
+

V̄k∗
a Ūk

b

ω + ωk − iη

}

, (38b)

G21
ab(ω) =

∑

k

{
Vk
a Uk∗

b

ω − ωk + iη
+

Ūk∗
a V̄k

b

ω + ωk − iη

}

, (38c)

G22
ab(ω) =

∑

k

{
Vk
a Vk∗

b

ω − ωk + iη
+

Ūk∗
a Ūk

b

ω + ωk − iη

}

. (38d)

with Gorkov’s spectroscopic amplitudes defined as

Uk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (39a)

Vk∗
a ≡ 〈Ψk|āa|Ψ0〉 , (39b)

and

Ūk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (40a)

V̄k∗
a ≡ 〈Ψk|aa|Ψ0〉 , (40b)

from which follows that2

Ūk
a = +ηa Uk

ã , (41a)

V̄k
a = −ηa Vk

ã . (41b)

The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
The relation of such poles to separation energies between

2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
a =

+Uk
ā and V̄k

a = −Vk
ā .

3 As discussed later on, eigensolutions of Gorkov’s equations come
in pairs (ωk ,−ωk) such that one should only sum on positive
solutions in Eq. 39.
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where the symmetry quantum number denoting the par-
ticle number has been singled out. The label µ collects
a principal quantum number nµ, total angular momen-
tum Jµ, the projection of the latter along the z axis Mµ,
parity ⇧µ and isospin projection along the z axis Tµ of
the many-body state of interest. Use of the Greek label
µ will be made to denote the subset of quantum num-
bers µ ⌘ (⇧µ, Jµ, Tµ). Due to rotational invariance of
the nuclear Hamiltonian, eigenenergies EA

µ ⌘ EA
nµµ

are
independent of Mµ.

In the following, we consider a spherical single-
particle basis {a†p} appropriate to discussing the spher-

ical shell structure. Basis states are labelled by p ⌘
{np,⇡p, jp,mp, ⌧p} ⌘ {np,mp,↵p}, where np represents
the principal quantum number, ⇡p the parity, jp the total
angular momentum, mp its projection along the z-axis,
and ⌧p the isospin projection along the same axis.

We also consider the direct-product basis {b†~r�⌧},
where ~r is the position vector, � the projection of the
nucleon spin along the z axis, and ⌧ its isospin projec-
tion.

A. Spectroscopic amplitudes

The physical processes providing information on the
single-particle shell structure are one-nucleon transfer re-
actions. Although the discussion can be carried out for
the transfer on any initial [13]. many-body state, we
restrict ourselves in the following to the transfer on the
ground state | A

0 i of an even-even system, i.e. a J⇡ = 0+

state. Furthermore, we consider this nucleus to be of dou-
bly closed-shell character2.

In this context, let us introduce Uµ (V⌫) as the ampli-
tude to reach a specific eigenstate | A+1

µ i (| A-1
⌫ i) of the

A+1 (A-1) system by adding (removing) a nucleon in a
specific single-particle state to (from) the ground state of
the A-body system | A

0 i. Such spectroscopic amplitudes
can be defined through their representation in any given
single-particle basis. In basis {a†p}, they read

Up
µ ⌘ h A+1

µ |a†p| A
0 i⇤ , (2a)

V p
⌫ ⌘ h A-1

⌫ |ap| A
0 i⇤, (2b)

whereas their representation in basis {b†~r�q} provides the
associated wave functions or overlap functions

Uµ(~r�⌧) ⌘ h A+1
µ |b†~r�⌧ | A

0 i⇤ , (3a)

V⌫(~r�⌧) ⌘ h A-1
⌫ |b~r�⌧ | A

0 i⇤. (3b)

An important property regarding the asymptotic be-
haviour of overlap functions derives from their equation

2 Such a notion relates to the filling of shells in the uncorrelated,
e.g. Hartree-Fock, picture.

of motion given by [18]

[h1 + ⌃(!)]!=E+
µ
Uµ = E+

µ Uµ , (4)

and similarly for (V⌫ , E�
⌫ ), where (observable) one-

nucleon separation energies are defined through

E+
µ ⌘ EA+1

µ � EA
0 , (5a)

E�
⌫ ⌘ EA

0 � EA-1
⌫ . (5b)

The energy-dependent potential ⌃(!) denotes the dynam-

ical part of the irreducible self-energy [18] that naturally
arises in self-consistent Green’s-function theory and that
is to be evaluated at the eigensolution E+

µ in Eq. (4).
The static field h1 is defined in Eq. (18) and contains
both the kinetic energy and the energy-independent part
of the one nucleon self-energy. One can show from Eq. (4)
that the long-distance behaviour of the radial part of the
overlap function is governed by the corresponding one-
nucleon separation energy, e.g. for E+

µ < 0

Uµ(r�⌧) �!
r!+1 A+

µ
e�&+µ r

&+µ r
, (6)

where A+
µ denotes the so-called asymptotic normalization

coe�cient (ANC) while the decay constant is given by
&+µ ⌘ (�2mE+

µ /~2)1/2, where m is the nucleon mass3.
A similar result can, of course, be obtained for V⌫(r�⌧)
whose decay constant &�⌫ relates to E�

⌫ .
From spectroscopic amplitudes one defines addition S+

µ

and removal S�
⌫ spectroscopic probability matrices asso-

ciated with states | A+1
µ i and | A-1

⌫ i, respectively. Their
matrix elements read in basis {a†p}

S+pq
µ ⌘ h A

0 |ap| A+1
µ ih A+1

µ |a†q| A
0 i (7a)

= Up
µ Uq ⇤

µ ,

S�pq
⌫ ⌘ h A

0 |a†q| A-1
⌫ ih A-1

⌫ |ap| A
0 i (7b)

= V p ⇤
⌫ V q

⌫ ,

such that their diagonal parts, when expressed in the co-
ordinate space basis, are nothing but transition densities

for the one-nucleon transfer from | A
0 i to | A+1

µ i and
| A-1

⌫ i, respectively.
Tracing the two spectroscopic probability matrices

over the one-body Hilbert space H1 gives access to spec-
troscopic factors

SF+
k ⌘

X

a2H1

��h k|a†a| 0i
��2 =

X

a2H1

��Uk
a

��2 , (8a)

SF�
k ⌘

X

a2H1

|h k|aa| 0i|2 =
X

a2H1

��Vk
a

��2 , (8b)

3 Subtracting the center-of-mass motion would lead to using the
reduced mass of the added/removed nucleon.
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FIG. 2: (Color online) Same as Fig. ?? for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure ??, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (??)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (??), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful def-
inition of ESPEs does exist and goes back to French [?
] and Baranger [? ]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. ??). E↵ective single-particle
energies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

E+(A)
k ⌘ EA+1

k � EA
0 ⌘ µ+ !k (16)

Equation (??) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (??) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion ?? might not be exhausted.
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case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
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jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
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A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
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tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
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µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1
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⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
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µ +
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E� (A)
k ⌘ EA

0 � EA�1
k ⌘ µ� !k (16)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (15) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion 10 might not be exhausted.
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pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C9c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as
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V̄acbd G
11
dc(ω
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where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains
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Ūk
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V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
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V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑
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The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)
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ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
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where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been introduced. Summing the two terms one has

Σ11 (2′+2′′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + 2Pk1k2k3
b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b + 2Qk1k2k3
b )

ω + Ek1k2k3 − iη

}

, (94)

which can be written, using properties (90) and (91), as

Σ11 (2)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

=
1

6

∑

k1k2k3

{

(Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a ) (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη

}

+
1

6

∑

k1k2k3

{

(N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a )† (N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

Σ11
ab(ω) =

∑

k1k2k3

{

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

†Dk1k2k3
b

ω + Ek1k2k3 + iη

}

, (95)

with the definitions

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a

]

, (96a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a

]

. (96b)

One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk






U
V
W
Z






k

=







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












U
V
W
Z






k

≡ Ξ






U
V
W
Z






k

(100)
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2
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dω′

2π

∑

cd,k
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V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2
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C↑

dω′
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cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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convention introduced in Rule 6. Inserting the Lehmann
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The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads

36

convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)

29

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′ + ω′′ − ω) . (C13)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C14)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C13) we obtain

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f Ūk2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d Ūk2

f Ūk2∗
g Vk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Vk2

g Ūk3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

. (C15)

With the same technique we can evaluate all other terms contributing to the second order self-energy. We have

Σ11 (2′′)
ab (ω) = ↑ ω′

d ḡ

c f

↑ ω′′′↑ ω′′

b

a

h̄

e

(C16)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dḡbh̄ G11
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C17)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d Ūk2

f V̄k2∗
h Uk3∗

g Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Uk2

h V̄k3
g Ūk3∗

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C18)
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for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄hb̄gd̄ G12
cd(ω′)G11

eg(ω′′)G11
hf (ω′ + ω′′ − ω) (C23)

=

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2
e Ūk2∗

g

ω′′ − ωk2
+ iη

+
Vk2∗

e Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
f

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3

f

ω′ + ω′′ − ω + ωk3
− iη

}

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d Ūk2
e Ūk2∗

g Vk3∗
h Vk3

f

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
e Vk2

g Ūk3

h Ūk3∗
f

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

and

Σ12 (2′′)
ab (ω) =

c f

← ω′

↓ ω′′′

h̄ b̄

↖ ω′′

e
a

d̄ḡ

, (C24)

yielding

Σ12 (2′′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd(ω′)G12

fg(ω
′′)G21

he(ω
′ + ω′′ − ω) (C25)

=
1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2
g

ω′′ + ωk2
− iη

} {

V̄k3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2

f V̄k2∗
g Uk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
f Vk2

g V̄k3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

Finally

Σ21 (2′)
ab (ω) =

g d

↑ ω′′ ↓ ω′′′

ā e

c̄

b

↑ ω′′′

h

f

, (C26)

✪ Gorkov equations energy dependent eigenvalue problem

10

substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)



Scaling of Gorkov’s problem

✪ Transformed into an energy independent eigenvalue problem

✪ Numerical scaling

27

and using Eqs. (145), (147), (148), (150), (158), one can write Eqs. (99) as

ωk Unk

na [α] =
∑

nb

[

(t[α]nanb
− µ δnanb

+ Λ[α]
nanb

)Unk

nb [α] + h̃[α]
nanb

Vnk

nb [α]

]

+
∑

nk1nk2nk3

∑

κ1κ2κ3

∑

J

[

Cnk1nk2nk3

na [ακ3κ1κ2] J
Wnk1nk2nk3

nk [κ3κ1κ2] J
−Dnk1nk2nk3

na [ακ3κ1κ2] J

†Znk1nk2nk3

nk [κ3κ1κ2] J

]

, (161a)

ωk Vnk

na [α] =
∑

nb

[

−(t[α]nanb
− µ δnanb

+ Λ[α]
nanb

)Vnk

nb [α] + h̃[α] †
nanb

Unk

nb [α]

]

+
∑

nk1nk2nk3

∑

κ1κ2κ3

∑

J

[

−Dnk1nk2nk3

na [ακ3κ1κ2] J

†Wnk1nk2nk3

nk [κ3κ1κ2] J
+ Cnk1nk2nk3

na [ακ3κ1κ2] J
Znk1nk2nk3

nk [κ3κ1κ2] J

]

. (161b)

The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
to the magnetic quantum number mk.

H. Numerical solution and scaling of
block-diagonal Gorkov’s equations

Eqs. (160) and (161) can also be written in the ma-
trix form (100). Their numerical solution, i.e. the di-
agonalization of the corresponding matrix Ξ, requires a
severe computational effort. In the present section the
calculation procedure is outlined, in particular address-
ing the scaling of the method with both the number of
basis states Nb and the number of iterations Nit. Let
us consider the form of the matrix Ξ after the first iter-
ation, depicted in Fig. 4. As mentioned in Sec. VF
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the propagator, which has an initial number of poles
Np = 2Nb, generates at the first iteration a matrix ΞHFB

of the same dimension Np and a matrix Ξ(2) of dimension
Mp,1 = 2mp,1, where

mp,1 ≈
(

Nb

3

)

∝ N3
b

6
. (162)

The total dimension of the matrix to be diagonalized is
then Ntot,1 = Np + Mp,1 ≈ N3

b . Proceeding similarly
for the second iteration one realizes that the matrix Ξ(2)

assumes a dimension Mp,2 ≈ N3
tot,1, hence the total di-

mension of Ξ becomes Ntot,2 = Np + Mp,2 ≈ N9
b . In

general, at the nth iteration the dimension raises to

Ntot,n = Np +Mp,n ≈ N3n
b . (163)

Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
In the present work the following computational

method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb

, E pNb
}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′

E′ = Q∗
NL

EQNL . (164)
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and using Eqs. (145), (147), (148), (150), (158), one can write Eqs. (99) as
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The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
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Eqs. (160) and (161) can also be written in the ma-
trix form (100). Their numerical solution, i.e. the di-
agonalization of the corresponding matrix Ξ, requires a
severe computational effort. In the present section the
calculation procedure is outlined, in particular address-
ing the scaling of the method with both the number of
basis states Nb and the number of iterations Nit. Let
us consider the form of the matrix Ξ after the first iter-
ation, depicted in Fig. 4. As mentioned in Sec. VF
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the propagator, which has an initial number of poles
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general, at the nth iteration the dimension raises to
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Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
In the present work the following computational

method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb

, E pNb
}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′

E′ = Q∗
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The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
to the magnetic quantum number mk.
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Eqs. (160) and (161) can also be written in the ma-
trix form (100). Their numerical solution, i.e. the di-
agonalization of the corresponding matrix Ξ, requires a
severe computational effort. In the present section the
calculation procedure is outlined, in particular address-
ing the scaling of the method with both the number of
basis states Nb and the number of iterations Nit. Let
us consider the form of the matrix Ξ after the first iter-
ation, depicted in Fig. 4. As mentioned in Sec. VF
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the propagator, which has an initial number of poles
Np = 2Nb, generates at the first iteration a matrix ΞHFB

of the same dimension Np and a matrix Ξ(2) of dimension
Mp,1 = 2mp,1, where
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(
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)
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The total dimension of the matrix to be diagonalized is
then Ntot,1 = Np + Mp,1 ≈ N3

b . Proceeding similarly

for the second iteration one realizes that the matrix Ξ(2)

assumes a dimension Mp,2 ≈ N3
tot,1, hence the total di-

mension of Ξ becomes Ntot,2 = Np + Mp,2 ≈ N9
b . In

general, at the nth iteration the dimension raises to n

Ntot,n = Np +Mp,n ≈ N3n
b . (163)

Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
In the present work the following computational

method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb

, E pNb
}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′

E′ = Q∗
NL

EQNL . (164)
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and using Eqs. (144), (146), (147), (149), (157), one can write Eqs. (98) as
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The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
to the magnetic quantum number mk.

H. Numerical solution and scaling of
block-diagonal Gorkov’s equations

Eqs. (159) and (160) can also be written in the matrix
form (99). Their numerical solution, i.e. the diagonaliza-
tion of the corresponding matrix Ξ, requires a severe com-
putational effort. In the present section the calculation
procedure is outlined, in particular addressing the scal-
ing of the method with both the number of basis states
Nb and the number of iterations Nit. Let us consider the
form of the matrix Ξ after the first iteration, depicted in
Fig. 4. As mentioned in Sec. VF the propagator, which
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has an initial number of poles Np = 2Nb, generates at
the first iteration a matrix ΞHFB of the same dimension
Np and a matrix Ξ(2) of dimension Mp,1 = 2mp,1, where
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The total dimension of the matrix to be diagonalized is
then Ntot,1 = Np + Mp,1 ≈ N3

b . Proceeding similarly
for the second iteration one realizes that the matrix Ξ(2)

assumes a dimension Mp,2 ≈ N3
tot,1, hence the total di-

mension of Ξ becomes Ntot,2 = Np + Mp,2 ≈ N9
b . In

general, at the nth iteration the dimension raises to

Ntot,n = Np +Mp,n ≈ N3n
b . (162)

Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
In the present work the following computational

method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb

, E pNb
}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′

E′ = Q∗
NL

EQNL . (163)

The new matrix E′ constitutes the orthogonal projection
of E into the Krylov subspace KNL in the representation
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The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
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tion of the corresponding matrix Ξ, requires a severe com-
putational effort. In the present section the calculation
procedure is outlined, in particular addressing the scal-
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form of the matrix Ξ after the first iteration, depicted in
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has an initial number of poles Np = 2Nb, generates at
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Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
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method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb
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}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′
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The latter four equations constitute the block-diagonal form of Gorkov’s equations valid whenever the reference state
is a JΠ = 0+ state. Note that pole energies ωk only depend on nk and κ, i.e. they display a degeneracy with respect
to the magnetic quantum number mk.

H. Numerical solution and scaling of
block-diagonal Gorkov’s equations

Eqs. (159) and (160) can also be written in the matrix
form (99). Their numerical solution, i.e. the diagonaliza-
tion of the corresponding matrix Ξ, requires a severe com-
putational effort. In the present section the calculation
procedure is outlined, in particular addressing the scal-
ing of the method with both the number of basis states
Nb and the number of iterations Nit. Let us consider the
form of the matrix Ξ after the first iteration, depicted in
Fig. 4. As mentioned in Sec. VF the propagator, which
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FIG. 4. Scheme of the matrix Ξ.

has an initial number of poles Np = 2Nb, generates at
the first iteration a matrix ΞHFB of the same dimension
Np and a matrix Ξ(2) of dimension Mp,1 = 2mp,1, where

mp,1 ≈
(

Nb

3

)

∝ N3
b

6
. (161)

The total dimension of the matrix to be diagonalized is
then Ntot,1 = 2Nb + Mp,1 ≈ N3

b . Proceeding similarly
for the second iteration one realizes that the matrix Ξ(2)

assumes a dimension Mp,2 ≈ N3
tot,1, hence the total di-

mension of Ξ becomes Ntot,2 = Np + Mp,2 ≈ N9
b . In

general, at the nth iteration the dimension raises to

Ntot,n = 2Nb +Mp,n ≈ N3n
b . (162)

Current computational resources can not afford such a
scaling and an alternative solution method has to be de-
veloped.
In the present work the following computational

method based on the Lanczos algorithm is employed. At
each iteration, the Lanczos procedure is applied to the
matrix E (of dimension mp) yielding a matrix E′ of di-
mension m′

p << mp. The resulting matrix Ξ′, of dimen-
sion N ′

tot = Np+2m′
p << Ntot is then diagonalized with

standard techniques. This procedure allows to restrain
the exponential growth of the matrix which has to be
diagonalized at each iteration, enabling a large number
of iterations and hence ensuring the convergence of the
solutions.
The Lanczos algorithm can be viewed as an extended

power method for finding eigenvalues of very large matri-
ces. It consists of a few operations on a number of vectors
(called pivots) repeated iteratively, in the present case:

1. Nb pivots {p1, ..., pNb
} are created.

2. An order-one Krylov subspace for the matrix E,
i.e. K1 = span {p1, E p1, p2, E p2, ..., pNb

, E pNb
}, is

generated.

3. The vectors spanning the Krylov subspace are or-
thonormalized, yielding a new set of vectors.

4. The procedure restarts from point 2 using the ob-
tained orthonormal vectors instead of the initial
ones.

After NL Lanczos iterations, the resulting orthonormal
vectors form an orthonormal basis in the Krylov subspace
KNL and a transformation matrix QNL for E′

E′ = Q∗
NL

EQNL . (163)

The new matrix E′ constitutes the orthogonal projection
of E into the Krylov subspace KNL in the representation
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E













Uk

Vk

Wk

Zk







= ωk







Uk

Vk

Wk

Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)



Tame the dimension growth
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X
k
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∂ω
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∣
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X
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= 1 +
∑

ab
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k1k2k3
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Uk∗
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∂

∂ω
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Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3
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Wk1k2k3
k

†Wk1k2k3
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k
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Lanczos

E

-E

E′

-E′

➟ Conserves moments of spectral functions

➟ Equivalent to exact diagonalization
    for Nl → dim(E)

We do not...

Krylov projection of Gorkov matrix

✪ How do we select the poles?



Testing Krylov projection
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Self-consistency and scaling
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Towards medium/heavy open-shell
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Calcium isotopic chain
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where the normal density matrix ρab has been defined in Eq. (76) and

ρ̃ab ≡ 〈Ψ0|ābaa|Ψ0〉 =
∑

k

Uk
b Vk∗

a , (90)

is the anomalous density matrix.

FIG. 1. First-order normal Σ11 (1) (left) and anomalous Σ21 (1) (right) self-energies.

D. HFB limit

Neglecting higher-order contributions to the self-energy and denoting by U and V the amplitudes entering the
propagators when they are computed at first order only, Eqs. (73) and (89) read

∑

b

(

tab + Λab − µab h̃ab

h̃†
ab −tab − Λab + µab

)(

Uk
b

V k
b

)

= ωk

(

Uk
a

V k
a

)

, (91)

which represents the HFB eigenvalue problem, usually written as

Ek

(

Uk

V k

)

=

(

h− µ h̃
h̃† −(h− µ)†

)(

Uk

V k

)

≡ ΩHFB

(

Uk

V k

)

, (92)

by setting ωk ≡ Ek and hab ≡ tab + Λab. In this case
U and V are the components of the unitary Bogoliubov
quasiparticle transformation







aa =
∑

k Ū
k
a βk + V k∗

a β†
k

a†a =
∑

k Ū
k∗
a β†

k + V k
a βk .

(93)

Moreover, the normalization condition (87) reduces in
this case to the well-known identity

∑

a

∣
∣Yk

a

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
+
∑

a

∣
∣V k

a

∣
∣
2
= 1 , (94)

which proves that when the self-energy is computed
at first order only, one recovers the Hartree-Fock-
Bogoliubov scheme. Let us recall that when higher or-
ders are included in the calculation, first-order terms are
self-consistently modified (in particular by the fragmen-
tation of the quasi-particle strength) such that they do
not correspond anymore to standard Hartree-Fock and
Bogoliubov potentials.

E. Second-order self-energies

Let us now discuss the second-order contributions to
both the normal and anomalous self-energies. In Figs.

FIG. 2. Second-order normal self-energies Σ11 (2′) (left) and

Σ11 (2′′) (right).

2 and 3 the four types of normal and anomalous self-
energies are depicted. The evaluation of all second-order
diagrams is discussed in App. C. Before addressing their
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✪ Inclusion of 3NF as effective 2NF

➟ Average over the 3rd nucleon in each nucleus

=

➟ Additional term in the Galitskii-Koltun sum rule  [Cipollone et al. 2013]

✪ 3N interaction: chiral N2LO (400 MeV) SRG-evolved to 2.0 fm-1  [Navrátil 2007]

➟ Fit to three- and four-body systems only

➟ Modified cutoff to reduce induced 4N contributions  [Roth et al. 2012]
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X
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G (0)
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where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.

The scheme is in principle exact (i.e. if one could
compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing e↵ects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.

Instead of targeting the actual ground state | N
0 i of

the system, one considers a symmetry breaking state | 0i
defined as a superposition of the true ground states of the
(N � 2)-, N -, (N + 2)-, ... particle systems, i.e.

| 0i ⌘
even

X

N

cN | A
0 i , (26)

where cN denote complex coe�cients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one

considers the grand-canonical-like potential ⌦ = H�µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state | 0i is
chosen to minimize

⌦0 = h 0|⌦| 0i (27)

under the constraint

N = h 0|N | 0i , (28)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(27), together with the normalization condition

h 0| 0i =
even

X

N

|cN |2 = 1 , (29)

determines coe�cients cN , while Eq. (28) fixes the chem-
ical potential µ.
By choosing | 0i as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles di↵er by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of ⌦ such that their
binding energies fulfill

... ⇡ EN+2
0 � EN

0 ⇡ EN
0 � EN�2

0 ⇡ ... ⇡ 2µ , (30)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

⌦0 =
X

N 0

|cN 0 |2⌦N 0

0 ⇡ EA
0 � µN , (31)

which follows from Eqs. (27) and (30).

C. Gorkov propagators

In order to access all one-body information contained
in | 0i, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.



Calcium isotopic chain
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✪ First ab initio calculation of the whole Ca chain with NN + 3N forces

➟ Induced 3NF and full 3NF investigated

➟ 3NF bring energies close to experiment



Calcium isotopic chain
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➟ Original 3NF correct the energy curvature

➟ Good agreement with IM-SRG (quantitative when 3rd order included)

[Hergert et al. 2013]



Potassium isotopic chain
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✪ Exploit the odd-even formalism: application to K

➟ Trend and agreement similar to calcium

➟ Future: consistent description of medium-mass driplines



Two-neutron separation energies

26 28 30 32 34
0

5

10

15

20 Ca (exp.)
Ca (GGF)
K (exp.)
K (GGF)

N

S2
n 

[M
eV

]
✪ Neutron-rich extremes of the nuclear chart

➟ Good agreement with measured S2n

➟ Towards a quantitative ab initio description of the medium-mass region



Pairing gaps

✪ Three-point mass differences

3

the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ⌘ (1 + P12 P23 + P13 P23)(1� P23)

= 1� P12 � P13 � P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ⌘ h1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:fi

⌘ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
� (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
� (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
� (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ⌘ ⌘a ⌘b (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ⌘ ⌘a ⌘c h1:ā; 2:b|V NN |1:c̄; 2:di , (8)

V̄ NN
āb̄c̄d̄ ⌘ ⌘a ⌘b ⌘c ⌘d h1:ā; 2:b̄|V NN |1:c̄; 2:d̄i , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by | N

0 i, so-
lution of

H | N
k i = EN

k | N
k i (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

iGab(t, t
0) ⌘ h N

0 |T
n

aa(t)a
†
b(t

0)
o

| N
0 i , (11)

Gab(!) =

Z

d (t� t0) ei!(t�t0) Gab(t, t
0) (12)

hÔi =
X

ab

Z

d!

2⇡
Oab Gab(!) (13)

Ô =
X

ab

Oab a
†
a ab (14)

hT̂ i =
X

ab

Z

d!

2⇡
tab Gab(!) (15)

hĤi = E0 =
X

ab

Z

d!

2⇡
[tab + ! �ab] Gab(!) (16)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ⌘ exp[iHt] ab exp[�iHt] , (17a)

a†b(t) =
h

a(H)
b (t)

i†
⌘ exp[iHt] a†b exp[�iHt] . (17b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.

The equations of motion for the Green’s functions take
the form of a set of N coupled integro-di↵erential equa-
tions, each of them involving the (i� 1)-, i- and (i+ 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy ⌃ and the derivation of Dyson’s equation

�(3)
n (A) =

(�1)A

2
[EA+1

0 � 2EA
0 + EA�1

0 ] (18)

a

c

d

b

⌃R
cd(!) (19)

Gab(!) = G(0)
ab (!) +

X

cd

G (0)
ac (!)⌃?

cd(!)Gdb(!) (20)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.

38 40 42 44 46 48 50
0

1

2

3

4 Exp.
GGF NN
GGF NN+3NF (Indc)
GGF NN+3NF (Full)

Δ
n(3

) (
A)

 [M
eV

]

ACa



Pairing gaps

✪ Inversion of odd-even staggering

➟ Second order and 3NF necessary to invert the staggering
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Pairing gaps

✪ Comparison with other microscopic SM and EDFs
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(a) 3rd-order ladders
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FIG. 2. (Color online) Three-point mass differences ∆(3)
n from 40Ca to 60Ca calculated to third-order ladders in MBPT with

empirical SPEs, panel (a), compared with the EDF results of Ref. [15], panel (b). Results with and without the leading chiral
3N forces are shown following the legend of Fig. 1, and in comparison with experiment [24, 67].
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(a) 3rd-order ladders (pf)
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(b) full 3rd order (pf)

40 44 48 52 56 60 64 68
Mass Number A

(c) full 3rd order (pfg9/2)

NN
NN+3N (emp)
NN+3N (MBPT)

FIG. 3. (Color online) Three-point mass differences ∆(3)
n in the calcium isotopes calculated to third order in MBPT with and

without the leading chiral 3N forces, and in comparison with experiment [24, 67]. The legend is as in Fig. 1. Panel (a) shows
the results of the third-order ladder contributions. Panels (b) and (c) include all MBPT diagrams to third order in the pf -shell
and the extended pfg9/2 valence space, respectively. The results in the pf -shell are with empirical SPEs. For the pfg9/2 space,
we show pairing gaps for both the MBPT and empirical SPEs.

compare EDF results to valence-shell calculations includ-
ing particle-particle and hole-hole ladder diagrams only.

Figure 1 shows the three-point mass differences ∆(3)
n

from 40Ca to 60Ca calculated in the pf -shell to successive
orders of particle-particle and hole-hole ladders. At both
the NN and NN+3N level, increasing the order to which
ladders are included also increases the pairing gaps, sys-
tematically improving the agreement with experimen-
tal data, taken from the 2003 Atomic Mass Evaluation
(AME2003) [67] and including recent precision mass mea-
surements for 51,52Ca from TITAN [24]. Moreover, the
results converge rapidly: from first to second order, there

is a significant increase in∆(3)
n of ∼ 0.4MeV; from second

to third order, the change is only ∼ 0.1MeV.

Pairing gaps calculated at this level are clearly deficient
with respect to experiment. In addition to being below
the experimental pairing strength, the odd-even stagger-

ing of ∆(3)
n is inverted compared to experiment (∆(3)

n is
stronger for odd masses than for even ones). This in-
verted staggering is a sign that the mean-field part at
this level is too attractive, resulting in a lack of satu-
ration and an incorrect symmetry energy, similar to the
calculations discussed in Ref. [37]. The correct odd-even

staggering of ∆(3)
n seen in the EDF results of Ref. [15]

(see the right panel of Fig. 2) is already built into the
Skyrme functional used in Ref. [15].

Taking into account 3N force contributions at the lad-
ders level, we find in Fig. 1 that the repulsive effect of

chiral 3N forces leads to a systematic suppression of∆(3)
n .

Ranging from 0.2 − 0.5MeV, this is similar to the de-
crease in pairing strength observed in the EDF study of
Ref. [15], as can be seen in Fig. 2. Note that the incor-

rect odd-even staggering of ∆(3)
n persists in the NN+3N

case, but the repulsive 3N forces make it less pronounced.

➟ General agreement with other methods

➟ Initial 3NF increase the gaps with respect to NN + induced 3NF

[Holt, Menéndez, Schwenk 2013]

[Lesinski, Hebeler, Duguet, Schwenk  2012]



Benchmarks and chiral EFT interactions

✪ Ab initio calculations as a test for chiral EFT interactions

[Cipollone, Barbieri, Navrátil, 2013]

✪ Different approaches agree in O and Ca chains

➟ Current chiral NN+3N forces overbind medium/heavy-mass nuclei
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FIG. 1. (Color online) Convergence of the MR-IM-SRG(2) ground-
state energies of 18O and 26Owith respect to the single-particle basis
size emax, for the NN+3N-full Hamiltonian at λSRG = 2.0 fm−1.

Hamiltonians used in this work. The intrinsic NN+3N Hamil-
tonian is normal-ordered with respect to the reference state,
and the residual normal-ordered 3N interaction term is dis-
carded, leading to the normal-ordered two-body approxima-
tion (NO2B), which is found to overestimate oxygen binding
energies by about 1% [11, 20].
In this Letter, we use the same nuclear Hamiltonians as in

our recent IM-SRG and CC studies [11, 20, 21]: The NN in-
teraction is the chiral N3LO interaction by Entem and Mach-
leidt, with cutoff ΛNN = 500 MeV/c [2, 22]. Our standard
three-body Hamiltonian is a local N2LO 3N interaction with
initial cutoff Λ3N = 400 MeV/c. The resolution scale of the
Hamiltonian is lowered to λSRG = 1.88, . . . , 2.24 fm−1 by
means of an SRG evolution in three-body space [23]. Hamil-
tonians which only contain SRG-induced 3N forces are re-
ferred to as NN+3N-induced, those also containing an initial
3N interaction as NN+3N-full.
In Fig. 1, we illustrate the convergence of the MR-IM-

SRG(2) ground-state energies for 18O and 26Owith respect to
the single-particle basis size. At the optimal !Ω, the change
in the ground-state energy is of the order of 0.1% when we in-
crease the basis from emax = 12 to 14. This rapid convergence
is representative for all Hamiltonians used in this work.
Results. In Fig. 2, we show MR-IM-SRG(2) ground-state

energies of the even oxygen isotopes for NN+3N-full Hamil-
tonians with initial cutoffs Λ3N = 350, 400 and 450 MeV/c.
For the 3N low-energy constants, we use a fixed cD = −0.2,
and cE = 0.205, 0.098, and −0.016, respectively, which are
fit to the 4He binding energy in NCSM calculations [21, 26].
For the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c,
we achieve an excellent reproduction of experimental data all
the way to the neutron drip line at 24O [25], with deviations
of 1-2%. A recent experiment places the 26O ground-state
resonance at Ex ! 150 keV above the 24O ground-state en-
ergy [27]. We slightly overestimate this energy in our calcu-
lation because the HO basis expansion of our single-particle
wave functions is ill-suited to the description of resonances
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FIG. 2. (Color online) Dependence of the MR-IM-SRG(2) oxygen
ground-state energies for the NN+3N-full Hamiltonian on the res-
olution scale and the initial cutoff Λ3N. For each Λ3N, the band is
obtained by varying λSRG from 2.24 (open symbols) to 1.88 fm−1

(closed symbols). Experimental values are indicated by black bars
[24, 25].

and other continuum states. The inset in Fig. 2 illustrates that
the correct drip-line systematics is independent of λSRG in the
studied range.The drip line is also robust against variations of
the cutoff Λ3N. This suggests that the long-range part of the
two-pion exchange (2PE) 3N interaction, which remains un-
changed as we lower Λ3N, is key to obtaining the proper iso-
topic trends. The 2PE contribution has significant spin-orbit
and tensor terms, and is therefore important for the evolution
of the shell structure along the isotopic chain, as also demon-
strated in other studies, e.g. [28].
Let us now discuss the effect of varying the resolution scale.

As discussed in [11, 20], the λSRG-dependence of our energies
is the net result of omitted induced 4N interactions, the E3max
cut, and the MR-IM-SRG(2) truncation of the many-body ex-
pansion, while the effect of the NO2B approximation is found
to be independent of λSRG.
For Λ3N = 350 MeV/c we do not expect significant in-

duced 4N interactions [26]. As λSRG is reduced, we cap-
ture additional repulsive 3N strength in matrix elements with
e1 + e2 + e3 ≤ E3max. We also speed up the convergence
of the many-body expansion and reduce the error due to the
MR-IM-SRG(2) truncation, but for the resolution scales con-
sidered here, this effect is already saturated. In total, we find
a slight artificial increase of the ground-state energies as we
lower λSRG [11].
For our standard choice Λ3N = 400 MeV/c, effects from

omitted 4N interactions, the E3max cut, and the many-body
truncation cancel, and the λSRG-dependence of the energies
in Fig. 2 is extremely weak [11]. The omission of 4N in-
teractions becomes the dominant source of uncertainty as
we increase Λ3N to 450 MeV/c, resulting in an enhanced
λSRG-dependence of the ground-state energies of the sd-shell
oxygen isotopes. This observation is consistent with the

[Hergert et al., 2013]
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FIG. 3. (Color online) Top. Evolution of single-particle energies for
neutron addition and removal around sub-shell closures of oxygen
isotopes. Bottom. Binding energies obtained from the Koltun SR and
the poles of propagator (1), compared to experiment (bars) [32, 33].
All points are corrected for the kinetic energy of the c.o.m. motion.
For all lines, red squares (blue dots) refer to induced (full) 3NFs.

the full Hamiltonian—is to raise this last orbit above the con-
tinuum threshold and confirms the increasing repulsive ef-
fects of the two-pion exchange Fujita-Miyazawa interaction
on this orbits, as the neutron sd shell is filled [34]. Instead,
the d5/2 quasiparticle states are lowered by about 1 MeV on
average, providing extra binding through the Koltun SR for-
mula (7). The consequences of this trends are demonstrated
by the calculated ground state energies shown in the bottom
panel: the induced hamiltonian systematically under binds the
whole isotopic chain, and confirms earlier predictions based
solely on the original 2N-N3LO interaction [35]. The dripline
is also erroneously placed at 28O because of the lack of re-
pulsion in the d3/2 orbit. On the other hand, contributions
from pre-existing 3NFs are substantial and increase with the
mass number up to 24O, when the unbound d3/2 orbit starts be-
ing filled. As a result, the full Hamiltonian nicely reproduces
both the experimental ground state energies and the observed
dripline at 24O [36]. Our result suggest a ground state reso-
nance for 28O unbound by 5.2 MeV with respect to 24O. How-
ever this estimate is likely to be a↵ected the presence of the
continuum which is important for this nucleus but neglected
in the present work.

The same e↵ects are demonstrated in Fig. 4 for the semi-

magic odd-even isotopes of nitrogen and fluorine. Induced
3NF forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully corrected by
full 3NFs that strongly binds 23N with respect to 27N, in accor-
dance with the experimentally observed dripline. The repul-
sive e↵ects of filling the d3/2 is also observed in 29F. However,
the inclusion of an extra proton provides enough extra binding
to keep the latter isotope bound by about 700 keV with respect
to 25F, in much better agreement with the experimental value
of 1.47 MeV. The induced interaction alone would overesti-
mate this binding and pre-existing 3NFs are fundamental in
achieving the correct balancing between the attraction gener-
ated by the extra proton and the repulsion due to the filling of
the neutron sd shell.
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FIG. 4. (Color online) Binding energies of odd-even nitrogen and
fluorine isotopes calculated for induced (red squares) and full (green
dots) interactions. Experimental data are from [33].

In conclusion, we have considered the extension of the
SCGF method to include three-body hamiltonians. By prop-
erly defining system dependent e↵ective one- and two-body
interactions that include the relevant contribution form 3NFs,
calculations can be performed with formalisms already ex-
isting for two-body Hamiltonians. This approach, however,
goes beyond usual truncations based on normal ordering of
the Hamiltonian and employs fully correlated densities instead
of unperturbed reference states. We applied this approach for
the first time to study SRG-evolved chiral 2N and 3N inter-
actions on the isotopic chains of nitrogen, oxygen and fluo-
rine. We find that chiral 3NF at N2LO are crucial in predicting
the binding energies of these isotopes and they reproduce the
correct behaviour at the neutron driplines for all three cases.
Within the estimated errors due to the many-body techniques
and the dependence on the SRG evolutions, we find a remark-
able agreement between our calculations and the experimental
energies along all three isotopic chains.

Recent results [11] clearly show that state of the art SCGF
methods can be straightforwardly extended to the correspond-
ing Gorkov formalism for open shells, which is now under-
way. This would not only allows direct calculations of semi-
magic even-even isotopes with analogous quality as above but
would also allow extracting a wealth of information on neigh-
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Shell structure evolution

✪ One-neutron separation energies
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Shell structure evolution

[Baranger 1970, Duguet and Hagen 2011]

Separation energies

✪ ESPE collect fragmentation of “single-particle” strengths from both N±1

4

III. GENERALIZATION OF UMEYA-MUTO SUM RULE TO FOCK SPACE

Umeya-Muto sum rule [3] can be generalized to the case of a theory defined in Fock space, such as the Gorkov-Green’s
function formalism introduced above. Although the following derivation could be carried out for any initial many-body
state defined in Fock space |�JM

i ⌅, let us now consider the ground state of the targeted nucleus to be in a J⇤ = 0+

state, i.e. |�00
0 ⌅. The single-particle basis can be conveniently labelled by a = {na,⌅a, ja,ma, qa} = {na,ma,�},

where na represents the principal quantum number, ⌅a the parity, ja the total angular momentum, ma its projection
along the z-axis and qa the isospin projection. In the following each roman single-particle index corresponds to such
set of quantum numbers.

In this case in the overlaps (15) and (16) the quantum numbers of the state |�JkMk
k ⌅ are constrained by the ones

of the creation and annihilation operators acting on |�00
0 ⌅. In particular one can define

Uk
a = ⇤�00

0 |āa|�JkMk
k ⌅

= ⌅a(�1)ja ⇤�00
0 |(�1)m ana��ma |�

JkMk
k ⌅

= ⌅a(�1)ja C00
JkMkjama

⇤�00
0 ||ana�||�

JkMk
k ⌅

= ⇥Jkja ⇥Mk�ma

⌅a(�1)ma

⇧
2ja + 1

⇤�00
0 ||ana�||�

JkMk
k ⌅

⇥ ⇥⇥� ⇥Mk�ma (�1)ma Unk

na [�] , (28)

and similarly

Ūk
a ⇥ ⇥⇥� ⇥Mkma Ū

nk

na [�] , (29)

Vk
a ⇥ ⇥⇥� ⇥Mk�ma (�1)�ma Vnk

na [�] , (30)

V̄k
a ⇥ ⇥⇥� ⇥Mkma V̄

nk

na [�] . (31)

The e⇥ective single-particle energy of an orbit a is defined by

⇤centa ⇥ hcent
ab ⇥ab = taa +

⌅

cd

V̄ NN
acad ⇧

[1]
dc +

⌅

cdef

V̄ NNN
acdaef ⇧

[2]
efcd ⇥

⌅

k

S+a
k E+

k +
⌅

k

S�a
k E�

k (32)

where E±(N)
k are the generalized separation energies introduced in Eq. (26) and S±a

k the generalized spectroscopic
amplitudes defined through

S+a
k ⇥

⇤⇤⇤⇤�JkMk
k |a†a|�00

0 ⌅
⇤⇤⇤
2
=

⇤⇤Uk
a

⇤⇤2 (33)

S�a
k ⇥

⇤⇤⇤⇤�JkMk
k |aa|�00

0 ⌅
⇤⇤⇤
2
=

⇤⇤Vk
a

⇤⇤2 . (34)

One can show that such amplitudes are normalized to one
⌅

k

S+a
k +

⌅

k

S�a
k =

⌅

k

⇧
⇤�00

0 |aa|�JkMk
k ⌅⇤�JkMk

k |a†a|�00
0 ⌅+ ⇤�00

0 |a†a|�
JkMk
k ⌅⇤�JkMk

k |aa|�00
0 ⌅

⌃

= ⇤�00
0 |

�
aa, a

†
a

⇥
|�00

0 ⌅
= ⇥aa
= 1 . (35)

By employing definitions (28)-(31) one can further specify the m-independence of the e⇥ective single-particle energy
defined in Eq. (32)

⇤na� =
⌅

k

S+na�
nk

E+(N)
k +

⌅

k

S�na�
nk

E�(N)
k , (36)

where the block-diagonal generalized spectroscopic amplitudes are now defined through

S+a
k = ⇥⇥� ⇥Mk�ma

⇤⇤⇤Unk

na [�]

⇤⇤⇤
2
⇥ ⇥⇥� ⇥Mk�maS+na�

nk
(37)

S�a
k = ⇥⇥� ⇥Mk�ma

⇤⇤⇤Vnk

na [�]

⇤⇤⇤
2
⇥ ⇥⇥� ⇥Mk�maS�na�

nk
. (38)
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Towards medium/heavy nuclei
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Conclusions and outlook

✪ Formulation of particle-number restored Gorkov theory

✪ Improvement of the self-energy expansion

✪ Gorkov-Green’s functions:

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)

➟ Ab initio description of medium-mass chains

➟ 2NF + 3NF: towards predictive calculations
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✪ Proper coupling to the continuum

✪ Towards consistent description of structure and reactions

➟ Manageable route to (near) degenerate systems

➟ Energies: quantitative agreement

➟ Spectra: study of shell structure evolution
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