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1 Introduction and Motivation

2 Effective pseudopotential with higher-order derivatives (Raimondi et al.,

Phys Rev C83, 054311 (2011))

3 Continuity equation for the N3LO nuclear energy density functionals
(Raimondi et al., Phys Rev C84, 064303 (2011))

4 Effective theory for nuclear EDFs (Dobaczewski et al., J. Phys. G39,

125103 (2012))

Introduce an expansion scale by regularizing zero-range
pseudopotential
Fit the coupling constants of the regularized pseudopotential
Check independence and convergence properties of the expansion
with respect to the expansion scale
Check naturalness of the coupling constants



Nuclear Density Functional Theory

Nuclear DFT is still the only
computationally-feasible method giving
a global description of the entire
nuclear chart (around 3100 nuclei
identified, other 6000 expected)

Description of the nuclear bulk
properties (ground-state energies,
nucleon-separation energies, charge
radius, deformations,...)

For phenomenological functionals, the
best root-means-square deviation
relative to thousands of measured
masses is around 1 MeV

Ongoing research

Existing functionals are still not predictive and lacking of true spectroscopic quality
⇒ Improve the analytical form of the empirical nuclear functional
⇒ Establish empirical EDF theory on solid theoretical ground
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Energy Density Functional (EDF)

E [ρ(r)] =
~2

2m

∫
dr τ(r) + Eint [ρ(r)]− λ

∫
dr ρ(r)

Existence of EDF predicted by Hohenberg-Kohn theorem (issue on systematic
presence of the symmetry dilemma for nuclear functionals)

No (physical) external potential term in the functional (nuclei are self bound)

Kohn-Sham scheme achieved by mapping one-body density matrix to the local (or
quasi-local) densities

Ground-state energy obtained through variational principle, EGS = Minρ E [ρ(r)]

Standard phenomenological nuclear functional [Perlinska et alii, Phys Rev C 69, 014316 (2004)]

E [ρ(r), τ(r), j(r), · · · ] =

∫
dr Cρρ(r)2 + Cτρ(r)τ(r) + Cjj(r)2 + · · ·

enriched with different kind of densities ρ(r), τ(r), j(r), · · · equipped with the
corresponding coupling constants Cρ, Cτ , Cj , · · ·

F.Raimondi (TRIUMF) effective nuclear functionals 15th April 2013 3 / 35



Motivation

Three questions to be addressed

1 How nuclear energy density functionals can be constrained
by an effective interaction?

2 Is the continuity equation still valid for the higher-order energy
density functional?

3 Is the ”ab-initio” formulation the only way to put phenomenological
nuclear functionals on a firm theoretical ground?
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Problems...
1 Phenomenological functionals can be affected by the self-interaction problem [J. P.

Perdew, Phys. Rev. B (1981)]

2 Fits of the extended functionals are made more complicated by the increased
number of the parameters of the model (instabilities and interdependencies issues
arise) [M. Kortelainen et al., J. Phys. G (2010)]

3 The presence of higher powers of momenta in the expansion of the energy density
functional (EDF) can be incompatible with the continuity equation

4 Full derivation of phenomenological functionals from underlying vacuum NN and
3N nuclear forces is still incomplete [M. Stoitsov et al., Phys. Rev. C (2010)]

...solutions
1 Derive an extended pseudopotential that gives the higher-order functional within

the Hartree-Fock approximation
2 Reduce the number of the free coupling constants by relating the higher-order

EDF to the zero-range extended pseudopotential
3 Derive the constraints among the coupling constants of the general EDF that

guarantee the validity of the continuity equation
4 Provide a consistent formulation of the low-energy EDF approach in term of

effective theory
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The Skyrme EDF

Standard Skyrme EDF [Perlinska et alii, Phys Rev C 69, 014316 (2004)]

E [ρ(r), τ(r), j(r), · · · ] =

∫
dr Cρρ(r)2 + Cτρ(r)τ(r) + Cjj(r)2 + · · ·

Bilinear terms composed by local densities (equipped with coupling constants)

τ(r) =
[
∇ · ∇′ρ(r, r′)

]
r=r′

j(r) =
1

2i

[(
∇−∇′

)
ρ(r, r′)

]
r=r′

Order of each term given by the number of derivatives (up to NLO)

The two-body term of the Skyrme
interaction [Skyrme, Nuclear Physics 9 615
(1959)]

4.png

expansion in relative momenta of a
finite-range interaction
(low-momentum range)

consistent with the symmetries of
the nucleon-nucleon interaction
contact force (easier calculation)

fitted to experimental data
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Extended Skyrme interaction: building blocks I

Building blocks in spherical tensor representation:

k1,µ={−1,0,1} = −i
{

1√
2

(kx − iky) , kz,
−1√

2
(kx + iky)

}
where the relative momentum is defined,

k = (∇1 −∇2)/2i

Pauli matrices acting on spin coordinates,

σ
(i)
00 = 1̂,

σ
(i)

1,µ={−1,0,1} = −i
{

1√
2

(
σ(i)
x − iσ(i)

y

)
, σ(i)
z , −1√

2

(
σ(i)
x + iσ(i)

y

)}

Symmetrized two-body spin operators

Ŝv12S =
(
1− 1

2
δv1,v2

) (
[σ(1)
v1 σ

(2)
v2 ]S + [σ(1)

v2 σ
(2)
v1 ]S

)
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Extended Skyrme interaction: building blocks II

Higher-order derivatives tensor

KñL̃ are spherical tensor derivatives of order ñ and rank L̃ (Carlsson et al., Phys. Rev.
C (2008))

No. tensor KnL order n rank L
1 1 0 0
2 k 1 1
3 [kk]0 2 0
4 [kk]2 2 2
5 [kk]0k 3 1
6 [k[kk]2]3 3 3
7 [kk]20 4 0
8 [kk]0[kk]2 4 2
9 [k[k[kk]2]3]4 4 4

10 [kk]20k 5 1
11 [kk]0[k[kk]2]3 5 3
12 [k[k[k[kk]2]3]4]5 5 5
13 [kk]30 6 0
14 [kk]20[kk]2 6 2
15 [kk]0[k[k[kk]2]3]4 6 4
16 [k[k[k[k[kk]2]3]4]5]6 6 6
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Extended Skyrme interaction: higher-order pseudopotential

two-body pseudopotential

V̂ =
∑
ñ′L̃′,

ñL̃,v12S

Cñ
′L̃′

ñL̃,v12S
V̂ ñ
′L̃′

ñL̃,v12S

where Cñ
′L̃′

ñL̃,v12S
is the strength parameter corresponding to the term,

V̂ ñ
′L̃′

ñL̃,v12S
=

1

2
iv12

([[
K′ñ′L̃′KñL̃

]
S
Ŝv12S

]
0

+ (−1)v12+S
[[
K′ñL̃Kñ′L̃′

]
S
Ŝv12S

]
0

)
×
(

1− P̂M P̂σP̂ τ
)
δ̂12(r′1r

′
2; r1r2)

1 Central-like form of the tensor, i.e. derivatives operators are coupled together and
then coupled to the spin operators to give a rotational scalar

2 Locality and zero-range character ensured by the Dirac delta function
3 Exchange term explicitely embedded in the pseudopotential with P̂M P̂σP̂ τ

4 {ñ′, L̃′, ñ, L̃, v12, S} are the allowed indices of the tensors according to the
symmetries

5 Terms up to next-to-next-to-next-to-leading order (N3LO) in derivatives are
considered (Skyrme interaction corresponds to a NLO expansion)
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Symmetries of the pseudopotential

1 Rotational invariance (spherical tensors coupled to rank 0)

2 Time reversal and parity invariance (ñ′ + ñ must be even)

3 Hermiticity (parameters Cñ
′L̃′

ñL̃,v12S
must be real)

4 Invariance under permutation of particles indices 1 and 2
5 Galilean invariance

Gauge symmetry
The additional gauge symmetry can be considered. The gauge-invariant pseudopotential
must verify the condition

V̂ = e−iφ(r′2)e−iφ(r′1)V̂ eiφ(r1)eiφ(r2)

This condition imposes constraints among the parameters, which can be classified as

vanishing parameters, Cñ
′L̃′

ñL̃,v12S
= 0

stand-alone gauge invariant parameters (unrestricted parameters)

independent parameters

dependent parameters (expressed as linear combinations of the independent ones)
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Number of terms of the N3LO pseudopotential

Number of terms of the N3LO pseudopotential plotted as a function of the order in
derivatives

Total number of free terms in the Galilean-invariant pseudopotential is 50, whereas
the total number of free terms in the gauge-invariant pseudopotential is 21
The numbers of terms of the Galilean-(gauge-)invariant pseudopotential are
exactly equal to those corresponding to the Galilean-(gauge-)invariant functional in
each isospin channel
At second order, all the terms of the pseudopotential are stand-alone
gauge-invariant terms
Higher-order spin-orbit terms, with ñ+ ñ′ > 2, do violate the gauge symmetry
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Relations between the pseudopotential and energy density
functional

The N3LO EDF is obtained by averaging the N3LO pseudopotential V̂ over the
uncorrelated wavefunction (a Slater determinant)

〈Cñ
′L̃′

ñL̃,v12S
V̂ ñ
′L̃′

ñL̃,v12S
〉 =

∑
Cn
′L′v′J′,t

mI,nLvJ Tn
′L′v′J′,t

mI,nLvJ

with the sum
∑

running over the allowed values of the indices for the terms of the

functional Tn
′L′v′J′,t

mI,nLvJ and the corresponding coupling constants Cn
′L′v′J′,t

mI,nLvJ

Building blocks in energy density functional (Carlsson et al., Phys.
Rev. C (2008))

Tn
′L′v′J′,t

mI,nLvJ =
[[
ρtn′L′v′J′(r)

[
DmIρ

t
nLvJ(r)

]
J′

]
0

]0
Local densities formed by acting on non-local densities with the relative momentum
tensors KñL̃ and taking the limit r′ = r

ρtnLvJ(r) =
{

[KnLρ
t
v(r, r′)]J

}
r′=r

F.Raimondi (TRIUMF) effective nuclear functionals 15th April 2013 12 / 35



Results

The EDF obtained from the pseudopotential has the following features:

The obtained EDF coupling constants obey the Galilean-invariant constraints (in
general, the EDF is equipped by the same symmetries as the pseudopotential)

The obtained EDF is free from self-interaction problems

Owing to the zero range of the pseudopotential, we expect that the number of
independent coupling constants of the functional is reduced by a factor of 2

Zero-order EDF case
We can express the isovector coupling constants through the isoscalar ones

C0000,1
00,0000 = − 2√

3
C0000,0

00,0000 − C
0011,0
00,0011

C0011,1
00,0011 = −C0000,0

00,0000
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Results

Spherical EDF case

Spherical, space-inversion, and time-reversal symmetries of the EDF are assumed
(selection of symmetries suitable for even-even nuclei)

Gauge symmetry is considered as further symmetry of the EDF (red lines)

The reduction in the spherical magic nuclei related to imposing the
pseudopotential origins on the EDF is less important than the general case of
deformed, odd, nuclei.
For the Galilean-invariant case (blue lines) the reduction of free coupling constants
is due the dependence between spin-orbit isovector and isoscalar coupling constants
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Generalized continuity equation CE

d

dt
ρtv(r) = − ~

m
∇ · J tv(r)

where the generalized current is defined,

J tv(r) =
1

2i

(
∇−∇′

)
ρtv(r, r′)|r′=r

and the spin-isospin densities are the traces of one-body density matrix,

ρtv(r, r′) =
∑

στ,σ′τ ′

σσ
′σ
v τ tτ ′τρ(rστ, r′σ′τ ′)

Scalar-isoscalar (v = 0,t = 0), d
dt
ρ0

0(r, t) = − ~
m
∇ · J0

0 (r, t)

Scalar-isovector (v = 0,t = 1), d
dt
ρ1

0(r, t) = − ~
m
∇ · J1

0 (r, t)

Vector-isoscalar (v = 1,t = 0), d
dt
ρ0

1(r, t) = − ~
m
∇ · J0

1 (r, t)

Vector-isovector (v = 1,t = 1), d
dt
ρ1

1(r, t) = − ~
m
∇ · J1

1 (r, t)
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A theorem in time-dependent density functional theory

Statement
The gauge invariance of the potential energy density is a necessary and sufficient
condition for the validity of the continuity equation

Ingredients of the theorem

The self-consistent symmetry of the potential energy Ep{ρ} with respect to a
unitary transformation U

Ep{ρ} = Ep{UρU+}

The self-consistent field (one-body pseudopotential), Γαβ =
∂Ep{ρ}
∂ρβα

The equation of the time evolution of an operator G

i~ d

dt
〈G〉 = i~TrG

d

dt
ρ = TrG[h, ρ]

The theorem follows trivially by specializing U to a gauge transformation and assuming

the gauge invariance of the one-body pseudopotential

F.Raimondi (TRIUMF) effective nuclear functionals 15th April 2013 16 / 35



Application of the theorem to the N3LO EDF

The four local spin-isospin groups of local gauge transformation

U tv(r) = exp
(
i
[[
γtv(r)σv

]
0
τ t
]0)

where γtv(r) is the gauge angle, an arbitrary function of r, and σv (τ t) are the
generators of the transformation in the spin (isospin) space.

U0
0 (r) gives the standard abelian gauge group U(1)

U0
1 (r) forms the non-abelian gauge groups SU(2) in the spin space

U1
0 (r) forms the non-abelian gauge groups SU(2) in the isospin space

U1
1 (r) corresponds to the non-abelian gauge group SU(2)×SU(2) in the

spin-isospin product space

The theorem for N3LO functional

The invariance of the N3LO EDF with respect to each of the four local gauge
transformations is equivalent to the validity of the generalized continuity equation in the
four spin-isospin channels

F.Raimondi (TRIUMF) effective nuclear functionals 15th April 2013 17 / 35



Derivation of the continuity equation for N3LO one-body
pseudopotential

Starting from the Schrödinger equation that gives the time evolution of single-particle
Kohn-Sham wave functions

i~ ∂
∂t
φi(rστ, t) = − ~2

2m
∆φi(rστ, t) +

∑
σ′τ ′

Γ̂σσ
′

ττ ′ (r)φi(rσ
′τ ′, t)

we obtain the time-evolution equation for the density matrix,

i~ ∂
∂t
ρ(rστ, r′σ′τ ′, t) = − ~2

2m

(
∆−∆′

)
ρ(rστ, r′σ′τ ′, t)

+
∑
σ′′τ ′′

(
Γ̂σσ

′′
ττ ′′ (r)ρ(rσ′′τ ′′, r′σ′τ ′, t)− Γ̂σ

′σ′′∗
τ ′τ ′′ (r′)ρ(rστ, r′σ′′τ ′′, t)

)

Condition for the validity of CE∑
σ′′τ ′′

(
Γσσ

′′

ττ ′′ (r)ρ(rσ′′τ ′′, r′σ′τ ′)− Γσ
′σ′′∗
τ ′τ ′′ (r′)ρ(rστ, r′σ′′τ ′′)

)
r′=r

= 0

This condition can be separated in the four spin-isospin channels, relative to the four
channels of the generalized continuity equation
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N3LO one-body pseudopotential

The functional derivative of the N3LO potential energy with respect to the local densities

Γ̂σσ
′

ττ ′ (r) =
∑
aαβ,γt

Cβ,ta,α

∂T β,ta,α(r)

∂ργ

where the grouped indices notation is adopted (for instance, Cβ,ta,α ≡ C
nβLβvβJβ ,t

maIa,nαLαvαJα
)

N3LO one-body pseudopotential [Carlsson et al., Comput. Phys.
Commun. (2010)]

Γ̂σσ
′

ττ ′ (r) =
∑
γ,t

[[
U tγ(r)

[
DnγLγσ

σσ′
vγ

]
Jγ

]
0

τ tττ ′

]0

composed by the potentials derived as secondary densities,

U tγ(r) =
∑
aαβ;dδ

Cβ,ta,αχ
β;dδ
a,α;γ

[
Ddρ

t
δ(r)

]
Jγ
,

where χβ;dδ
a,α;γ are numerical coefficients (1494 up to N3LO)
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Results (scalar-isoscalar channel ⇔ Abelian gauge group)

For the standard CE in the scalar-isoscalar channel, the constraints among the
coupling constants which guarantee the validity of the CE are the same as those
defining the gauge-invariant functional up to N3LO (perfect agreement with the
gauge-invariance constraints of the functional found in [Carlsson et al., Phys. Rev.
C (2008)])

Scalar-isoscalar constraints do not mix coupling constants in spin and isospin
(index t) spaces

At second order (t = 0, 1)

C0000,t
00,2000 = −C1101,t

00,1101

C1110,t
00,1110 = − 1

3
C0011,t

00,2011 − 1
3

√
5C0011,t

00,2211

C1111,t
00,1111 = 1

2

√
5
3
C0011,t

00,2211 − 1√
3
C0011,t

00,2011

C1112,t
00,1112 = − 1

3

√
5C0011,t

00,2011 − 1
6
C0011,t

00,2211

C0000,t
11,1111 = C1101,t

11,0011

the unconstrained coupling constants C0000,t
20,0000, C0011,t

20,0011 and C0011,t
22,0011
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Results for non-Abelian gauge groups

Non-Abelian gauge-invariant functionals are more restricted than the Abelian one
(spin-orbit coupling constants are forced to be zero by the non-Abelian transformation)

scalar-isovector channel
The condition for the continuity equation in the scalar-isovector channel gives
constraints that mix coupling constants in the isospin space

When the proton-neutron symmetry is assumed (τ1
1 = τ1

2 = 0), the continuity
equations for protons and neutrons decouple and become independently valid

vector-isoscalar channel
The condition for the continuity equation in the vector-isoscalar channel gives
constraints that mix coupling constants in the spin space

vector-isovector channel
The condition for the continuity equation in the vector-isovector channel gives
constraints that relate coupling constants in both spin and isospin spaces
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Nuclear phenomenological EDFs based on Effective Theory

Consistent formulation of phenomenological EDFs within an effective theory

An example: Effective theory for deformed nuclei (Papenbrock and Zhang, Nucl Phys
A (2011), Phys Rev C (2013))

1 Exploit separation of energy scales between vibrational (Ω ∼ 1 MeV) and
rotational (ξ ∼ tens of KeV) degrees of freedom in rare earth nuclei

2 Low-energy (rotational) degrees of freedom treated as (approximated)
Nambu-Goldstone modes of spontaneous breaking of the rotational symmetry
(SO(3) down to SO(2))

3 Restored full rotational symmetry is the guiding principle in building the
Hamiltonian from the rotational and vibrational degrees of freedom

4 Higher-order terms in Nambu-Goldstone modes, with empirical coupling constants,
are introduced to include omitted physics at the breakdown scale

5 Expansion is controlled by a power counting based on the ratio ξ
Ω

6 More flexibility of the effective Hamiltonian compared to the old phenomenological
models (i.e. Bohr Hamiltonian)
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Regularized pseudopotential

A possible way to regularized the potential is to consider Gaussian function

δ(r) = lim
a→ 0

ga(r) = lim
a→ 0

e
− r2

a2

(a
√
π)

3

Central two-body regularized pseudopotential

V (r′1, r
′
2; r1, r2) =

4∑
i=1

P̂iÔi(k,k
′)δ(r′1 − r1)δ(r′2 − r2)ga(r1 − r2),

P̂i are the spin and isospin exchange operators, giving the different channels of the
interaction
δ(r′1 − r1)δ(r′2 − r2) are the locality delta functions

Ôi(k,k
′) are relative momentum operators:

0th order: 1 (LO)
2nd order: k2, k′2, ... (NLO)
4th order: k4, k′2k2, ... (N2LO)
...
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Simplified version of the regularized pseudopotential

Assumption: The pseudopotential depends only on the sum of relative momenta

Ôi(k,k
′) ≡ Ôi(k + k′)

For instance, at NLO, we have (two coupling constants T
(i)
1 and T

(i)
2 become

dependent),

T
(i)
0 +

1

2
T

(i)
1

(
k2 + k′∗2

)
+ T

(i)
2 k · k′∗ ≡ T (i)

0 +
1

2
T

(i)
1

(
k + k′∗

)2
Local central two-body regularized pseudopotential

V (r) =
4∑
i=1

P̂iÔi(k)ga(r) =
4∑
i=1

P̂i

nmax∑
n=0

V
(i)
2n ∆nga(r)

V (r) is function of the relative distance r = r1 − r2

scalar potential as expansion in powers of Laplacians ∆ in r

V
(i)
2n are coupling constants to be adjusted to data, at a given fixed scale a
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Outline

1 Introduction and Motivation

2 Effective pseudopotential with higher-order derivatives (Raimondi et al.,

Phys Rev C83, 054311 (2011))

3 Continuity equation for the N3LO nuclear energy density functionals
(Raimondi et al., Phys Rev C84, 064303 (2011))

4 Effective theory for nuclear EDFs (Dobaczewski et al., J. Phys. G39,

125103 (2012))

Introduce an expansion scale by regularizing zero-range
pseudopotential
Fit the coupling constants of the regularized pseudopotential
Check independence and convergence properties of the expansion
with respect to the expansion scale
Check naturalness of the coupling constants



Fitting the coupling constants

Standard optimization procedure

1 define a large set of experimental observables
2 optimize values of the coupling constants so as to reproduce experiments
3 test the predictability of the parametrization obtained

Derivation of the coupling constants

Gogny interaction is a phenomenological finite-range interaction,

G(r) =

4∑
i=1

P̂iGi(r) =

4∑
i=1

P̂i
∑
k=1,2

G
(i)
k gak (r)

Strategy: for a given value of the range a, derive the pseudopotential coupling constants

V
(i)
2n from the Gogny coupling constants G

(i)
k and ak. This is achieved by requiring that

the lowest moments of both potentials are equal

M
(i)
2m ≡

∫
r2mGi(r)d3r =

∫
r2mVi(r)d3r
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Methodology of effective theory for higher-order in
derivatives functionals

1 Introduction and Motivation

2 Effective pseudopotential with higher-order derivatives (Raimondi et al.,

Phys Rev C83, 054311 (2011))

3 Continuity equation for the N3LO nuclear energy density functionals
(Raimondi et al., Phys Rev C84, 064303 (2011))

4 Effective theory for nuclear EDFs (Dobaczewski et al., J. Phys. G39,

125103 (2012))

Introduce an expansion scale by regularizing zero-range
pseudopotential
Fit the coupling constants of the regularized pseudopotential
Check independence and convergence properties of the expansion
with respect to the expansion scale
Check naturalness of the coupling constants



Compute observables

Eight doubly magic nuclei are considered for calculation: 16O, 40Ca, 48Ca, 56Ni, 78Ni,
100Sn, 132Sn and 208Pb

Deviations of binding energies and radii
relative to Gogny interaction results

Convergence very rapid:
decreasing by about a factor of
four at each order

Deviations below 1% at N3LO

Smooth trends of the lines very
sensitive to the values of
coupling constants
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Independence of the regularization scale

Deviations of binding energies and radii relative to those obtained for 208Pb

The flatness of lines shows a good degree of independence of the regularization
scale

The choice of 208Pb as nucleus of reference is irrelevant
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Independence of the regularization scale for 208Pb

Convergence properties for 208Pb at different scales

Gogny 

Gogny 

NLO N2LO N3LO 

208Pb 

At N2LO the independence with respect to the scale is reached
At N3LO the convergence of the energy and radius are reached
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Comparing different nuclei in the same scale

Lepage plots show the dependence of the error in the description of a given
observable on energy or a distance
In nuclear structure (energy and length scales per particle roughly constants) we
can study how the error depends on number of nucleons

Deviations of binding energies and radii scaled by number of particles

Density-matrix expansion technique tells us that local functionals work better in
nuclei where the bulk properties overcome surface effects
Nucley beyond A'48 scale in the same way as 208Pb: different size does not
change convergence properties
Lighter nuclei have better convergence properties
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Outline

1 Introduction and Motivation

2 Effective pseudopotential with higher-order derivatives (Raimondi et al.,

Phys Rev C83, 054311 (2011))

3 Continuity equation for the N3LO nuclear energy density functionals
(Raimondi et al., Phys Rev C84, 064303 (2011))

4 Effective theory for nuclear EDFs (Dobaczewski et al., J. Phys. G39,

125103 (2012))

Introduce an expansion scale by regularizing zero-range
pseudopotential
Fit the coupling constants of the regularized pseudopotential
Check independence and convergence properties of the expansion
with respect to the expansion scale
Check naturalness of the coupling constants



Naturalness of coupling constants

Naive dimensional analysis applied to effective nuclear Lagrangian

Naturalness: after extracting the dimensional scales from a term of the functional, the
remaining dimensionless coefficient should be of order of unity

The relevant scales of the effective point-coupling Lagrangian

c

[
ψ†ψ
f2Λ

]l [∇
Λ

]n
f2Λ2

c dimensionless constant of order of unity,
l power of density expansion,
n power of gradient expansion,
Λ scale of the gradient,
f is the pion decay constant (for functionals derived from ChEFT)
Scaling factor for the conversion from unnatural to natural coupling constants

S = f2(l−1)Λn+l−2

Dimensionless coupling constants for the local effective pseudopotential (l = 2)

v
(i)
2n = f2Λ2nV

(i)
2n
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Coupling constants before NDA

Coupling constants values for different channels of the interaction (a=0.85 fm)

0 2 4 6

Order of expansion 2n

1

10

100

1000

|V
2n

| (
M

eV
 f

m
3+

2m
 )

Wigner

Bartlett

Heisenberg

Majorana

 Λ −2n

Coupling constants are derived from the coupling constants of the Gogny
interaction (no direct adjustment to data)

In logarithmic scale, coupling constants decrease almost linearly with n

The slope of this decrease is Λ−2n (Λ '700 MeV/~c ' 3.5 fm−1)
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Coupling constants in natural units (I)

Natural coupling constants

v
(i)
2n = f2Λ2nV

(i)
2n

v
(i)
2n natural if f ' 35 MeV/(~c)3/2

Zero-order coupling constants

0.85 0.9 0.95 1 1.05 1.1 1.15

Regularization scale a (fm)

-2

-1

0

1

V
2

n
(N

at
u

ra
l 

u
n

it
s)

Wigner

Heisenberg

Bartlett
Majorana

 n=0

LO coupling constants are less
natural than higher-order ones

Second-order coupling constants

0.85 0.9 0.95 1 1.05 1.1 1.15

Regularization scale a (fm)

-2

-1

0

1

V
2

n
(N

at
u

ra
l 

u
n

it
s)

Wigner

Heisenberg

Bartlett
Majorana

 n=1

NLO coupling constants are natural
at all the scales
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Coupling constants in natural units (II)

Fourth-order coupling constants

0.85 0.9 0.95 1 1.05 1.1 1.15

Regularization scale a (fm)
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V
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n
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u
n
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 n=2

N2LO coupling constants are
natural only at some scales

Sixth-order coupling constants

0.85 0.9 0.95 1 1.05 1.1 1.15

Regularization scale a (fm)

-2

-1

0

1

V
2

n
(N

at
u

ra
l 

u
n

it
s)

Wigner

Heisenberg

Bartlett
Majorana

 n=3

N3LO coupling constants are
natural at all the scales

Naturalness of the coupling constants provides a signature of a QCD hard scale in
the low-energy effective functionals

Future adjustments of the coupling constants to data =⇒ weaker scale dependence
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Summary and perspective

1 Some aspects of the N3LO EDF have been investigated

Relation of the functional to the N3LO pseudopotential and reduction
of the free coupling constants of the functional
Link between the validity of continuity equation and the gauge
invariance of the functional

2 Effective-theory principles have been applied to low-energy nuclear theory

Construction of the expansion scheme allowing for a systematic
improvement of nonlocal EDFs and/or finite-range effective
interactions of Gaussian regulators
Demonstration that such an expansion scheme rapidly converges
Check of the naturalness of the pseudopotential coupling constants

Perspective

Extension of the study to nonlocal regularized pseudopotential

Optimization both the higher-order and regularized pseudopotential to
experimental data
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BACK UP
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Two main classes of nuclear EDFs

I) Microscopically-constrained nuclear EDF

Derived from the N-N potential in Ch EFT

V NN = V NN1π + V NN2π + · · ·+ V NNct (Λ)

Density-dependent coupling constants associated
with the underlying meson-exchange interactions

Mapping of the in-medium nucleonic effects at
the two-pion-mass scale or heavier-meson scales
in a local EDF

from [P. Finelli et alii, Nucl Phys A 770,
(2006)]

II) Phenomenological nuclear EDF

Only nucleonic degrees of freedom are explicitely
included
The connection to the strong interaction is
limited to the role of symmetries in building the
relevant terms of the EDF
Coupling constants are fitted to the experimental
data

from M. Kortelainen et alii,
Phys Rev C 82, (2010)
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New-generation nuclear EDFs

Standard phenomenological functionals need to be improved:

Experimental single-particle energies difficult to reproduce with Skyrme functionals

Macroscopic models still better (Liquid Drop Models)

Different possible ways to extend the Skyrme EDF:

by enriching the structure of the functional with density-dependent coupling
constants or higher powers of density:

C =⇒ C(ρ(r));

ρ(r)τ(r) =⇒ ρ2(r)τ2(r)

by extending the functional with higher-order derivatives:

E [ρ(r), τ(r), j(r), · · ·]

Simple Taylor expansion on one-body density matrix is performed

ρ
(
R +

r

2

)
= e

1
2
r·∇ρ(R) =

∑
n

1

n!

(
1

2
r · ∇

)n
ρ(R)
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The N3LO energy density functional I

One-body density matrix

Separation into spin (v = 0, 1) and isospin (t = 0, 1) channels

ρ(rστ, r′σ′τ ′) =
1

4

∑
v=0,1
t=0,1

(√
3
)v+t [

σσσ
′

v

[
τ tττ ′ρ

t
v(r, r′)

]0]
0

non-local densities

ρ
0
0(r, r

′
) = ρ(r, r

′
)

ρ
0
1(r, r

′
)1,µ={−1,0,1} = −i

{
1√
2

(
sx(r, r

′
)− isy(r, r

′
)
)
, sz(r, r

′
),

−1√
2

(
sx(r, r

′
) + isy(r, r

′
)
)}

ρ
1
0(r, r

′
)1,µ={−1,0,1} = −i

{
1√
2

(
~ρx(r, r

′
)− i~ρy(r, r

′
)
)
, ~ρz(r, r

′
),

−1√
2

(
~ρx(r, r

′
) + i~ρy(r, r

′
)
)}

ρ
1
1(r, r

′
)1,µ={−1,0,1} = −i

{
1√
2

(
~sx(r, r

′
)− i~sy(r, r

′
)
)
, ~sz(r, r

′
),

−1√
2

(
~sx(r, r

′
) + i~sy(r, r

′
)
)}
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The N3LO energy density functional II

Local densities
Formed by acting on non-local densities with the relative momentum tensors KñL̃ and
taking the limit r′ = r

ρtnLvJ(r) =
{

[KnLρ
t
v(r, r′)]J

}
r′=r

Terms in the energy density functional

Tn
′L′v′J′,t

mI,nLvJ =
[[
ρtn′L′v′J′(r)

[
DmIρ

t
nLvJ(r)

]
J′

]
0

]0
The terms are required to be:

quadratic in densities

time-reversal invariant
space-inversion invariant

rotational invariant

The corresponding density-independent coupling constants is denoted Cn
′L′v′J′,t

mI,nLvJ
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Comparison with standard Skyrme interaction

The pseudopotential up to second order is equivalent to the Skyrme interaction,
expressed traditionally in Cartesian coordinates

Terms Cartesian representation (Skyrme force)

1 V̂ 20
00,00

1√
3
(k′2δ(r1 − r2) + δ(r1 − r2)k2)

2 V̂ 20
00,20

1
3 (k

′2δ(r1 − r2) + δ(r1 − r2)k2)(σ(1) · σ(2))

3 V̂ 22
00,22

1√
5
((k′ · σ(1))(k′ · σ(2))δ(r1 − r2) + δ(r1 − r2)(k · σ(1))(k · σ(2)))

− 1
3
√
5
((k′2δ(r1 − r2) + δ(r1 − r2)k2)(σ(1) · σ(2)))

4 V̂ 11
11,00

1√
3
(k′δ(r1 − r2) · k)

5 V̂ 11
11,20

1
3 (k

′δ(r1 − r2) · k)(σ(1) · σ(2))

6 V̂ 11
11,11

1√
6
i(k′δ(r1 − r2)× k)(σ(1) + σ(2))

7 V̂ 11
11,22

1√
5
(k′ · σ(1))δ(r1 − r2)(k · σ(2))− 1

3
√
5
(k′δ(r1 − r2) · k)(σ(1) · σ(2))

Density dependent terms are missing (however important to guarantee proper saturation)
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Results

Number of independent parameters and coupling constants up to
N3LO

Pseudopotential EDF

Not related to pseudopotential Related to pseudopotential

General Spherical General Spherical

Order Galilean Gauge Galilean Gauge Galilean Gauge Galilean Gauge Galilean Gauge

0 2 2 4 4 2 2 2 2 2 2

2 7 7 14 14 8 8 7 7 7 7

4 15 6 30 12 16 6 15 6 14 6

6 26 6 52 12 28 6 26 6 24 6

N3LO 50 21 100 42 54 22 50 21 47 21

In the general case (no spherical symmetry) the number of independent coupling
constants of the EDF obtained from the pseudopotential is twice smaller than that
of the EDF not related to the pseudopotential

One-half of the coupling constants (for instance the isovector ones) can be
expressed through the other half (for instance the isocalar ones)
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Results

The averaging expression

〈Cñ
′L̃′

ñL̃,v12S
V̂ ñ
′L̃′

ñL̃,v12S
〉 =

∑
Cn
′L′v′J′,t

mI,nLvJ Tn
′L′v′J′,t

mI,nLvJ

gives the coupling constants Cn
′L′v′J′,t

mI,nLvJ as linear combinations of the parameters

Cñ
′L̃′

ñL̃,v12S

Zero-order EDF case
For instance, at zero-order, we get,

C0000,0
00,0000 =

3

8
C00

00,00 +

√
3

8
C00

00,20

C0011,0
00,0011 = −

√
3

8
C00

00,00 −
5

8
C00

00,20

C0000,1
00,0000 = −

√
3

8
C00

00,00 +
3

8
C00

00,20

C0011,1
00,0011 = −3

8
C00

00,00 −
√

3

8
C00

00,20
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Results for non-Abelian gauge groups (scalar-isovector
channel)

The condition for the continuity equation in the scalar-isovector channel gives
constraints that mix coupling constants in the isospin space

At second order, the constraints for the scalar-isovector continuity equation

C0000,t
00,2000 = − 3t√

3
C1101,1−t

00,1101

C1110,t
00,1110 = − 3t

3
√

3
C0011,1−t

00,2011 −
3t

3

√
5

3
C0011,1−t

00,2211

C1111,t
00,1111 = −3t

3
C0011,1−t

00,2011 +
3t

6

√
5C0011,1−t

00,2211

C1112,t
00,1112 = −3t

3

√
5

3
C0011,1−t

00,2011 −
3t

6
√

3
C0011,1−t

00,2211

C0000,t
11,1111 = C1101,t

11,0011 = C0000,1
20,0000 = C0011,1

20,0011 = C0011,1
22,0011 = 0

the unconstrained coupling constants C0000,1
20,0000, C0011,1

20,0011 and C0011,1
22,0011

When the proton-neutron symmetry is assumed (τ1 = τ2 = 0), the continuity
equations for protons and neutrons decouple and become independently valid
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Results for non-Abelian gauge groups (vector-isoscalar
channel)

The condition for the continuity equation in the vector-isoscalar channel gives
constraints that mix coupling constants in the spin space

At second order, the constraints for the vector-isoscalar continuity equation

C1101,t
00,1101 = − 1√

3
C0011,t

00,2011,

C1110,t
00,1110 = − 1√

3
C0000,t

00,2000,

C1111,t
00,1111 = −C0000,t

00,2000,

C1112,t
00,1112 = −

√
5

3
C0000,t

00,2000,

C0011,t
20,0011 = C0000,t

11,1111 = C1101,t
11,0011 = C0011,t

00,2211 = C0011,t
22,0011 = 0,

the unconstrained coupling constants C0000,t
20,0000
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Results for non-Abelian gauge groups (vector-isovector
channel)

The condition for the continuity equation in the vector-isovector channel gives
constraints that relate coupling constants in both spin and isospin spaces

For instance, at second order, the constraints for the vector-isovector continuity equation

C0000,t
00,2000 = −

√
3(
√

3)tC1110,0
00,1110,

C1101,t
00,1101 =

√
3(
√

3)tC1110,0
00,1110,

C1110,1
00,1110 =

√
3C1110,0

00,1110,

C1111,t
00,1111 =

√
3(
√

3)tC1110,0
00,1110,

C1112,t
00,1112 =

√
5(
√

3)tC1110,0
00,1110,

C0011,t
00,2011 = −3(

√
3)tC1110,0

00,1110,

C0011,t
20,0011 = C0011,t

22,0011 = C0000,1
20,0000 = C0011,t

00,2211 = C0000,t
11,1111 = C1101,t

11,0011 = 0,

In general, Non-Abelian gauge-invariant functionals are more restricted than the
Abelian one (spin-orbit coupling constants are always forced to be zero by the
non-Abelian gauge transformation)
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Scales of energy

We can extract three different scales for nuclear phenomena:

1 Scale of the spontaneous chiral symmetry breaking ∼ 1 GeV (Hard)

2 Scale of the boson-exchange interaction (Soft/Hard):

Pion mass scale mπ '135 MeV/c2

Fermi momentum scale kF ' 260 MeV/~c
3 Low-energy nuclear phenomena scale (Soft):

Nucleon separation energy δE ' 8 MeV corresponding to δk ' 32
MeV/~c
Shell effects E 6 1 MeV corresponding to δk 6 4 MeV/~c

Two observations:

The small-energy scale in QCD chiral dynamics becomes a short-range high-energy
of nucleon-nucleon force acting on nucleons in nuclei.

In finite nuclei surface effects decrease the infinite-matter binding energies
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Comparison between pseudopotential and Gogny form
factors of the interaction

Nuclear observables are weakly dependent on the regularization scale a

a as parameter to be optimized with respect to the Gogny interaction

The optimized value of a can be interpreted as range of the effective interaction

Optimization of the pseudopotential coupling constants (included a) has been performed
by matching the form factors of the pseudopotential at NLO to the ones of the Gogny
interaction

General expressions for the form factors

Gogny form factor

2∑
k=1

C
(G)
k e

− r2

a2
k

Regularized pseudopotential form
factor

e
− r2

a2

(
C0 + C2

r2

a2

)
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Plots of the pseudopotential and Gogny form factors of the
interaction (a= 0.85 fm)
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