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2National Superconducting Cylcotron Laboratory and Department of Physics and Astronomy, Michigan State University,

East Lansing, MI 48824, USA
3Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

4Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

Computational and Theoretical Advances for Exotic Isotopes in the Medium Mass
Region, 4 April 2013



Introduction Bogoliubov coupled cluster theory Applications Conclusions

Motivation

Ab-initio methods beyond the lightest nuclei

Coupled cluster (CC) theory successfully implemented for 24O, 40Ca, etc.

Uses Slater determinant as reference state

Extends to doubly-closed subshell nuclei ±1,±2 nucleons

Not suited to calculate truly open-shell nuclei

Extend CC method to open-shell nuclei with Bogoliubov reference state (BCC)

Most important towards heavier nuclei
K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984)
W.A. Lahoz and R.F. Bishop, Z. Phys. B 73, 363 (1988)
L.Z. Stolarczyk and H.J. Monkhorst, Mol. Phys. 108, 3067 (2010)

Same principle beyond the Gorkov-Green’s extension of Dyson-SCGF methods

V. Soma, T. Duguet, and C. Barbieri, Phys. Rev. C 84, 064317 (2011)

BCC is a computationally optimized alternative

Possibility to cross-check results beyond experimentally known region
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Standard coupled cluster (CC) theory

State of the art computational tool
Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
G. Hagen et al., Phys. Rev. C 82, 034330 (2010)

Exponential ansatz |Ψ〉 = eT |Φ〉, where T is the cluster operator

Cluster Operator T = T1 + T2 + T3 + . . .

T1 =
∑
ia

tai a
†i

T2 =
1

(2!)2

∑
ijab

tabij a
†ib†j

Physical wavefunction is built through np-nh excitations of Slater determinant |Φ〉
Approximate solution to Schrödinger equation by truncating T

Typically use HF solution as reference state |Φ〉

Schrödinger equation with similarity-transformed Hamiltonian H = e−THeT

(H − E)eT |Φ〉 = 0

(H− E)|Φ〉 = 0
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CC formalism

Baker-Campbell-Hausdorff expansion

H = H + [H,T ] +
1

2!
[[H,T ],T ] +

1

3!
[[[H,T ],T ],T ] +

1

4!
[[[[H,T ],T ],T ],T ] + . . .

Truncation to four T operators assuming two-body Hamiltonian

Final expression of similarity-transformed Hamiltonian

H = H +
(
HT
)

C
+

1

2!

(
HTT

)
C

+
1

3!

(
HTTT

)
C

+
1

4!

(
HTTTT

)
C

= (HeT )C

Energy and amplitude equations
(H− E)|Φ〉 = 0

1 Energy equation multiply on the left by 〈Φ|

2 Amplitude equations multiply on the left by 〈Φab...
ij... |

Need as many amplitude equations as terms in cluster operator T

3 Assume intermediate normalization 〈Φ|Ψ〉 = 1
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Extension to (truly) open-shell nuclei

Expansion techniques break down for calculations of (truly) open-shell nuclei

Reference state explicitly breaking symmetry can account for superfluid nature

Build CC techniques around Bogoliubov vacuum

Difficulties
Quasiparticle basis- rewrite Hamiltonian normal-ordered wrt HFB vacuum

Diagrammatic techniques- rules (e.g. from Shavitt and Bartlett) need modification

Additional constraint equation- average particle number

Computational aspect- less expedient scaling

nipn
j
h in CC→ (np + nh)i+j in BCC
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Bogoliubov algebra

Bogoliubov transformation

c†l =
∑
k

U∗lkβ
†
k + Vlkβk cl =

∑
k

Ulkβk + V ∗lkβ
†
k

Bogoliubov vacuum |Φ〉 ≡ C
∏
j

βj |0〉

Natural extension from particle-hole language

Simplifies some aspects of standard CC theory

Rewrite Hamiltonian, i.e. normal order with respect to |Φ〉
Derived including three-body interactions (to include implicit two-body component)

H = H00 + H11 + H20 + H02 + . . .

= H̃00 +
∑
k1k2

H̃11
k1k2

β†k1
βk2 +

1

2!

∑
k1k2

{
H̃20

k1k2
β†k1
β†k2

+ H̃02
k1k2

βk2βk1

}
+ . . .

Each matrix element can be written as a function of NN,NNN,U,V
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Bogoliubov coupled cluster theory

Hamiltonian replaced by grand canonical potential Ω = H − λN
Solution for nucleus with N0 particles given by

Ω|Ψ〉 = Ω0|Ψ〉

Constraint equation N0 = 〈Ψ|N|Ψ〉
〈Ψ|Ψ〉

Exponential ansatz |Ψ〉 = eT |Φ〉
Quasiparticle cluster operator T = T1 + T2 + T3 + . . .

T1 =
1

2!

∑
k1k2

t̃k1k2β
†
k1
β†k2

T2 =
1

4!

∑
k1k2k3k4

t̃k1k2k3k4β
†
k1
β†k2
β†k3
β†k4

Similarity transformed grand canonical potential Ω̄
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Extension of standard coupled cluster theory

Motivated by procedure in standard coupled cluster theory
Produce eigenvalue equation Ω̄|Φ〉 = Ω0|Φ〉
Utilize Baker-Campbell-Hausdorff expansion

Truncate to four T operators (six with explicit three-body contribution)

Limit to connected terms only

Only quasiparticle creation operators in T → Ω to the left

Ω̄ = Ω +
(

ΩT
)

C
+

1

2!

(
ΩT T

)
C

+
1

3!

(
ΩT T T

)
C

+
1

4!

(
ΩT T T T

)
C

= (ΩeT )C

Subtract reference energy for convenience ΩN = Ω− 〈Φ|Ω|Φ〉
Produce energy and amplitude equations

〈Φ|Ω̄N |Φ〉C = ∆Ω0

〈Φαβ...|Ω̄N |Φ〉C = 0

Solve under constraint of average particle number

N0 =
〈Φ|eT

†
NeT |Φ〉

〈Φ|eT †eT |Φ〉
= 〈Φ|eT

†
NeT |Φ〉C
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Current status

Formalism
Derivation of BCCSD complete (too complex to show on slides)

Evaluated in 3 ways- algebraic (by hand), symbolic (J. Sadoudi), diagrammatic

Can recover standard CCSD in Slater determinant limit
Produce more general extended coupled cluster method in straightforward limit

BCCSDT derivation completed using symbolic method (J. Sadoudi)

Implementation
Utilize NN interactions from chiral potential (+RG)

Bogoliubov vacuum from solution of HFB equations
m-scheme version nearly complete
Utilizes symmetry properties (subblock matrices in most reduced form)

BCCS derived and coded in m-scheme with intermediates
Extension to BCCSD necessary and upcoming

Allocated time on supercomputing machines for calculations

Illustration using BCCD
Truncation to T = T2

Should include most important effects at lowest order (two-body potential?)
Singles contribution corresponds to Thouless theorem; HFB solution used
Not recommended for real implementation- BCCSD required

A. Signoracci Development of Bogoliubov coupled cluster theory



Introduction Bogoliubov coupled cluster theory Applications Conclusions

Bogoliubov coupled cluster theory with doubles (BCCD): diagrammatic

Amplitude terms
Energy term

A. Signoracci Development of Bogoliubov coupled cluster theory



Introduction Bogoliubov coupled cluster theory Applications Conclusions

Bogoliubov coupled cluster with doubles (BCCD): algebraic

Energy equation
∆ΩBCCD

0 = 〈Φ|Ω̄N |Φ〉C = 〈Φ|ΩNT2|Φ〉
With fully antisymmetrized matrix elements of grand canonical potential

Ω̃ij
k1...ki ki+1...ki+j

= (−1)σ(P)Ωij
P(k1...ki |ki+1...ki+j )

σ(P) refers to the signature of the permutation P

P(. . . | . . .) denotes separation between quasiparticles and quasiholes

∆ΩBCCD
0 =

1

(4!)2

∑
k1k2k3k4
k′1k

′
2k

′
3k

′
4

〈Φ|Ω̃04
k1k2k3k4

βk1
βk2

βk3
βk4

t̃k′1k
′
2k

′
3k

′
4
β†
k′1
β†
k′2
β†
k′3
β†
k′4
|Φ〉

Full solution

∆ΩBCCD
0 =

1

4!

∑
k1k2k3k4

Ω̃04
k1k2k3k4

t̃k1k2k3k4

Find quasiparticle amplitudes from amplitude equation

0 = 〈Φαβγδ|Ω̄N |Φ〉C = 〈Φαβγδ|Ω40|Φ〉+ 〈Φαβγδ|ΩT2|Φ〉C +
1

2
〈Φαβγδ|ΩT 2

2 |Φ〉C
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BCCD- amplitude equation

0 = Ω̃40
αβγδ +

∑
k1

[
Ω̃11
αk1

t̃k1βγδ + Ω̃11
βk1

t̃αk1γδ + Ω̃11
γk1

t̃αβk1δ + Ω̃11
δk1

t̃αβγk1

]
+

1

2

∑
k1k2

[
Ω̃22
αβk1k2

t̃k1k2γδ + Ω̃22
αγk1k2

t̃k1k2δβ + Ω̃22
αδk1k2

t̃k1k2βγ

+ Ω̃22
βγk1k2

t̃k1k2αδ + Ω̃22
βδk1k2

t̃k1k2γα + Ω̃22
γδk1k2

t̃k1k2αβ

]
+

1

12

∑
k1k2k3k4

Ω̃04
k1k2k3k4

[
2(̃tαk1k2k3 t̃k4βγδ + t̃βk1k2k3 t̃αk4γδ

+ t̃γk1k2k3 t̃αβk4δ + t̃δk1k2k3 t̃αβγk4 )

+ 3(̃tk1k2αβ t̃k3k4γδ + t̃k1k2αγ t̃k3k4δβ + t̃k1k2αδ t̃k3k4βγ)
]

Also need constraint equation for average particle number

Solve system of equations iteratively

Update Lagrange parameter each iteration
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Conclusions/Outlook

Conclusions
BCC derived in various truncation schemes in general indices

Diagrammatic technique developed, reproduces algebraic result

Motivated procedure, displayed illustrative BCCD
Maintain single-reference nature, even for open-shell

Future steps
First and foremost, finalize HFB and BCCS codes to demonstrate convergence
Implement BCCSD in m-scheme
Calculate realistic closed-shell nuclei to compare/benchmark standard CC results
Calculate open-shell nuclei to benchmark in-medium SRG/Gorkov-Green’s function
Include three-body forces at least at normal-ordered two-body level
Implement equation-of-motion BCC, projection, etc.

A. Signoracci Development of Bogoliubov coupled cluster theory


	Introduction
	Bogoliubov coupled cluster theory
	Applications
	Conclusions

