

Why is lead so kinky? Charge Radius Isotope Shift Across the N=126 Shell Gap

Arnau Rios Huguet STFC Advanced Fellow Department of Physics University of Surrey

INT Program on Medium Mass nuclei (15 April 2013)

Nuclear radii

Medium mass nuclei systematics

- Kinks are ubiquitous
- Shell effects influence radii
- 1/3 power valid in specific cases

 $\langle r_{\rm ch} \rangle_{\rm emp} \sim A^{0.003Z}$

Angeli et al., J. Phys. G: Nucl. Part. Phys. 36 085102 (2009) 2

Nuclear radii Experiments

A deeper look

Isotope shifts in lead isotopes: theory vs experiment

Nuclear radii: experiments

4 methods to extract radii from experiments:

Angeli et al., J. Phys. G: Nucl. Part. Phys. 36 085102 (2009)

I.<u>Transition energies in muonic atoms</u>

$$a_{\mu} = \frac{\hbar}{m_{\mu}c\alpha} = \frac{m_e}{m_{\mu}}a_0 \sim 200 \text{ fm}$$
$$E \sim B_{k,\alpha} = \int dr \, r^k \rho(r) e^{-\alpha r}$$

2. Elastic electron scattering

$$\langle r_{\rm ch}^2 \rangle = \frac{\int dr \, r^4 \rho_{\rm ch}(r)}{\int dr \, r^2 \rho_{\rm ch}(r)}$$

3.X-ray isotope shifts4.Optical isotope shifts

Isotope shifts Atoms meet nuclei

• Mass, M_i , and field, F_i , shifts obtained theoretically or empirically

• Isotope shift separation is possible \Rightarrow proliferation issues

Laser spectroscopy in unstable beams buniversity of SURREY

Quadrupole correlations?

Observation: correlations do not affect kink mass region

Bender, Bertsch & Heenen, Phys. Rev. C 73 034322 (2006) 8

Previous proposal

• Skyrme force yields neutron spin-orbit term: $W_{\rm SHF} = b_4 (\nabla \rho + \nabla \rho_n)$

• Relativistic EDF yields:

$$W_{\rm RMF} = \frac{\hbar^2}{(2m - C\rho)^2} C\nabla\rho$$

- Different isospin dependence?
- Try richer alternative in Skyrme:

$$W_{\rm SHF} = b_4 \nabla \rho + b'_4 \nabla \rho_n$$

Reinhard & Flocard, Nucl. Phys. A 584 467 (1995) 9

Previous proposal II

- Position of 2g_{9/2} relevant
- This state is affected by SO
- When less bound, sp radius is larger
- Pull on protons (via symmetry energy) should be larger
- Charge radius larger when 2g_{9/2} less bound

A deeper look

Isotope shifts in lead isotopes: theory vs experiment

Single-particle spectrum of ²¹⁰Pb around Fermi surface

Kink in deeply bound states $\Leftrightarrow I_{11/2}$ is occupied

Further proof

Neutron density changes mostly at surface
Proton density change also has interior component
But Ii_{11/2} is ~I fm more bound than 2i_{9/2}

Definite proof

Proton-neutron overlaps in ²⁰⁸Pb

Same thing in Polonium!

Conclusions

- Reproduction of isotope shift by and large determined by occupation of $I_{11/2}$ neutron orbital
- This n=1 orbital has larger overlap with deeply bound proton orbitals
- Provides larger pull to protons via symmetry energy
- Mechanism general around N=126

Future work

- Why is Ii11/2 occupied?
 - Spin-orbit? Tensor? Correlations?
- Experimental spectrum vs postulated li11/2 population?
- Explore other mass regions and kinks:
 - Tensor in Ca isotopes?
 - Deformation in Hg?
 - Isotone shifts?

• Phil's thesis: dipole response with TDHF

Nuclear & neutron matter

Beyond a quasi-particle approach

Arnau Rios Huguet STFC Advanced Fellow Department of Physics University of Surrey

INT Program - Medium mass nuclei Seattle, 16 April 2013

Self-consistent Green's functions

• Self-consistency, pp+hh & full off-shell effects

Self-consistent Green's functions

Microscopic properties Bulk properties Spectral function Momentum distribution Total Energy Entropy CDRONN Av18, p=0.16 fm p=0.16 fm-3, T=4 MeV Spectral function, p=0.16 fm SCGI Entropy per particle, S/A Argonne V18 - BHF $\dot{k}=0$ E/A [MeV] Av18 -- SCHF 0.8 0.6 Energy, 50 E 0 4 0.2 k=k_ 0.5 1 1.5 Momentum, k/k, Temperature, T [MeV] ρ [fm⁻³] Equation of State In-medium interaction CDBON 3 k=2k... . T=5 MeV MeV fm ġ -5 MeV 8 T=10 MeV T=15 MeV 10 T=20 Me3 -250 500 ω-μ [MeV] 0.16 0.24 0.32 0 0.08 0.32 P (MeV) ρ[fm⁻³] ρ[fm⁻³] Q-21 B44V

• Self-consistency, pp+hh & full off-shell effects

Self-consistent Green's functions

Transport?

• Self-consistency, pp+hh & full off-shell effects

$$\begin{split} \varepsilon_k &= \frac{k^2}{2m} \\ n_k &= \frac{1}{1+e^{\beta(\varepsilon_k-\mu)}} \end{split}$$

- Free fermions
- Mean-field approximation: sp spectrum
- Correlations do not allow simple ε_k relation!
- A very general approach

- Free fermions
- Mean-field approximation: sp spectrum
- Correlations do not allow simple ε_k relation!
- A very general approach

$$\mathcal{A}^{<}(k,\omega) = \sum_{n,m} \frac{e^{-\beta(E_n-\mu A)}}{Z} \left| \langle m | a_k | n \rangle \right|^2 \delta \left[\omega - (E_n^A - E_m^{A^-}) \right]$$

Momentum distribution

$$n_k = \int \frac{\mathrm{d}\omega}{2\pi} f(\omega) \mathcal{A}(k,\omega)$$

Probability

$$\int \frac{\mathrm{d}\omega}{2\pi} \,\mathcal{A}(k,\omega) = 1$$

- Free fermions
- Mean-field approximation: sp spectrum
- Correlations do not allow simple ε_k relation!
- A very general approach

- Free fermions
- Mean-field approximation: sp spectrum
- Correlations do not allow simple ε_k relation!
- A very general approach

- Free fermions
- Mean-field approximation: sp spectrum
- Correlations do not allow simple ε_k relation!
- A very general approach

2/25

Momentum distribution

Momentum distribution

Isospin asymmetric matter Tuning correlations

Nuclear "trencadís"

Asymmetric nuclear matter Spectral functions

5/25

Asymmetric nuclear matter Momentum distribution

- Correlations affect depletion \Rightarrow non-perturbative effect
- Neutrons become less correlated
- Protons are more correlated

A. Rios et al., PRC 79, 064308 (2009) 6/25

Depletion vs. asymmetry Isodepletion

- Realistic potentials lie in a narrow iso-depletion band
- Proton depletion has a thermal component

Depletion vs. asymmetry Isodepletion

A. Rios et al., PRC 79, 064308 (2009)

- Realistic potentials lie in a narrow iso-depletion band
- Proton depletion has a thermal component

- High momentum proportional to species density
- Proportional to deuteron

A. Rios, A. Polls & W. H. Dickhoff, in preparation

UNIVERSITY OF

EoS of neutron matter Proof of principle

Rios, Polls & Vidaña, PRC 79, 025802 (2009)

- Potential dependence for $\rho > \rho_0$
- Agrees with virial expansion at low ho's
- Systematically more repulsive than BHF
- 3BF still needed

Kinetic symmetry energy

XVV

		$S_{ m tot}$ (MeV)	$S_{ m kin}$ (MeV)	$S_{ m pot}$ (MeV)	L (MeV)
	Av18	25.1	4.9	20.2	37.7
	Nij 1	27.4	4.6	22.8	48.5
	CDBonn	28.8	7.9	20.9	52.6
b a.	N3LO	29.7	7.2	22.5	55.2
À	FFG	12.3	12.3	0	24.6
-XXX	1				

UNIVERSITY OF

Correlation between observables

Carbone et al., EPL 97, 22001 (2012).

Diagrammatic expansion with 3BF

Self-energy expansion to 2nd order

- Only skeleton 1PI diagrams needed
- Anti-symmetrized interactions
- Proper symmetry factors included

Effective interaction expansion

Rewrite self-energy expansion

Definition of effective 1B and 2B forces

<u>A. Carbone</u>, A. Cipollone, C. Barbieri, A. Rios & A. Polls 12/25

Diagrammatic expansion with 3BF

Self-energy expansion to 2nd order

- Only skeleton 1PI diagrams needed
- Anti-symmetrized interactions
- Proper symmetry factors included
- Number of diagrams substantially reduced
- Usable in higher order resummations
- Implementation in progress

Effective interaction expansion

Rewrite self-energy expansion

<u>A. Carbone</u>, A. Cipollone, C. Barbieri, A. Rios & A. Polls 12/25

Diagrammatic expansion with 3BF

Self-energy expansion to 2nd order

- Only skeleton 1PI diagrams needed
- Anti-symmetrized interactions
- Proper symmetry factors included
- Number of diagrams substantially reduced
- Usable in higher order resummations
- Implementation in progress

Effective interaction expansion

Rewrite self-energy expansion

Definition of effective 1B and 2B forces

Effective one-body force

A. Carbone, A. Cipollone, C. Barbieri, A. Rios & A. Polls 12/25

Diagrammatic expansion with 3BF

Self-energy expansion to 2nd order

- Only skeleton 1PI diagrams needed
- Anti-symmetrized interactions
- Proper symmetry factors included
- Number of diagrams substantially reduced
- Usable in higher order resummations
- Implementation in progress

Effective interaction expansion

Rewrite self-energy expansion

Definition of effective 1B and 2B forces

Effective one-body force

<u>A. Carbone</u>, A. Cipollone, C. Barbieri, A. Rios & A. Polls 12/25

Chiral EoS

PRELIMINARY, A. Carbone, A. Rios & A. Polls

- 3BF can be added \Rightarrow modified Koltun sum-rule¹
- NNLO \Rightarrow 2B & 3B same order in χ expansion
- Saturation properties of N3LO and NNLO similar
- $S \sim 30 \text{ MeV} \& L \sim 56 \text{ MeV}$

¹A. Carbone's talk 13/25

UNIVERSITY OF

Towards quantum transport

Shear viscosity of neutron matter in CBF

Wambach, Ainsworth & Pines, NPA **555**, 128 (1993) Benhar & Valli, PRL **99**, 232501 (2007)

Benhar, Polls, Valli & Vidaña, PRC **81**, 024305 (2010) Benhar & Carbone, arxiv:0912.0129

- Don't stick to EoS only, aim at complete NS models!
- Better if experimentally testable
 - $\bullet Mean-free path \Rightarrow Optical potentials \& scattering$
 - **2** Viscosities \Rightarrow Resonances
 - **3** Neutrino responses $\Rightarrow \nu$ -A experiments

Ab initio quantum transport?

EBHF calculation of mean-free path

- Often hybrid models are used:
 - Viscosity: CBF / BHF + Landau-Abrikosov-Khalatnikov
 - MFP: EBHF + quasi-particle pole expansion
- Uncontrolled or inconsistent approximations
- Need of fully quantal, many-body calculations
- Beyond Boltzmann
- Green's functions advantages: time-dependence is natural & consistency
- Simplest transport coefficient: mean free path
- Key coefficient, underlying in transport
- Closely related to imaginary optical potential

Negele & Yazaki, PRL **47**, 71 (1981) Fantoni, Friman & Pandharipande, PLB **104**, 89 (1981) Mahaux, PRC **28**, 1848 (1**9**8**3**9

Damping and mean-free path

Naive optical potential model

$$\begin{bmatrix} -\frac{\nabla^2}{2m} + \operatorname{Re}\Sigma(\varepsilon_k) + i\operatorname{Im}\Sigma(\varepsilon_k) \end{bmatrix} \psi(r) = \varepsilon_k \psi(r)$$
$$\psi(r) = Ne^{-i\left\{k - \frac{i}{2\lambda_k}\right\}r} \quad \Rightarrow \quad p(r) = |\psi(r)|^2 \sim e^{-\frac{r}{\lambda_k}}$$
$$\lambda_k = -\frac{k}{2m} \frac{1}{\operatorname{Im}\Sigma(E_k)} = \frac{k}{m} \frac{1}{\Gamma_k} = \frac{\partial_k \varepsilon_k}{\Gamma_k}$$

• Mean-free path from quasi-particle properties

$$\lambda_k = \frac{v_k}{\Gamma_k}$$

• Fundamental asymptotic behavior for propagator in real time

$$\mathcal{G}_R(k,t) \to -i\eta_k e^{-i\varepsilon_k t} e^{-|\Gamma_k|t}$$

Quasi-particle "pole"

• Fundamental asymptotic behavior for propagator in real time

$$\mathcal{G}_R(k,t) \to -i\eta_k e^{-i\varepsilon_k t} e^{-|\Gamma_k|t} \Rightarrow \lambda_k = \frac{\partial_k \varepsilon_k}{\Gamma_k}$$

• Time-energy Fourier transform using retarded contour + Cauchy

$$\mathcal{G}_R(k,t) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} e^{-i\omega t} \mathcal{G}_R(k,\omega) \sim \int_{C'} \frac{\mathrm{d}z}{2\pi} e^{-izt} \frac{\eta(z)}{z - (\varepsilon_k - i|\Gamma_k|)} = -i\eta_k e^{-i\varepsilon_k t} e^{-|\Gamma_k|t}$$

Quasi-particle "pole"

• Fundamental asymptotic behavior for propagator in real time

$$\mathcal{G}_R(k,t) \to -i\eta_k e^{-i\varepsilon_k t} e^{-|\Gamma_k|t} \Rightarrow \lambda_k = \frac{\partial_k \varepsilon_k}{\Gamma_k}$$

• Time-energy Fourier transform using retarded contour + Cauchy

$$\mathcal{G}_{R}(k,t) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} e^{-i\omega t} \mathcal{G}_{R}(k,\omega) \sim \int_{C'} \frac{\mathrm{d}z}{2\pi} e^{-izt} \frac{\eta(z)}{z - (\varepsilon_{k} - i|\Gamma_{k}|)} = -i\eta_{k} e^{-i\varepsilon_{k}t} e^{-|\Gamma_{k}|t}$$

Hunting the pole

25

CDBonn, T = 0, $\rho = 0.16 \text{ fm}^{-3}$

• Circle: first renormalization (expansion on Im z to 1^{st} order)

$$\varepsilon_k = \frac{k^2}{2m} + \operatorname{Re}\Sigma_k(\varepsilon_k) \qquad \Gamma_k = \operatorname{Im}\Sigma_k(\varepsilon_k)$$

• Square: second renormalization (expansion on Im z to 2^{nd} order)

$$\varepsilon_k = \frac{k^2}{2m} + \operatorname{Re}\Sigma_k(\varepsilon_k) \qquad \Gamma_k = \frac{m_k}{m} \operatorname{Im}\Sigma_k(\varepsilon_k)$$
18/

Model dependence

$$\lambda_k = \frac{1}{\Gamma_k} \frac{\partial \varepsilon_k}{\partial k}$$

- $\lambda \sim 4-5$ fm above 50 MeV
- Compatible with *pA* experiments
- Small model dependence
 - $\lambda_0 \Rightarrow$ no non-locality
 - $\lambda_2 \Rightarrow$ full non-locality
 - $\lambda'_2 \Rightarrow m^*_k$ non-locality
- Classical approximation is incorrect!
- Little effect of 3BFs

A. Rios & V. Somà, PRL 108, 012501 (2012) 19/25

Extension to other transport properties

Viscosity spectral function in unitary gas

Enss, Haussman, Zwerger, Ann. Phys. 326, 770 (2011)

Viscosity over entropy ratio in ultracold gases

Kadanoff & Martin, Ann. Phys. **24**, 419 (1963) Taylor & Randeria, PRA **81**, 053610 (2010)

• Specific heat in quantum liquids

Pethick & Carneiro, PRA 7, 304 (1973) Carneiro & Pethick, PRA 11, 1106 (1976)

21 / 25

Extrapolation to T=0

A. Rios, in preparation 22/25

Pairing properties

 $2\chi_k$

Pairing energy denominator

$$\frac{1}{2\chi_k} = \int_{-\infty} \frac{\mathrm{d}\omega}{2\pi} \int_{-\infty} \frac{\mathrm{d}\omega}{2\pi} \frac{1 - f(\omega) - f(\omega)}{\omega + \omega'} A_k(\omega) A_k^s(\omega')$$

Pairing properties

CDBonn neutron matter ${}^{1}S_{0}$ pairing gap

Conclusions

- Ab initio description of nuclear & neutron matter
- Fully self-consistent & quantum mechanical calculation
- One-body microscopic properties
- Thermodynamic properties
- Mean-free path in correlated matter ✓
- Adding three-body forces consistently
- Other transport properties are coming
- Zero-temperature extrapolation
- Pairing: 1S_0 , 3PF_2
- Two-body properties: relative momentum distribution

Thank you!

Neutron Stars Nuclear Physics, Gravitational Waves & Astronomy

29-30 July 2013

Institute of Advanced Studies, University of Surrey http://www.ias.surrey.ac.uk/workshops/neutstar/

a.rios@surrey.ac.uk

