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Introduction 
 

Symmetries, degeneracies, 
electron correlations, 

&  quantum fluctuations 



The Electronic Structure Problem 
 
• We know how to solve the time-independent Schrodinger equation with 

computational cost that grows exponentially with system size => “full 
CI” or “exact diagonalization”. This is useful only for small systems. 
 

• Our goal is to find quantitatively accurate polynomial cost 
approximations to these solutions. 
 

• Mean-field theory = Hartree-Fock has low computational cost and is 
a good starting point when correlations are “dynamic”. 
 

• In finite systems if correlations are dynamic, single-reference 
Coupled Cluster theory gets the right answer for the right reason 
with polynomial computational cost. This is a solved problem. 
 

• In the presence of exact or near-degeneracies, “static” correlations 
appear =>  HF is no longer good and  SR-CC theory falls apart. 
 

• A black-box treatment of static correlations with mean-field 
computational cost would be good => our first objective 



 UHF at dissociation: right energy but wrong wavefunction 
(linear combination of a singlet and a triplet) 

H2  H + H : Prototype of static correlation 

At dissociation, the symmetry-correct RHF orbitals (σg and σu) become degenerate 

UHF: spontaneously breaks symmetry 
Gap opens and degeneracy is lifted 

RHF: symmetry adapted solution 

FCI: “quantum fluctuations” restore symmetry 
and lower the energy significantly; smooth curve 

Correct dissociation 



 
• Symmetries play a crucial role in our theory:  [H,Ω] = 0 

 
• There are many different symmetries in electronic structure: 

– Number, spin, complex conjugation K, point group (rotations, 
inversions, mirror planes), lattice translation, time reversal… 

 
• Some symmetries are represented by continuous groups, e.g., 

number with U(1) and spin SU(2) ≈ SO(3). 
 

• Other symmetries (K, PG, LM) have discrete spectra. 
 

• Unitary symmetries (Ω = Ω† ) have good quantum numbers. 
 

• Antiunitary symmetries do not carry quantum numbers (e.g., K) 

Symmetries 



 
• If two operators commute [H,Ω] = 0, they share a common set  of 

eigenfunctions: we can use symmetry labels for H eigenfunctions 
 

• In the presence of degeneracies, eigenfunctions of H may be chosen to 
violate symmetries (e.g., breaking spherical symmetry in an atom) but 
this does not lower the energy. 
 

• In infinite systems (thermodynamic limit), symmetries can break 
spontaneously because of degeneracies, e.g.,  
 
 

• In the thermodynamic limit (TDL), symmetries break so that long-range 
order can appear. Symmetry restoration does not lower the energy. 
 

• This form of symmetry breaking is known as a phase transition. From a 
time dependent QM perspective, the broken symmetry state is trapped 
in a well with infinite fluctuation time. 

 
 

Symmetries and Degeneracies 
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• Symmetry breaking also occurs because of approximations; this is 
Lowdin’s “symmetry dilemma” in Hartree-Fock theory. 
 

• Spontaneous Symmetry Breaking (SSB) in HF lowers the energy by 
sacrificing good quantum numbers; it pinpoints the appearance of near 
degeneracies; it is artifactual because there are no phase transitions in 
finite systems (full CI has good quantum numbers). 
 

• In this sense, HF is a theory that predicts its own failure. 
 

• Key concept: Goldstone manifold: the set of degenerate determinants 
{Φi} associated with symmetry breaking. 

 
• In finite systems symmetry restoration (“quantum fluctuations” from 

diagonalizing <Φi|H|Φj>) will lower the energy because  
 <Φi|H|Φj> ~ <Φi|Φj> ≠ 0 

 
• If the symmetry manifold becomes non-interacting, symmetry 

restoration will not lower the energy. This happens in the infinite TDL. 

Symmetry Breaking 



Summary 
 
Symmetry breaking can be legitimate or 

artifactual. 
 
If artifactual, symmetry restoration will 

lower the energy. 
 
If legitimate, symmetry restoration will not 

lower the energy. 



  
 =>    My classification of electron correlations: 
 
• Dynamic:  HF is a good approximation and single-reference coupled-

cluster theory rules. 
 

• Static or non-dynamic:  Near degeneracies in finite systems;  
 HF is pretty bad. 

 
• Strong:  Collective excitations plays a key role. SR-CC theory needs 

huge Tn . All occupations are small (it looks like weakly correlated) 
but entropy is maximum (all states are equally occupied). 
 

• In finite systems, phase fluctuations (overlap related) lower the 
energy (unless the Goldstone manifold is orthogonal signaling a 
legitimate broken symmetry). 
 

• In infinite systems phase fluctuations disappear and only amplitude 
fluctuations (RPA) remain. 

Symmetry Breaking & Correlations 



Dealing with static correlation cheaply 
 

• Unrestricted formalism yielding broken-symmetry 
Slater determinants has been the standard way of 
dealing with static correlation in a computationally 
inexpensive manner. 
 

• But symmetry breaking that lowers the energy 
(symmetry dilemma) is artifactual. 
 

• Symmetries should be restored. 



Static Correlation Method  
Wish List 

 Should preserve all Hamiltonian symmetries 

 Should have low-computational cost (mean-field) 
instead of exact diagonalization combinatorial blowup 

 No  artifactual phase transitions 

 Should be size consistent (EAB = EA + EB when RAB∞) 
and size extensive (Ecorr ~ number of electrons)  



Symmetry Restoration 
 

 Spontaneous Symmetry Breaking (SSB) in HF flags method’s own failure. 
In finite systems: quantum fluctuations are important; the correct 
wavefunction is multi-determinant in nature. 

 
 When SSB occurs we can do Projection After Variation 
 “Phase transitions” are enhanced rather than eliminated !  Not good. 

 
 Much better is to do Variation After Projection 
 When symmetries are not spontaneously broken, we can break them 

deliberately and then restore them =>  E ~ <0| P† H P |0> and δE=0 
 

 Heavily traveled QC road in the 60/70s but mostly abandoned. Kept alive 
in nuclear many body theory !  
 

 Our work: we deliberately break and restore symmetries 
 Continuous: Number U(1)  and Spin (S2 and Sz) SO(3) 
 Discrete: Complex Conjugation (K), Point Group (PG) 
 Discrete in lattices: Linear Momentum (LM), (LM + PG = Space Group) 

   



Projected Quasiparticle Theory  
 

G. E. Scuseria, C. A. Jimenez-Hoyos,  
T. M. Henderson, K. Samanta &  J. K. Ellis  

J. Chem. Phys. 135, 124108 (2011) 
 

PHFB : Projected Hartree-Fock-Bogoliubov 
 

 Number, Tri-axial spin, Complex Conjugation, and Point Group 
 

Symmetry Breaking & Restoration 
using Variation After Projection 



PQT Outline 

• Number U(1) and tri-axial spin SO(3) have continuous group 
representations.  We discretize the projection operators and 
make sure that they are converged. 
 

• Point group symmetry is discrete and leads to a non-orthogonal 
CI problem. But we know the CI coefficients from the desired 
symmetry of the solution, so we simply build the “eigenvector”.  

    No CI needed. 
 

• Complex conjugation is a non-orthogonal 2x2 CI problem. 
 

• Non-orthogonal CI problems can be linearly dependent (we are 
working in an overcomplete space). Solution: remove linear 
dependencies. 
 

 



HFB theory in one slide 
• Consider transformations mixing Fermion creation & annihilation operators 

 
   β†

i = Σij ( Uji a†
j  + Vji aj )  

  
• The quasiparticle determinant    |HFB> = Πi β†

i |vac> 
 dwells in Fock space and breaks particle number symmetry 
 
• The U and V matrices are the eigenvectors of the HFB Hamiltonian: 

 
   H = [  F     Δ ]  F =  F(ρ)    Fock Hamiltonian 
             [-Δ*   -F* ]  Δ = Δ(κ)   Pairing Hamiltonian 

 
• The regular ρ= VVT and anomalous  κ= U*VT density matrices form an 

idempotent quasiparticle density  matrix R 
 

   R = [   ρ     κ   ]  ρij = < a†
j ai > 

        [ -κ*   I- ρ* ]  κij = < a†
j a†

i > 
 
• At SCF convergence   [H,R] = 0 

 
• HFB theory ignored in QChem because HFBHF for repulsive 1/r12 
• But PHFB is not the same as HFB 



PHFB Basics (I) 
• Given a symmetry operator N=N†   and  [H,N] = 0 

 
• Build a unitary operator  U = eiφN   where  φ Є R 

 
• Consider a broken symmetry determinant |HFB> and the 

overcomplete manifold of non-orthogonal determinants 
 obtained from rotations:  |φ >= U |HFB> = eiφN |HFB> 
• They are all degenerate in energy (Goldstone manifold)  
 < φ | H | φ > = <HFB| e-iφN H eiφN |HFB> = <HFB| H |HFB>  
 but interact among themselves   
   <HFB| eiφN |HFB> = <HFB| HFB(φ)> = Sqrt [ det (S0φ) ] 

  <HFB| H eiφN |HFB> ≠ 0 

• Build a projection operator P = 1/2π  ∫ dφ eiφ(N-n)  
 to extract from |HFB> the component with desired eigenvalue n 



PHFB Basics (II) 
• Use the variational theorem to minimize the energy E (variation-

after-projection) 
   
 
  
  
 P  is Hermitean, idempotent & commutes with H 
 
 C(φ)=e- iφn (n is the desired electron number) is an analytic weight 

function determined by the symmetry group [U(1) for number] 
 
• Discretize P over a gauge grid {φ } 
 
• Key result: the PHFB energy E above is a density matrix functional 

of the unprojected density matrices ρij(φ) and κij(φ) 
 

• Only unknown are the orbitals 
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PQT in one slide 
   | PQT >   =   PN PS ... PΩ PK  |HFB > 

Deformed state. 
All symmetries broken. 
Very simple structure: 
   single determinant 

Projection operators. Simple structure. 
Discretized over modest size grid (N,S). 

High-quality MR wavefunction. 
Factorizable representation 
   of its 2-matrix. 

PQT energy is a  1-QRDM functional that 
can be optimized with mean-field cost 



Projected Hartree-Fock Theory  
 

C. A. Jimenez-Hoyos, T. M. Henderson,  
T. Tsuchimochi  &  G. E. Scuseria  

J. Chem. Phys. 136, 164109 (2012) 
 

  PHF : same as  PHFB, without number projection 
 

– Same philosophy just a different set of equations 
– Historical significance (our SUHF Ξ  Löwdin & Mayer’s EHF) 



Spin Projection 
Lowdin’s approach: a two-body projection operator 
  
 
 
Leads to a complicated set of equations (Mayer, AQC 1980). 
 
An alternative approach: SO(3) rotational invariance 
 
 
We impose that the wavefunction is invariant with respect to spin 

vector rotations via three one-body rotations like: 
 
 
 
This leads to a much simpler set of equations. 



Benchmark Results 
 
 



Acronym Soup 
Acronyms are composed of two parts:  
    
Symmetry                       Reference determinant 
--------                       ----------------------- 
N: number     R: restricted (closed-shell) 
S: spin     U: unrestricted (spin-polarized) 
K: complex conjugation   G: general (non-collinear) 
Ci: point group 
                                   G orbitals are complex 
 
Examples: 
-------- 
NRHFB is number-projection with closed-shell orbitals 
NUHFB is number-projection with spin-polarized orbitals 
SNUHFB adds spin projection (collinear spin) 
SNGHFB adds triaxial (noncollinear) spin projection 
KSNGHFB adds complex conjugation 
 
PHF (no number projection): same acronyms as above without “B” 



KSNUHFB  ~  FCI quality 

min basis 

N2: triple-bond dissociation 



polarized basis 

N2: triple-bond dissociation 

Residual  
correlations 
are large ! 



Infinite Systems 
 

bad news... ? 



The curse of the thermodynamic limit 
Equidistant H atom rings @ 1.80 Bohr with minimum basis 

In TDL spin projection (SUHF) yield zero correlation (per e) beyond UHF 



Summary 
• Variation after Projection Symmetry Restoration 

– Energy is a one-body density matrix functional 
– Small number of variational parameters 
– Compact representation of the wavefunction 
 

• Computational Cost: mean-field, Ng*HF 
 

• Fundamental ingredient: we work with non-orthogonal 
Slater determinants (symmetry coherent states) 
 

• More work is needed to address “residual” correlations 
and better balance static & dynamic correlations 
 

• More work is needed to address the challenge of strong 
correlation for infinite systems (thermodynamic limit) 
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