QMC calculations with chiral EFT interactions

Achim Schwenk Alex Gezerlis and Ingo Tews

INT Workshop on Advances in Many-Body Theory April 4, 2013

Bundesministerium für Bildung und Forschung

ARCHES Award for Research Cooperation and High Excellence in Science

Outline

Chiral EFT and many-body forces

Three-nucleon forces and neutron-rich nuclei

Neutron matter from chiral EFT interactions

need for nonperturbative benchmark, which parts of chiral EFT interactions are perturbative?

QMC calculations with chiral EFT interactions

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

Subleading chiral 3N forces

parameter-free N³LO Bernard et al. (2007,2011), Ishikawa, Robilotta (2007)

one-loop contributions:

 2π -exchange, 2π - 1π -exchange, rings, contact- 1π -, contact- 2π -exchange

1/m corrections: spin-orbit parts, interesting for A_y puzzle

Outline

Chiral EFT and many-body forces

Three-nucleon forces and neutron-rich nuclei

Neutron matter from chiral EFT interactions

need for nonperturbative benchmark, which parts of chiral EFT interactions are perturbative?

QMC calculations with chiral EFT interactions

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

The oxygen anomaly Otsuka et al. (2010)

New ab-initio methods extend reach

impact of 3N forces confirmed in ab-initio calculations:
Coupled Cluster theory with phenomenological 3N forces Hagen et al. (2012)
In-Medium Similarity RG based on chiral NN+3N Hergert et al. (2013)
Green's function methods based on chiral NN+3N Cipollone et al. (2013)

new ^{51,52}Ca TITAN measurements

⁵²Ca is 1.75 MeV more bound compared to atomic mass evaluation Gallant et al. (2012)

behavior of 2n separation energy S_{2n} agrees with NN+3N predictions

Outline

Chiral EFT and many-body forces

Three-nucleon forces and neutron-rich nuclei

Neutron matter from chiral EFT interactions

need for nonperturbative benchmark, which parts of chiral EFT interactions are perturbative?

QMC calculations with chiral EFT interactions

Chiral effective field theory for nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meissner,...

Neutron matter from chiral EFT interactions

direct calculations without RG/SRG evolution, 3N to N²LO only

Measure of convergence and C_T values

N ³ LO NN potential	$ \Delta E_{ m NN-only}^{(2/3)} $	$ \Delta E^{(2/3)}_{ m NN/3N} $	$C_S[{ m fm}^2]$	$C_T [{ m fm}^2]$
${ m EGM}~450/500~{ m MeV}$	$0.8{ m MeV}$	$0.6\mathrm{MeV}$	-4.19	-0.45
${ m EGM}~450/700~{ m MeV}$	$0.4{ m MeV}$	$0.4{ m MeV}$	-4.71	-0.24
EM 500 MeV	$1.1{ m MeV}$	$1.7{ m MeV}$	-3.90	0.22
$\overline{\mathrm{EGM}~550/600~\mathrm{MeV}}$	$1.0{ m MeV}$	$3.1{ m MeV}$	-1.24	0.36
EGM $600/600$ MeV	$0.2{ m MeV}$	$1.5{ m MeV}$	3.45	2.07
EGM $600/700~{\rm MeV}$	$11.4\mathrm{MeV}$	$16.1{ m MeV}$	1.31	1.00
EM 600 MeV	$7.7{ m MeV}$	$9.1\mathrm{MeV}$	-3.88	0.28

0.15

consider all NN interactions with good convergence pattern and small C_T

N³LO 3N and 4N interactions in neutron matter

evaluated at Hartree-Fock level

Complete N³LO calculation of neutron matter

first complete N³LO result, Hartree-Fock +2nd order +3rd order (pp+hh) includes uncertainties from NN, 3N (dominates), 4N

$N^{2}LO$ vs. $N^{3}LO$ 3N

Comparisons to equations of state in astrophysics

many equations of state used in supernova simulations not consistent with neutron matter results

Impact on neutron stars Hebeler, Lattimer, Pethick, AS (2010, 2013) constrain high-density EOS by causality, require to support 1.97 M_{sun} star

low-density pressure sets scale, chiral EFT interactions provide strong constraints, ruling out many model equations of state

predicts neutron star radius: 9.7-13.9 km for M=1.4 M_{sun} (±18% !)

Neutron-star mergers and gravitational waves

explore sensitivity to neutron-rich matter in neutron-star merger and gw signal Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012).

Fig. 1: Various snapshots of the collision of two neutron stars initially revolving around each other. The sequence simulated by the computer covers only 0.03 seconds. The two stars orbit each other counterclockwise (top left) and quickly come closer (top right). Finally they collide (centre left), merge (centre right), and form a dense, superheavy neutron star (bottom). Strong vibrations of the collision remnant are noticeable as deformations in east-west direction and in north-south direction (bottom panels). (Simulation: Andreas Bauswein and H.-Thomas Janka/MPA)

Outline

Chiral EFT and many-body forces

Three-nucleon forces and neutron-rich nuclei

Neutron matter from chiral EFT interactions

need for nonperturbative benchmark, which parts of chiral EFT interactions are perturbative?

QMC calculations with chiral EFT interactions A. Gezerlis, I. Tews, E. Epelbaum, K. Hebeler, S. Gandolfi, A. Nogga, AS, arXiv:1303.6243

QMC with chiral EFT interactions - challenges

EFT includes nonlocal interactions

caused by usual regulator on relative momenta

and k-dependent contact interactions k=mom. transfer in exchange channel

pion exchanges to N²LO local except for regulator

strategies so far: try directly in QMC Schmidt et al.

separate local + nonlocal parts and treat nonlocal perturbatively Furnstahl, Wendt,...

Local chiral EFT interactions

keep pion exchanges to N²LO local regulate in coordinate space $f_{long}(r) = 1 - e^{-(r/R_0)^4}$

construct local contact interactions $C_S + C_T \sigma_1 \cdot \sigma_2$

with regulator on momentum transfer $\int \frac{d\mathbf{q}}{(2\pi)^3} C_{S,T} f_{\text{local}}(q^2) e^{i\mathbf{q}\cdot\mathbf{r}} = C_{S,T} \frac{e^{-(r/R_0)^4}}{\pi\Gamma(\frac{3}{4})R_0^3}$

at NLO use freedom to treat k² operators for isospin dependence

$$egin{aligned} V^{ ext{NLO}}_{ ext{short}} &= C_1\,q^2 + C_2\,q^2\,oldsymbol{ au}_1\cdotoldsymbol{ au}_2 \ &+ ig(C_3\,q^2 + C_4\,q^2\,oldsymbol{ au}_1\cdotoldsymbol{ au}_2ig)\,oldsymbol{\sigma}_1\cdotoldsymbol{\sigma}_2 \ &+ i\,rac{C_5}{2}\,(oldsymbol{\sigma}_1+oldsymbol{\sigma}_2ig)\cdotoldsymbol{ au} imesoldsymbol{ au}_k \ &+ C_6\,(oldsymbol{\sigma}_1\cdotoldsymbol{ au})(oldsymbol{\sigma}_2\cdotoldsymbol{ au}) \ &+ C_7\,(oldsymbol{\sigma}_1\cdotoldsymbol{ au})(oldsymbol{\sigma}_2\cdotoldsymbol{ au})\,oldsymbol{ au}_1\cdotoldsymbol{ au}_2\,, \end{aligned}$$

M. Freunek, Diploma Thesis (2007)

TABLE I. Short-range couplings for $R_0 = 1.2$ fm at LO, NLO, and N²LO (with a spectral-function cutoff $\tilde{\Lambda} = 800$ MeV) [30]. The couplings C_{1-7} are given in fm⁴ while the rest are in fm².

	LO	NLO	$N^{2}LO$
C_S	-1.83406	-0.64687	1.09225
C_T	0.15766	0.58128	0.24388
C_1		0.18389	-0.13784
C_2		0.15591	0.07001
C_3		-0.13768	-0.13017
C_4		0.02811	0.02089
C_5		-1.99301	-1.82601
C_6		0.26774	0.18700
C_7		-0.25784	-0.24740
C_{nn}			0.05009

Phase shift fits

fit to $E_{lab}=1, 5, 10, 25, 50, 100 \text{ MeV}, \text{ SF cutoff} = 800 \text{ MeV}$

vary R_0 from 0.8-1.2 fm, corresponds to ~600-400 MeV

considerably better than EGM N²LO potentials

Auxiliary Field Diffusion Monte Carlo A. Gezerlis, S. Gandolfi

AFDMC: Hubbard-Stratonovich transformation using auxiliary fields to change quadratic spin-isospin operator dependences to linear

include full interaction at LO, NLO, and N²LO in propagator NN interactions only, next:3N

next: test which parts of chiral EFT interactions are perturbative (N³LO contributions will have nonlocal parts)

optimal number of 66 particles, include contributions from 26 neighboring cells of simulation box

statistical uncertainty smaller than points no to full Jastrow: 0.1-0.5 MeV (1-5%) for $R_0=1.2-0.8$ fm

AFDMC results for neutron matter

order-by-order convergence up to saturation density

Comparison to perturbative calculations at N²LO

Hartree-Fock +2nd order +3rd order (pp+hh), same as for N³LO calcs.

band at each order from free to HF spectrum

low cutoffs (400 MeV) 3rd order corr. small, excellent agreement with AFDMC

Summary

3N forces key for neutron-rich nuclei J.D. Holt, J. Menendez, T. Otsuka, J. Simonis, T. Suzuki

Neutron matter constrains neutron stars and astrophysics, first complete N³LO calculation I. Tews, T. Krüger, K. Hebeler, J.M. Lattimer, C.J. Pethick

First QMC calculations with chiral EFT interactions for neutron matter validates perturbative calculations for low cutoffs A. Gezerlis, I. Tews, E. Epelbaum, K. Hebeler, S. Gandolfi, A. Nogga