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Chiral Effective Field Theory 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD (mu≈md≈0), 
spontaneously broken with pion as the 
Goldstone boson 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



Three-nucleon forces why? 

•  Leading three-nucleon force terms 
–  Long-range two-pion exchange  
–  Medium-range one-pion exchange + two-nucleon contact  
–  Short range three-nucleon contact  

 
The question is not: Do three-body forces enter the description?   
The only question is: How large are three-body forces?  
 

–  Fujita Miyazawa (1957)"Two-pion exchange with virtual Δ excitation 



“New” low-energy constants of chiral NNN potential  
from fit to three-nucleon properties 

must be  
determined  

in A ≥ 3 

N2LO 
“new” LECs 

dR 

MEC  

contact 

cD cE 
contact 1-π exchange 

+ contact 

NNN force 

dR ∝ cD

•  Need two (hopefully uncorrelated) observables to fit the “new” low-
energy constants. One could be the A=3 binding energy. 

•  There is a link between the medium-range (cD term) NNN force 
and the meson-exchange current appearing in nuclear beta decay 
–  A second observable could be the half life of tritium 



Leading terms of the chiral NNN force 

From 
pion-nucleon 

scattering 
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Ab initio calculations 
(NCSM, in this case) 

are needed not only to 
test nuclear interaction 

models, but also to 
constrain the interaction 

itself 



Determination of NNN constants cD and cE  
from the triton binding energy and the half life 

•  Chiral EFT: cD also in the two-nucleon 
contact vertex with an external probe 

•  Calculate  
–  Leading order GT 
–  N2LO: one-pion exchange plus contact 

•  A=3 binding energy constraint:  
     cD=-0.2±0.1 cE =-0.205±0.015 
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The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations

of the A ¼ 3 binding energies and, for the first time, of the triton ! decay. We demonstrate that these low-

energy observables allow a robust determination of the two undetermined constants, a result of the

surprising fact that the determination of cD depends weakly on the short-range correlations in the wave

functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and

constrained by properties of the A ¼ 2 system and the present determination of cD and cE, are successful
in predicting properties of the A ¼ 3 and 4 systems.
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The fundamental connection between nuclear forces and
the underlying theory of quantum chromodynamics (QCD)
remains one of the greatest contemporary theoretical chal-
lenges, due to the nonperturbative character of QCD in the
low-energy regime relevant to nuclear phenomena.
However, the past two decades of theoretical developments
provide us with a bridge to overcome this obstacle, in the
form of chiral perturbation theory ("PT) [1]. The "PT
Lagrangian, constructed by integrating out degrees of free-
dom of the order of!" # 1 GeV and higher (nucleons and

pions are thus the only explicit degrees of freedom), is an
effective Lagrangian of QCD at low energies. As such, it
retains all conjectured symmetry principles, particularly
the approximate chiral symmetry, of the underlying theory.
Furthermore, it can be organized in terms of a perturbative
expansion in positive powers of Q=!" where Q is the

generic momentum in the nuclear process or the pion
mass [1]. Though the subject of an ongoing debate about
its validity [2,3], the naive extension of this expansion to
nonperturbative phenomena provides a practical interface
with existing many-body techniques, and clearly holds a
significant value for the study of the properties of QCD at
low energy and its chiral symmetry.

The chiral symmetry dictates the operator structure of
each term of the effective Lagrangian, whereas the cou-
pling constants (not fixed by the symmetry) carry all the
information on the integrated-out degrees of freedom. A
theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low
energy. Recent lattice QCD calculations have allowed a
theoretical estimate of LECs of single- and two-nucleon
diagrams [4], while LECs of diagrams involving more than
two nucleons are out of the reach of current computational
resources. Alternatively, the undetermined constants can
be constrained by low-energy experiments.

The strength of "PT is that the chiral expansion is used
to derive both nuclear potentials and currents from the
same Lagrangian. Therefore, the electroweak currents in
nuclei (which determine reaction rates in processes involv-
ing external probes) and the strong interaction dynamics
(#N scattering, the NN interaction, the NNN interaction,
etc.) are all based on the same theoretical grounds and
rooted in the low-energy limits of QCD. In particular, "PT
predicts, along with theNN interaction at the leading order
(LO), a three-nucleon (NNN) interaction at the next-to-
next-to-leading order or N2LO [5,6], and even a four-
nucleon force at the fourth order (N3LO) [7]. At the
same time, the LO nuclear current consists of (the stan-
dard) single-nucleon terms, while two-body currents, also
known as meson-exchange currents (MEC), make their
first appearance at N2LO [8]. Up to N3LO both the NNN
potential and the current are fully constrained by the
parameters defining the NN interaction, with the exception
of two ‘‘new’’ LECs, cD and cE. The latter, cE, appears
only in the potential as the strength of the NNN contact
term [see Fig. 1(a)]. On the other hand, cD manifests itself
both in the contact term part of the NN-#-N three-nucleon
interaction of Fig. 1(a) and in the two-nucleon contact
vertex with an external probe of the exchange currents
[see Fig. 1(b)].

cD cE cD
(a) (b)

FIG. 1. Contact and one-pion exchange plus contact
interaction (a), and contact MEC (b) terms of "PT.
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•  Regulator depending on momentum transfer ⇒ local NNN interaction in coordinate space 
–  Simpler to use, more like TM’, UIX, IL 

–  Different space-tensor structure (compared to regulation with nucleon momenta) 

–  Example: Even the simplest, the contact term, gets involved…  

 

•  Technical details in    

Local chiral N2LO NNN interaction 



ξ
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

ξ
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The ab initio no-core shell model (NCSM)   

•  The NCSM is a technique for the solution of the A-nucleon bound-state problem 

•  Realistic nuclear Hamiltonian 

–  High-precision nucleon-nucleon potentials 

–  Three-nucleon interactions  

•  Finite harmonic oscillator (HO) basis  

–  A-nucleon HO basis states 

–  complete NmaxhΩ model space 

•  Effective interaction tailored to model-space truncation for NN(+NNN) potentials 

–  Okubo-Lee-Suzuki unitary transformation  

•  Or a sequence of unitary transformations in momentum space: 
–  Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential 

Convergence to exact solution with increasing Nmax 
for bound states. No coupling to continuum.  

A 
ΨA = cNiΦNi

A

i
∑

N=0

Nmax

∑

1max += NN



 4He from chiral EFT interactions:  
g.s. energy convergence 

•  Chiral N3LO NN plus N2LO NNN 
potential 

–  Bare interaction (black line) 
•  Strong short-range 

correlations 
§  Large basis needed 

–  SRG evolved effective 
interaction (red line) 

•  Unitary transformation 

•  Two- plus three-body 
components, four-body 
omitted 

•  Softens the interaction 
§  Smaller basis sufficient 
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A=3 binding energy and half life constraint 
cD=-0.2, cE=-0.205, Λ=500 MeV 



•  Jacobi coordinate three-nucleon basis 

•  3N matrix elements in the three-nucleon Slater-determinant basis 

 

3N interaction matrix elements in HO basis 

11 

the form !NiJMTMT!, where N is the total number of HO
excitations, i is an additional quantum number enumerating
the antisymmetrized states, J and T are the total three-
nucleon angular momentum and isospin, respectively, and M,
MT are their third components. This basis can be expanded
in a (2!1) nucleon cluster basis using expansion coeffi-
cients, i.e.,

!NiJMTMT!"" #$nls jt ,NL 1
2J 1

2 %!!NiJT!

#!$nls jt ,NL 1
2J 1

2 %JMTMT!, $9%

where the !nl! HO state describes relative motions of nucle-
ons 1 and 2, !NL! describes the relative motion of the third
nucleon with respect to the c.m. of nucleons 1 and 2, and
#(nls jt ,NL 1

2J 1
2 )!!NiJT! is the coefficient of fractional par-

entage. It holds that N"2n!l!2N!L. For further details
and the procedure how to calculate the expansion coeffi-
cients, see Ref. &3'. The basis for the three-body effective
interaction suitable for the shell-model code input is a three-
nucleon Slater-determinant HO basis characterized by M 3
"mj1!mj2!mj3, MT"m t1!m t2!m t3 and parity, formed
by the single-particle states !nl 12 jm j

1
2mt! that depend on the

single-particle coordinates. We introduce a short-hand nota-
tion for these Slater-determinant states, i.e.,
!(nl 12 jm j

1
2mt)(abc)!, where a ,b ,c label the occupied states.

In order to transform the three-body effective interaction to
the new basis we need first to couple the relative coordinate
basis $9% with the three-nucleon c.m. HO states
!Nc.m.Lc.m.M c.m.! to form a complete basis. The three-body
effective interaction is independent of the Nc.m.Lc.m.M c.m.
quantum numbers. The overlap of the two respective states
can then be expressed in the form

#$nl 12 jm j
1
2mt%(abc)!NiJMTMT ;Nc.m.Lc.m.M c.m.!

"(2na!la!2nb!lb!2nc!lc ,N!2Nc.m.!Lc.m.(mja
!mjb

!mjc
,M!M c.m.

(mta!mtb!mtc,MT

#!6 " #$nls jt ,NL 1
2J 1

2 %!!NiJT! 12 $1$$$1 % l!s!t%$ lama
1
2msa! jam ja%$ lbmb

1
2msb! jbm jb%$ lcmc

1
2msc! j cm jc%

#$ 12mta
1
2mtb!tmt%$ tmt

1
2mtc!TMT%$ 12msa

1
2msb!sms%$ lbmblama!)m)%$L12M 12lml!)m)%$ lcmcL12M 12!*m*%

#$Lc.m.M c.m.LML!*m*%$LML
1
2msc!JMJ%$ lmlsms! jm j%$ jm jJMJ!JM %

##nclcN12L12*!Nc.m.Lc.m.NL*! 1
2
#nblbnala)!N12L12nl)!1 , $10%

where we explicitly show the total HO quantum number con-
servation that also implies parity conservation, the angular
momentum and isospin third component conservation. The
sum goes over expansion $9%, * , ) , N12 , L12 and the m
quantum numbers in the Clebsch-Gordan coefficients not ap-
pearing on the left-hand side. The #n1l1n2l2L!n3l3n4l4L!d
are the generalized Brody-Moshinsky brackets for two par-
ticles of mass ratio d as defined, e.g., in Ref. &15'. Sums of
the Clebsch-Gordan coefficients in Eq. $10% can be reex-
pressed as sums of 6 j and 9 j coefficients. However, some
Clebsch-Gordan coefficients will remain, as we have a mag-
netic quantum number dependence on the left-hand side. It
should be pointed out that overlap $10% is independent of the
HO frequency + , and, for a given Nmax , it needs to be cal-
culated just once. The three-body effective interaction
M-scheme matrix elements are then obtained by

#$nl 12 jm j
1
2mt%(abc)!V3eff,123!$nl 12 jm j

1
2mt%(de f )!

"" #$nl 12 jm j
1
2mt%(abc)!NiJMTMT ;Nc.m.Lc.m.M c.m.!

##NiJT!V3eff,123!N!i!JT!

##N!i!JMTMT ;Nc.m.Lc.m.M c.m.!$nl 12 jm j
1
2mt%(de f )!.

$11%

$iv% We solve the Schrödinger equation for the A-nucleon
system using the Hamiltonian

HA ,eff
+ ""

i"1

A

hi!
1

A$2 "
i% j%k

A

V3eff,i jk
NN ! "

i% j%k

A

V3eff,i jk
NNN ,

$12%

where the 1/(A$2) factor takes care of overcounting the
contribution from the two-nucleon interaction. At this point
we also subtract the Hc.m. and add the Lawson projection
term ,(Hc.m.$

3
2 -+) to shift the spurious c.m. excitations.

Just as the bare interaction is translationally invariant, so is
the effective interaction, and the energies of the physical
eigenstates corresponding to the 0-+ excitation of the c.m.
are independent on the choice of , . The A-nucleon calcula-
tion is then performed using either the many-fermion dynam-
ics shell-model code &16' generalized to handle three-body
interactions or using the newly developed code REDSTICK
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!NiJMTMT!"" #$nls jt ,NL 1
2J 1

2 %!!NiJT!

#!$nls jt ,NL 1
2J 1

2 %JMTMT!, $9%

where the !nl! HO state describes relative motions of nucle-
ons 1 and 2, !NL! describes the relative motion of the third
nucleon with respect to the c.m. of nucleons 1 and 2, and
#(nls jt ,NL 1

2J 1
2 )!!NiJT! is the coefficient of fractional par-

entage. It holds that N"2n!l!2N!L. For further details
and the procedure how to calculate the expansion coeffi-
cients, see Ref. &3'. The basis for the three-body effective
interaction suitable for the shell-model code input is a three-
nucleon Slater-determinant HO basis characterized by M 3
"mj1!mj2!mj3, MT"m t1!m t2!m t3 and parity, formed
by the single-particle states !nl 12 jm j

1
2mt! that depend on the

single-particle coordinates. We introduce a short-hand nota-
tion for these Slater-determinant states, i.e.,
!(nl 12 jm j

1
2mt)(abc)!, where a ,b ,c label the occupied states.

In order to transform the three-body effective interaction to
the new basis we need first to couple the relative coordinate
basis $9% with the three-nucleon c.m. HO states
!Nc.m.Lc.m.M c.m.! to form a complete basis. The three-body
effective interaction is independent of the Nc.m.Lc.m.M c.m.
quantum numbers. The overlap of the two respective states
can then be expressed in the form
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where we explicitly show the total HO quantum number con-
servation that also implies parity conservation, the angular
momentum and isospin third component conservation. The
sum goes over expansion $9%, * , ) , N12 , L12 and the m
quantum numbers in the Clebsch-Gordan coefficients not ap-
pearing on the left-hand side. The #n1l1n2l2L!n3l3n4l4L!d
are the generalized Brody-Moshinsky brackets for two par-
ticles of mass ratio d as defined, e.g., in Ref. &15'. Sums of
the Clebsch-Gordan coefficients in Eq. $10% can be reex-
pressed as sums of 6 j and 9 j coefficients. However, some
Clebsch-Gordan coefficients will remain, as we have a mag-
netic quantum number dependence on the left-hand side. It
should be pointed out that overlap $10% is independent of the
HO frequency + , and, for a given Nmax , it needs to be cal-
culated just once. The three-body effective interaction
M-scheme matrix elements are then obtained by
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1
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1
2mt%(de f )!
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$11%

$iv% We solve the Schrödinger equation for the A-nucleon
system using the Hamiltonian

HA ,eff
+ ""

i"1

A

hi!
1

A$2 "
i% j%k

A

V3eff,i jk
NN ! "

i% j%k

A

V3eff,i jk
NNN ,

$12%

where the 1/(A$2) factor takes care of overcounting the
contribution from the two-nucleon interaction. At this point
we also subtract the Hc.m. and add the Lawson projection
term ,(Hc.m.$

3
2 -+) to shift the spurious c.m. excitations.

Just as the bare interaction is translationally invariant, so is
the effective interaction, and the energies of the physical
eigenstates corresponding to the 0-+ excitation of the c.m.
are independent on the choice of , . The A-nucleon calcula-
tion is then performed using either the many-fermion dynam-
ics shell-model code &16' generalized to handle three-body
interactions or using the newly developed code REDSTICK
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The ab initio no-core shell model !NCSM" is extended to include a realistic three-body interaction in
calculations for p-shell nuclei. The NCSM formalism is reviewed and new features needed in calculations with
three-body forces are discussed in detail. We present results of first applications to 6,7Li, 6He, 7,8,10Be,
10,11,12B, 12N, and 10,11,12,13C using the Argonne V8! nucleon-nucleon !NN " potential and the Tucson-
Melbourne TM!(99) three-nucleon interaction !TNI". In addition to increasing the total binding energy, we
observe a substantial sensitivity in the low-lying spectra to the presence of the realistic three-body force and an
overall improvement in level ordering and level spacing in comparison to experiment. The greatest sensitivity
occurs for states where the spin-orbit interaction strength is known to play a role. In particular, with the TNI
we obtain the correct ground-state spin for 10,11,12B and 12N, contrary to calculations with NN potentials only.
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I. INTRODUCTION

The ab initio no-core shell model !NCSM" #1$ is a method
to solve the nuclear structure problem for light nuclei con-
sidered as systems of A nucleons interacting by realistic in-
ternucleon forces. The calculations are performed using a
large but finite harmonic-oscillator !HO" basis. Due to the
basis truncation, it is necessary to derive an effective inter-
action from the underlying internucleon interaction that is
appropriate for the basis employed. The effective interaction
contains, in general, up to A-body components even if the
underlying interaction had, e.g., only two-body terms. In
practice, the effective interaction is derived in a subcluster
approximation retaining just two- or three-body terms. A cru-
cial feature of the method is its convergence to exact solution
with increasing basis size and/or an increase in the effective
interaction clustering.
In the past, applications were limited to only realistic two-

nucleon interactions. However, the recent introduction of the
capability to derive a three-body effective interaction #2$ and
apply it in either relative-coordinate #3$ or Cartesian-
coordinate #4$ formalism together with the ability to solve a
three-nucleon system with a genuine three-nucleon force in
the NCSM approach #5$ opens the possibility to include a
realistic three-nucleon interaction !TNI" in the NCSM
Hamiltonian and perform calculations for the p-shell nuclei.
We note that there are several methods that can be used to

solve the A#3,4 systems with realistic Hamiltonians that
include a realistic three-body interaction. However, until
now, only the Green’s function Monte Carlo !GFMC"
method #6–9$ is capable to obtain solution for light p-shell
nuclei with a Hamiltonian that includes both realistic two-
and three-nucleon force.
In this paper, we introduce an extension of the NCSM

formalism to accommodate the TNI and present first appli-
cations for several p-shell nuclei. The main purpose of this
paper is to introduce the formalism needed to perform ab
initio shell-model calculations for the p-shell nuclei with
Hamiltonians that include a realistic three-nucleon interac-
tion. At the same time, we present a snapshot of first appli-
cations for several p-shell nuclei of different masses with the

primary goal of assessing a general impact of a realistic TNI
on the structure of different p-shell nuclei. In this study, we
limit ourselves to the use of a single TNI, the chiral-
symmetry based Tucson-Melbourne TM!!99" #10$, combined
with the Argonne V8 ! nucleon-nucleon !NN" potential #6$.
More detailed studies using a broader variety of realistic
three-nucleon interactions will follow in the future.
In Sec. II, the extension of the NCSM formalism to in-

clude realistic three-nucleon forces is discussed. In Sec. III,
we present first results obtained with Hamiltonians that in-
clude the Tucson-Melbourne TM!(99) TNI for 6,7Li, 6He,
7,8,10Be, 10,11,12B, 12N and 10,11,12,13C. Some overall obser-
vations of the effect of the TNI are gathered in Sec. IV.
Finally, we summarize our conclusions in Sec. V.

II. Ab initio NO-CORE SHELL MODEL WITH A THREE-
NUCLEON FORCE

A detailed description of the NCSM approach was pre-
sented, e.g., in Refs. #1–3$. Here, we emphasize extensions
and modifications needed when a genuine TNI is included. In
the case when the TNI is considered, the starting Hamil-
tonian is

HA#
1
A %

i$ j

A
!p! i"p! j"2

2m !%
i$ j

A

VNN ,i j! %
i$ j$k

A

VNNN ,i jk , !1"

where m is the nucleon mass, VNN ,i j is the NN interaction
with both strong and electromagnetic components, and
VNNN ,i jk is the three-nucleon interaction. In the NCSM, we
employ a large but finite HO basis. Due to properties of the
realistic nuclear interaction in Eq. !1", we must derive an
effective interaction appropriate for the basis truncation. To
facilitate the derivation of the effective interaction, we
modify the Hamiltonian !1" by adding to it the center-of-
mass !c.m." HO Hamiltonian Hc.m.#Tc.m.!Uc.m. , where
Uc.m.#

1
2 Am&2R! 2, R! #1/A% i#1

A r! i . The effect of the HO
c.m. Hamiltonian will later be subtracted out in the final
many-body calculation. Due to the translational invariance of
Hamiltonian !1" the HO c.m. Hamiltonian has in fact no
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I. INTRODUCTION

We are currently experiencing rapid progress in our under-
standing of nuclear properties. This is triggered by two major
developments.

On one hand, we have increasingly powerful supercom-
puters, for which new and very efficient algorithms have
been developed to solve the nuclear many-body problem. We
are now able to solve the Schrödinger equation for realistic
nuclear interactions for p-shell nuclei, including also three-
nucleon forces (3NFs) [1,2]. This is a major advance in itself,
because it is becoming more clear that reliable predictions for
many nuclear observables, binding energy, and spectra can
be obtained from phenomenological nuclear two- (NN) and
three-nucleon (3N ) interaction models. Especially, for the NN
system, these have reached a high degree of sophistication
and describe the NN data up to pion production threshold
perfectly [3–6]. For the binding energies of p-shell nuclei, the
structure of the 3NFs turned out to be significant, leading to
improved models of these forces engineered to describe a wide
range of light nuclei accurately [7]. This tool is of increasing
importance to determine, e.g. reaction rates for astrophysical
processes [8], which are experimentally not accessible or
properties of nuclei with large neutron excess [1].

On the other hand, there was a great deal of progress in our
understanding of how chiral perturbation theory (ChPT) can be
extended from purely pionic or the nucleon-pion system (for
a review see, e.g. [9]) to systems with more than one nucleon
[10–12]. In this approach, one makes use of the explicit and
spontaneous breaking of chiral symmetry to systematically
expand the strong interaction in terms of a generic small
momentum. Thereby, the NN interactions, the 3NFs and πN
scattering are related to each other. The chiral symmetry and
the pattern of its breaking are not systematically taken into
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account by today’s phenomenological interactions, except that
in all of them the longest-range part of the potential is generally
the one-pion-exchange interaction. Therefore, though QCD
is believed to be the theory of the strong interaction for
the energies of relevance in nuclear systems, we are not
able to perform confirming tests using the traditional forces.
This will be possible using nuclear forces based on ChPT.
It will be especially important to look at subleading parts
of the interaction, which include the 2π exchange NN and
3N forces. Here, many of the relations between NN, 3N , and
πN interactions become apparent. Therefore, finding
signatures of the 3NFs is an important aspect of current
research on this issue.

In the past, the effects of 3NFs have been studied using
the phenomenological models. In nucleon-deuteron (Nd)
scattering above 60–100 MeV lab energy, it was found that
predictions for some (polarization) observables depend on the
3NF model used but not on the NN interaction chosen [13].
These observables are excellent candidates to pin down the
structure of 3NFs and, therefore, outstanding laboratories to
study the important subleading parts of the chiral interactions.
Consequently, a lot of experiments were triggered, which
provide an important set of data to probe these models [14–17].
First comparisons for chiral interactions to the data were
performed and, in general, agreement was found in the energy
range, where chiral interactions are expected to work [18].

These data, however, are manifestly isospin T = 1/2 and,
therefore, not suitable to probe the 3NF in the isospin T =
3/2 channel. But it was argued that the T = 3/2 component
is very important to describe p-shell nuclei, which mainly
motivated the new 3NF terms in the Illinois series of 3N
interactions [7]. This clearly shows that the spectra and binding
energies of light nuclei are complementary to nd scattering and
provide indispensable information on the structure of 3NFs.
It is therefore of utmost importance to predict properties of
p-shell nuclei based on the chiral interactions including these
3NFs.

Chiral interactions are low-momentum interactions. The
unknown short distance part of the force is absorbed in a
tower of contact terms. Necessarily, we need to regularize the
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The effective 3NF is expanded in three-body antisym-
metrized Jacobi states [71] with total HO quantum number
N, angular momentum J, and isospin T for the internal motion
of the three-body cluster. i labels the state within the set of
antisymmetrized states with fixed N, J , and T

|NJT i〉. (B1)

This state can be presented in non-anti-symmetrized Jacobi
states

|α〉 = |n12n3[(l12s12)j12(l31/2)I3]JMJ (t121/2)T MT 〉 (B2)

using coefficients of fractional parentage (CFP)

cαi = 〈α|NJT i〉. (B3)

We obtain the ci by diagonalizing the antisymmetrizer in the
Jacobi basis |α〉 [71].

The single particle m-scheme states are

|abc〉 =
∣∣na(la1/2)jamam

t
a

〉 ∣∣nb(lb1/2)jbmbm
t
b

〉

∣∣nc(lc1/2)jcmcm
t
c

〉
. (B4)

We do not need to explicitly antisymmetrize these states,
because we project on antisymmetrized Jacobi states in the
following. This implies that for all orderings of a, b, and c the
transformation matrix element will be the same.

The internal motion is augmented by c.m. HO basis states
|nc.m.lc.m.〉, which we couple with the states for the intrinsic
motion to a total angular momentum JM

{|nc.m.lc.m.〉|NJT i〉}JM. (B5)

Analogously, the states |α〉 are augmented by C.M. states.
Note that the CFP’s are m independent. Therefore, the CFPs
are identical in the complete and in the internal basis

cαi = {〈nc.m.lc.m.|〈α|}JM{|nc.m.lc.m.〉|NJT i〉}JM. (B6)

It is efficient to also couple the single-particle states to a
total angular momentum JM, because the transformation
conserves the total angular momentum. We introduce the
intermediate angular momentum J12 and define

{{|a〉|b〉}J12 |c〉}JM. (B7)

The noncoupled states are easily projected out of the coupled
ones using orthogonality relations of the Clebsch-Gordan
coefficients

〈abc|{{|a〉|b〉}J12 |c〉}JM = (jajbJ12,mambma + mb)
× (J12jcJ ,ma + mbmcM). (B8)

In this notation the transformation of the Jacobi basis matrix
elements of the 3NF 〈NJT i|V3|NJT i〉 reads

〈abc|V3|a′b′c′〉 =
∑

J J12J
′
12

∑

αα′

∑

ii ′

× (jajbJ12,mambma + mb)

× (J12jcJ ,ma + mbmcma + mb + mc)

× (j ′
aj

′
bJ

′
12,m

′
am

′
bm

′
a + m′

b)

× (J ′
12j

′
cJ ,m′

a + m′
bm

′
cm

′
a + m′

b + m′
c)

× {{〈a|〈b|}J12〈c|}J {|nc.m.lc.m.〉|α〉}J

× cαicα′i ′ 〈NJT i|V3|NJT i〉

× {〈nc.m.lc.m.|〈α′|}J {{|a′〉|b′〉}J ′
12 |c′〉}J .

(B9)

Here, we made use of the orthogonality of the Clebsch-Gordan
coefficients, which removed the m-sums and resulted in J =
J ′. The transition matrix element

T = {〈nc.m.lc.m.|〈α|}J {{|a〉|b〉}J12 |c〉}J (B10)

becomesM independent. The spin-orbital part is then obtained
as

T =
∑

L12S3L3L12L"

√
ĵ 12Î 3L̂3Ŝ3






l12 l3 L3

s12 1/2 S3

j12 I3 J
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× ( − )L3+S3+lc.m.+J
√
L̂Ĵ

{
lc.m. L3 L
S3 J J

}√
L̂12ŝ12ĵ a ĵ b

×


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la lb L12

1/2 1/2 s12

ja jb J12






√
Ĵ 12ĵ cL̂Ŝ3


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L12 s12 J12

lc 1/2 jc

L S3 J



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× ( − )l12+l3−L3 ( − )lc.m.+l3+l12+L
√

"̂L̂3





lc.m. l3 "

l12 L L3



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× ( − )L12+lc−"( − )lc+L12−L( − )lc+l12+L12+L
√

"̂L̂12

×
{

lc L12 "

l12 L L12

}

[nc.m.lc.m., n3l3 :"; N12L12, nclc : "]d

× [N12L12, n12l12 : L12; nala, nblb : L12]d ′ (B11)

using the Talmi-Moshinsky brackets with d = 2 and d ′ = 1
(for the notation see Ref. [72]). For the isospin matrix element,
one finds

Tiso =
(
1/2 1/2 t12,m

t
am

t
bm

t
a + mt

b

)

×
(
t12 1/2 T ,mt

a + mt
bm

t
cm

t
a + mt

b + mt
c

)
. (B12)

We note that a simpler expression for this transformation was
derived in Ref. [2]. The present formula is, however, more
efficient.
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×






la lb L12

1/2 1/2 s12

ja jb J12






√
Ĵ 12ĵ cL̂Ŝ3
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I. INTRODUCTION

We are currently experiencing rapid progress in our under-
standing of nuclear properties. This is triggered by two major
developments.

On one hand, we have increasingly powerful supercom-
puters, for which new and very efficient algorithms have
been developed to solve the nuclear many-body problem. We
are now able to solve the Schrödinger equation for realistic
nuclear interactions for p-shell nuclei, including also three-
nucleon forces (3NFs) [1,2]. This is a major advance in itself,
because it is becoming more clear that reliable predictions for
many nuclear observables, binding energy, and spectra can
be obtained from phenomenological nuclear two- (NN) and
three-nucleon (3N ) interaction models. Especially, for the NN
system, these have reached a high degree of sophistication
and describe the NN data up to pion production threshold
perfectly [3–6]. For the binding energies of p-shell nuclei, the
structure of the 3NFs turned out to be significant, leading to
improved models of these forces engineered to describe a wide
range of light nuclei accurately [7]. This tool is of increasing
importance to determine, e.g. reaction rates for astrophysical
processes [8], which are experimentally not accessible or
properties of nuclei with large neutron excess [1].

On the other hand, there was a great deal of progress in our
understanding of how chiral perturbation theory (ChPT) can be
extended from purely pionic or the nucleon-pion system (for
a review see, e.g. [9]) to systems with more than one nucleon
[10–12]. In this approach, one makes use of the explicit and
spontaneous breaking of chiral symmetry to systematically
expand the strong interaction in terms of a generic small
momentum. Thereby, the NN interactions, the 3NFs and πN
scattering are related to each other. The chiral symmetry and
the pattern of its breaking are not systematically taken into
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account by today’s phenomenological interactions, except that
in all of them the longest-range part of the potential is generally
the one-pion-exchange interaction. Therefore, though QCD
is believed to be the theory of the strong interaction for
the energies of relevance in nuclear systems, we are not
able to perform confirming tests using the traditional forces.
This will be possible using nuclear forces based on ChPT.
It will be especially important to look at subleading parts
of the interaction, which include the 2π exchange NN and
3N forces. Here, many of the relations between NN, 3N , and
πN interactions become apparent. Therefore, finding
signatures of the 3NFs is an important aspect of current
research on this issue.

In the past, the effects of 3NFs have been studied using
the phenomenological models. In nucleon-deuteron (Nd)
scattering above 60–100 MeV lab energy, it was found that
predictions for some (polarization) observables depend on the
3NF model used but not on the NN interaction chosen [13].
These observables are excellent candidates to pin down the
structure of 3NFs and, therefore, outstanding laboratories to
study the important subleading parts of the chiral interactions.
Consequently, a lot of experiments were triggered, which
provide an important set of data to probe these models [14–17].
First comparisons for chiral interactions to the data were
performed and, in general, agreement was found in the energy
range, where chiral interactions are expected to work [18].

These data, however, are manifestly isospin T = 1/2 and,
therefore, not suitable to probe the 3NF in the isospin T =
3/2 channel. But it was argued that the T = 3/2 component
is very important to describe p-shell nuclei, which mainly
motivated the new 3NF terms in the Illinois series of 3N
interactions [7]. This clearly shows that the spectra and binding
energies of light nuclei are complementary to nd scattering and
provide indispensable information on the structure of 3NFs.
It is therefore of utmost importance to predict properties of
p-shell nuclei based on the chiral interactions including these
3NFs.

Chiral interactions are low-momentum interactions. The
unknown short distance part of the force is absorbed in a
tower of contact terms. Necessarily, we need to regularize the
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We do not need to explicitly antisymmetrize these states,
because we project on antisymmetrized Jacobi states in the
following. This implies that for all orderings of a, b, and c the
transformation matrix element will be the same.

The internal motion is augmented by c.m. HO basis states
|nc.m.lc.m.〉, which we couple with the states for the intrinsic
motion to a total angular momentum JM
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are identical in the complete and in the internal basis
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It is efficient to also couple the single-particle states to a
total angular momentum JM, because the transformation
conserves the total angular momentum. We introduce the
intermediate angular momentum J12 and define

{{|a〉|b〉}J12 |c〉}JM. (B7)

The noncoupled states are easily projected out of the coupled
ones using orthogonality relations of the Clebsch-Gordan
coefficients

〈abc|{{|a〉|b〉}J12 |c〉}JM = (jajbJ12,mambma + mb)
× (J12jcJ ,ma + mbmcM). (B8)

In this notation the transformation of the Jacobi basis matrix
elements of the 3NF 〈NJT i|V3|NJT i〉 reads
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Here, we made use of the orthogonality of the Clebsch-Gordan
coefficients, which removed the m-sums and resulted in J =
J ′. The transition matrix element

T = {〈nc.m.lc.m.|〈α|}J {{|a〉|b〉}J12 |c〉}J (B10)

becomesM independent. The spin-orbital part is then obtained
as
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using the Talmi-Moshinsky brackets with d = 2 and d ′ = 1
(for the notation see Ref. [72]). For the isospin matrix element,
one finds

Tiso =
(
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We note that a simpler expression for this transformation was
derived in Ref. [2]. The present formula is, however, more
efficient.
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The effective 3NF is expanded in three-body antisym-
metrized Jacobi states [71] with total HO quantum number
N, angular momentum J, and isospin T for the internal motion
of the three-body cluster. i labels the state within the set of
antisymmetrized states with fixed N, J , and T

|NJT i〉. (B1)

This state can be presented in non-anti-symmetrized Jacobi
states

|α〉 = |n12n3[(l12s12)j12(l31/2)I3]JMJ (t121/2)T MT 〉 (B2)

using coefficients of fractional parentage (CFP)

cαi = 〈α|NJT i〉. (B3)

We obtain the ci by diagonalizing the antisymmetrizer in the
Jacobi basis |α〉 [71].

The single particle m-scheme states are
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We do not need to explicitly antisymmetrize these states,
because we project on antisymmetrized Jacobi states in the
following. This implies that for all orderings of a, b, and c the
transformation matrix element will be the same.

The internal motion is augmented by c.m. HO basis states
|nc.m.lc.m.〉, which we couple with the states for the intrinsic
motion to a total angular momentum JM

{|nc.m.lc.m.〉|NJT i〉}JM. (B5)

Analogously, the states |α〉 are augmented by C.M. states.
Note that the CFP’s are m independent. Therefore, the CFPs
are identical in the complete and in the internal basis
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conserves the total angular momentum. We introduce the
intermediate angular momentum J12 and define

{{|a〉|b〉}J12 |c〉}JM. (B7)

The noncoupled states are easily projected out of the coupled
ones using orthogonality relations of the Clebsch-Gordan
coefficients
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Here, we made use of the orthogonality of the Clebsch-Gordan
coefficients, which removed the m-sums and resulted in J =
J ′. The transition matrix element
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one finds
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We note that a simpler expression for this transformation was
derived in Ref. [2]. The present formula is, however, more
efficient.
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We present first ab initio no-core shell model (NCSM) calculations using similarity renormalization

group (SRG) transformed chiral two-nucleon (NN) plus three-nucleon (3N) interactions for nuclei

throughout the p-shell, particularly 12C and 16O. By introducing an adaptive importance truncation for

the NCSM model space and an efficient JT-coupling scheme for the 3N matrix elements, we are able to

surpass previous NCSM studies including 3N interactions. We present ground and excited states in 12C
and 16O for model spaces up to Nmax ¼ 12 including full 3N interactions. We analyze the contributions of

induced and initial 3N interactions and probe induced 4N terms through the sensitivity of the energies on

the SRG flow parameter. Unlike for light p-shell nuclei, SRG-induced 4N contributions originating from

the long-range two-pion terms of the chiral 3N interaction are sizable in 12C and 16O.
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Nuclear Hamiltonians constructed within chiral effec-
tive field theory (EFT) provide a systematic link between
nuclear structure physics and low-energy quantum
chromodynamics (QCD). It is a supreme challenge for
modern nuclear theory to exploit this link and to apply
these interactions consistently in ab initio nuclear structure
calculations for a wide range of nuclei and observables.
This is vital to provide robust QCD-based predictions, e.g.,
for light exotic nuclei, to constrain approximate nuclear
structure approaches, and to understand the relevant QCD
mechanisms driving nuclear structure phenomena. At
present the most advanced calculations beyond the few-
body domain use chiral two-nucleon (NN) interactions at
N3LO [1,2] and three-nucleon (3N) interactions at N2LO
[3] in the ab initio no-core shell model (NCSM) [4]. A first
milestone was the study of the spectroscopy of mid-p-shell
nuclei in moderate model spaces using a Lee-Suzuki (LS)
transformed Hamiltonian [5], which proved the predictive
power of chiral Hamiltonians and the need to include the
3N interaction consistently. Recently, light p-shell nuclei
were studied in the NCSM employing a consistent simi-
larity renormalization group (SRG) transformation of the
chiral NN þ 3N Hamiltonian [6,7]. The SRG transforma-
tion provides a model-space independent Hamiltonian with
superior convergence properties that can be used univer-
sally in a variety of many-body approaches [8,9].

In this Letter we present the first ab initio calculations of
nuclei throughout the whole p-shell including 12C and 16O
using SRG-transformed chiral NN þ 3N interactions.
Through a combination of conceptual and computational
developments we are able to extend the range of previous
NCSM studies using full 3N interactions to significantly
larger model spaces and particle numbers.

SRG-transformed NN þ 3N interactions.—A crucial
step for NCSM calculations beyond the lightest isotopes

is the unitary transformation of the initial Hamiltonian in
order to improve the convergence behavior with respect to
the size of the many-body model space. In addition to the
LS similarity transformation, which is tailored to decouple
the NCSM model space from the excluded space, several
model-space independent unitary transformations, e.g., the
unitary correlation operator method (UCOM) and the SRG,
have been introduced [8,9]. Here, we focus on the SRG,
mainly because of its simplicity and flexibility.
In the SRG framework the unitary transformation of an

operator, e.g., the Hamiltonian, is formulated in terms of a
flow equation d

d!H! ¼ ½"!; H!% with a continuous flow
parameter !. The initial condition for the solution of this
flow equation is given by the ‘‘bare’’ chiral Hamiltonian.
The physics of the SRG evolution is governed by the anti-
Hermitian generator "!. A specific form widely used in
nuclear physics [8,9] is given by "! ¼ m2

N½Tint; H!%,
where mN is the nucleon mass and Tint ¼ T # Tcm is the
intrinsic kinetic energy operator. This generator drives the
Hamiltonian towards a diagonal form in a basis of eigen-
states of the intrinsic kinetic energy.
Along with the prediagonalization of the Hamiltonian,

which is the reason for the transformation in the first place,
the SRG induces many-body operators beyond the particle
rank of the initial Hamiltonian. Only if all the induced
terms up to the A-body level are kept, the transformation is
unitary and the spectrum of the Hamiltonian in an exact
A-body calculation is unchanged and independent of the
flow parameter !. In practice we have to truncate the
evolution at a particle rank n < A, thus violating formal
unitarity. In this situation we can use the flow-parameter !
as a diagnostic tool to quantify the contribution of omitted
beyond-n-body terms.
Whereas the SRG transformation at two-body level has

been used for some time [8,10,11], the solution of the
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•  Transformation 
•  Introduce an intermediate J-coupling 

 
•  However, E3Max=16 not sufficient  
     for medium mass nuclei and perhaps 
     also not enough for the reactions and 
     scattering 

•  Further improvements needed, e,g.: 
•  Three sums in T can be performed, 
     with two 9j and three 6j coefficients  
     replaced by a 12j and a 6j  
     coefficient. Code speedup  
     significant… More work needed! 

3N interaction matrix elements in HO basis 

15 

PHYSICAL REVIEW C 73, 064002 (2006)

Spectra and binding energy predictions of chiral interactions for 7Li

A. Nogga,1,∗ P. Navrátil,2,† B. R. Barrett,3,‡ and J. P. Vary4,2,5,§
1Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany
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Using the no-core shell model approach, we report on the first results for 7Li based on the next-to-next-to-leading
order chiral nuclear interaction. Both two-nucleon and three-nucleon interactions are taken into account. We show
that the p-shell nuclei are sensitive to the subleading parts of the chiral interactions including three-nucleon forces.
Though chiral interactions are soft, we do not observe overbinding for this p-shell nucleus and find a realistic
description for the binding energy, excitation spectrum, and radius.
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I. INTRODUCTION

We are currently experiencing rapid progress in our under-
standing of nuclear properties. This is triggered by two major
developments.

On one hand, we have increasingly powerful supercom-
puters, for which new and very efficient algorithms have
been developed to solve the nuclear many-body problem. We
are now able to solve the Schrödinger equation for realistic
nuclear interactions for p-shell nuclei, including also three-
nucleon forces (3NFs) [1,2]. This is a major advance in itself,
because it is becoming more clear that reliable predictions for
many nuclear observables, binding energy, and spectra can
be obtained from phenomenological nuclear two- (NN) and
three-nucleon (3N ) interaction models. Especially, for the NN
system, these have reached a high degree of sophistication
and describe the NN data up to pion production threshold
perfectly [3–6]. For the binding energies of p-shell nuclei, the
structure of the 3NFs turned out to be significant, leading to
improved models of these forces engineered to describe a wide
range of light nuclei accurately [7]. This tool is of increasing
importance to determine, e.g. reaction rates for astrophysical
processes [8], which are experimentally not accessible or
properties of nuclei with large neutron excess [1].

On the other hand, there was a great deal of progress in our
understanding of how chiral perturbation theory (ChPT) can be
extended from purely pionic or the nucleon-pion system (for
a review see, e.g. [9]) to systems with more than one nucleon
[10–12]. In this approach, one makes use of the explicit and
spontaneous breaking of chiral symmetry to systematically
expand the strong interaction in terms of a generic small
momentum. Thereby, the NN interactions, the 3NFs and πN
scattering are related to each other. The chiral symmetry and
the pattern of its breaking are not systematically taken into

∗Electronic address: a.nogga@fz-juelich.de
†Electronic address: navratil1@llnl.gov
‡Electronic address: bbarrett@physics.arizona.edu
§Electronic address: jvary@iastate.edu

account by today’s phenomenological interactions, except that
in all of them the longest-range part of the potential is generally
the one-pion-exchange interaction. Therefore, though QCD
is believed to be the theory of the strong interaction for
the energies of relevance in nuclear systems, we are not
able to perform confirming tests using the traditional forces.
This will be possible using nuclear forces based on ChPT.
It will be especially important to look at subleading parts
of the interaction, which include the 2π exchange NN and
3N forces. Here, many of the relations between NN, 3N , and
πN interactions become apparent. Therefore, finding
signatures of the 3NFs is an important aspect of current
research on this issue.

In the past, the effects of 3NFs have been studied using
the phenomenological models. In nucleon-deuteron (Nd)
scattering above 60–100 MeV lab energy, it was found that
predictions for some (polarization) observables depend on the
3NF model used but not on the NN interaction chosen [13].
These observables are excellent candidates to pin down the
structure of 3NFs and, therefore, outstanding laboratories to
study the important subleading parts of the chiral interactions.
Consequently, a lot of experiments were triggered, which
provide an important set of data to probe these models [14–17].
First comparisons for chiral interactions to the data were
performed and, in general, agreement was found in the energy
range, where chiral interactions are expected to work [18].

These data, however, are manifestly isospin T = 1/2 and,
therefore, not suitable to probe the 3NF in the isospin T =
3/2 channel. But it was argued that the T = 3/2 component
is very important to describe p-shell nuclei, which mainly
motivated the new 3NF terms in the Illinois series of 3N
interactions [7]. This clearly shows that the spectra and binding
energies of light nuclei are complementary to nd scattering and
provide indispensable information on the structure of 3NFs.
It is therefore of utmost importance to predict properties of
p-shell nuclei based on the chiral interactions including these
3NFs.

Chiral interactions are low-momentum interactions. The
unknown short distance part of the force is absorbed in a
tower of contact terms. Necessarily, we need to regularize the
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The effective 3NF is expanded in three-body antisym-
metrized Jacobi states [71] with total HO quantum number
N, angular momentum J, and isospin T for the internal motion
of the three-body cluster. i labels the state within the set of
antisymmetrized states with fixed N, J , and T

|NJT i〉. (B1)

This state can be presented in non-anti-symmetrized Jacobi
states

|α〉 = |n12n3[(l12s12)j12(l31/2)I3]JMJ (t121/2)T MT 〉 (B2)

using coefficients of fractional parentage (CFP)

cαi = 〈α|NJT i〉. (B3)

We obtain the ci by diagonalizing the antisymmetrizer in the
Jacobi basis |α〉 [71].

The single particle m-scheme states are

|abc〉 =
∣∣na(la1/2)jamam

t
a

〉 ∣∣nb(lb1/2)jbmbm
t
b

〉

∣∣nc(lc1/2)jcmcm
t
c

〉
. (B4)

We do not need to explicitly antisymmetrize these states,
because we project on antisymmetrized Jacobi states in the
following. This implies that for all orderings of a, b, and c the
transformation matrix element will be the same.

The internal motion is augmented by c.m. HO basis states
|nc.m.lc.m.〉, which we couple with the states for the intrinsic
motion to a total angular momentum JM

{|nc.m.lc.m.〉|NJT i〉}JM. (B5)

Analogously, the states |α〉 are augmented by C.M. states.
Note that the CFP’s are m independent. Therefore, the CFPs
are identical in the complete and in the internal basis

cαi = {〈nc.m.lc.m.|〈α|}JM{|nc.m.lc.m.〉|NJT i〉}JM. (B6)

It is efficient to also couple the single-particle states to a
total angular momentum JM, because the transformation
conserves the total angular momentum. We introduce the
intermediate angular momentum J12 and define

{{|a〉|b〉}J12 |c〉}JM. (B7)

The noncoupled states are easily projected out of the coupled
ones using orthogonality relations of the Clebsch-Gordan
coefficients

〈abc|{{|a〉|b〉}J12 |c〉}JM = (jajbJ12,mambma + mb)
× (J12jcJ ,ma + mbmcM). (B8)

In this notation the transformation of the Jacobi basis matrix
elements of the 3NF 〈NJT i|V3|NJT i〉 reads
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(B9)

Here, we made use of the orthogonality of the Clebsch-Gordan
coefficients, which removed the m-sums and resulted in J =
J ′. The transition matrix element

T = {〈nc.m.lc.m.|〈α|}J {{|a〉|b〉}J12 |c〉}J (B10)

becomesM independent. The spin-orbital part is then obtained
as
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using the Talmi-Moshinsky brackets with d = 2 and d ′ = 1
(for the notation see Ref. [72]). For the isospin matrix element,
one finds
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We note that a simpler expression for this transformation was
derived in Ref. [2]. The present formula is, however, more
efficient.
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The effective 3NF is expanded in three-body antisym-
metrized Jacobi states [71] with total HO quantum number
N, angular momentum J, and isospin T for the internal motion
of the three-body cluster. i labels the state within the set of
antisymmetrized states with fixed N, J , and T

|NJT i〉. (B1)

This state can be presented in non-anti-symmetrized Jacobi
states

|α〉 = |n12n3[(l12s12)j12(l31/2)I3]JMJ (t121/2)T MT 〉 (B2)

using coefficients of fractional parentage (CFP)

cαi = 〈α|NJT i〉. (B3)

We obtain the ci by diagonalizing the antisymmetrizer in the
Jacobi basis |α〉 [71].

The single particle m-scheme states are
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We do not need to explicitly antisymmetrize these states,
because we project on antisymmetrized Jacobi states in the
following. This implies that for all orderings of a, b, and c the
transformation matrix element will be the same.

The internal motion is augmented by c.m. HO basis states
|nc.m.lc.m.〉, which we couple with the states for the intrinsic
motion to a total angular momentum JM

{|nc.m.lc.m.〉|NJT i〉}JM. (B5)

Analogously, the states |α〉 are augmented by C.M. states.
Note that the CFP’s are m independent. Therefore, the CFPs
are identical in the complete and in the internal basis

cαi = {〈nc.m.lc.m.|〈α|}JM{|nc.m.lc.m.〉|NJT i〉}JM. (B6)

It is efficient to also couple the single-particle states to a
total angular momentum JM, because the transformation
conserves the total angular momentum. We introduce the
intermediate angular momentum J12 and define

{{|a〉|b〉}J12 |c〉}JM. (B7)

The noncoupled states are easily projected out of the coupled
ones using orthogonality relations of the Clebsch-Gordan
coefficients

〈abc|{{|a〉|b〉}J12 |c〉}JM = (jajbJ12,mambma + mb)
× (J12jcJ ,ma + mbmcM). (B8)

In this notation the transformation of the Jacobi basis matrix
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Here, we made use of the orthogonality of the Clebsch-Gordan
coefficients, which removed the m-sums and resulted in J =
J ′. The transition matrix element
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Precision measurement of the 6He half-life and the weak axial current in nuclei
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Background: The β decays of 3H and 6He can play an important role in testing nuclear wave-function calculations
and fixing low-energy constants in effective-field theory approaches. However, there exists a large discrepancy
between previous measurements of the 6He half-life.
Purpose: Our measurement aims at resolving this long-standing discrepancy in the 6He half-life and providing
a reliable f t value and Gamow-Teller matrix element for comparison with theoretical ab initio calculations.
Method: We measured the 6He half-life by counting the β-decay electrons with two scintillator detectors
operating in coincidence.
Results: The measured 6He half-life is 806.89 ± 0.11stat

+0.23
−0.19syst ms corresponding to a relative precision of

3 × 10−4. Calculating the statistical rate function we determined the f t value to be 803.04+0.26
−0.23 s.

Conclusions: Our result resolves the previous discrepancy by providing a higher-precision result with careful
analysis of potential systematic uncertainties. The result provides a reliable basis for future precision comparisons
with ab initio calculations.

DOI: 10.1103/PhysRevC.86.035506 PACS number(s): 23.40.−s, 27.20.+n

I. INTRODUCTION

Precision measurements of electroweak processes in light
nuclei can provide important tests of our understanding
of electroweak interactions in the nuclear medium. Many
interesting problems—ranging from solar fusion to neutrino
interactions and muon and pion capture processes—depend
on their correct modeling and calculation [1]. Recent progress
in numerical techniques enables precise, ab initio calculations
of wave functions for light nuclei starting with the nucleon-
nucleon interaction and without assuming a frozen core of
inactive particles [2–4].

The allowed weak nuclear decays driven by the ax-
ial current—called Gamow-Teller decays—have historically
played an important role in testing wave functions because
the main operator has a simple spin and isospin structure
and does not possess any radial component. Systematic
comparisons using shell-model wave functions showed that
in order to reproduce observations the value for the weak axial
coupling constant, gA, had to be “quenched.” For the sd-shell
nuclei this difference amounted to about 30% with respect
to that measured in free neutron decay [5,6]. In addition,
when charge-exchange reactions were used to explore a large
fraction of the Gamow-Teller strength sum rule, evidence also

*knechta@uw.edu
†Present address: Department of Physics, Old Dominion University,

Norfolk, VA 23529, USA.
‡Present address: Department of Physics and Astronomy and

National Superconducting Cyclotron Laboratory, Michigan State
University, East Lansing, MI 48824, USA.

pointed to “quenching of the Gamow-Teller strength” [7,8].
However, the origin of the quenching is not completely clear.
References [7,9,10] showed that, as shell-model calculations
are allowed to introduce higher and higher excitations, the
need to renormalize operators disappears. But it has also
been pointed out that meson-exchange currents (mediating,
for example, nucleon-delta excitations) could be responsible
for at least some of the apparent quenching of strength
[11,12].

The decays of 3H and of 6He are special because these
systems are light enough that the corresponding ab initio
calculations can be performed with precision. In particu-
lar, Refs. [4,13] and later [14,15] have shown that, us-
ing the case of 3H to fix nucleon-delta excitations, the
f t value for 6He can be calculated to within a few percent.
These two decays, then, can play an important role in testing
the accuracy of nuclear wave-function calculations [4,13,14]
or, as suggested in Ref. [15], in fixing low-energy constants in
effective-field-theory calculations [1].

In this paper we present a more detailed description of the
high-precision experimental determination of the half-life and
f t value for 6He published in Ref. [16]. Except for a small
branch of ∼10−6 [17] the β decay of 6He proceeds 100% to
the ground state of 6Li with an end point of 3.5 MeV. The 6He
half-life was previously determined by several works compiled
in Table I and shown in Fig. 1.

As can be seen, the values spread over a range much wider
than expected from the claimed uncertainties, which makes the
currently reported average and precision of 806.7 ± 1.5 ms
[36] unreliable. Averaging the five values shown in the
inset in Fig. 1 with uncertainties below 1% and scaling the
uncertainty by the square root of the χ2 per degrees of
freedom (DOF)—as advised by the Particle Data Group in

035506-10556-2813/2012/86(3)/035506(10) ©2012 American Physical Society
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4

calculations where harmonic oscillator radial wave func-
tions are used.

III. NN+3N INTERACTIONS AND OVERLAPS

The p-shell (0!ω) shell-model calculations and overlaps
were described in Ref. [5] and were computed using the
code oxbash [13]. For the present work, a series of no-
core-shell-model calculations, each for a given number of
major oscillator shells, Nmax =0, 2, 4 or 6, were carried
out using two chiral EFT NN+3N interaction choices,
denoted ncsm1 and ncsm2 in the following.
The calculations used interactions derived within the

chiral effective field theory (EFT) approach. In particu-
lar, the chiral N3LO NN interaction of Ref. [19, 20] was
used with or without the chiral N2LO 3N interaction [21]
in the local form of Ref. [22]. These interactions were
softened by the similarity renormalization group (SRG)
technique [23–25], where a unitary transformation is used
to suppress the off-diagonal matrix elements (controlled
by a parameter Λ). The SRG interaction induces higher-
body interaction terms. These induced terms were kept
up to the three-body level. It has been shown [26, 27] that
four- and higher-body terms are negligible for light nu-
clei although some evidence for four-body induced terms
was observed in 12C calculations with one of the inter-
actions used here (ncsm2) [27]. In ncsm1 the NN+3N
Hamiltonian used a 3N cutoff of 400 MeV and used pa-
rameters fitted to the 3H lifetime and the 4He binding
energy [28]. In ncsm2 the 3N cutoff was 500 MeV and
the parameters were fitted to the lifetime and binding
energy of 3H [29]. In both cases the SRG was carried out
using Λ=1.7 fm−1, although the ncsm2 calculations were
also performed with Λ=1.88 fm−1 to verify the SRG-Λ
independence, i.e., to confirm the unitarity of the SRG
transformation. The subsequent NCSM calculations used
an harmonic oscillator (HO) basis with an angular fre-
quency !ω=16 MeV. The mass-dependent parameteriza-
tions of the oscillator frequency !ω = 45A−1/3−25A−2/3,
agreeing with charge radius observations, suggest a value
of !ω=14.9 MeV [31], in reasonable agreement with the
value used here.
In the case of the ncsm2 parameterization, the calcu-

lations were also repeated, and denoted as ncsm3, when
the chiral 3N interaction in the starting Hamiltonian
was switched off, but with the SRG-induced 3N effects
(with Λ=1.7 fm−1) included. Again, the HO frequency
of !ω=16 MeV was employed. Using these ncsm3 TNA
we can make a first assessment of the impact on calcu-
lations/observables of the inclusion, or not, of the chiral
3N interaction in the starting Hamiltonian.
It should be noted that the 10B structure poses a par-

ticular challenge to ab initio calculations. In particular, it
had been observed that standard accurate NN potentials
predict incorrectly the ground-state of 10B to be 1+0, in-
stead of the experimental 3+0. The present calculations
with the chiral N3LO NN potential (ncsm3) suffer from
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FIG. 2. (Color online) Experimental excitation energies of
10B are compared to the different calculations used in the
present work: chiral N3LO NN (ncsm3), chiral N3LO NN
plus N2LO 3N with the cutoff of 400 MeV (ncsm1), and chiral
N3LO NN plus N2LO 3N with the cutoff of 500 MeV (ncsm2).
The Nmax=6 space was used in calculations shown in the first
four columns. The SRG Λ parameter is indicated. The HO
frequency of !Ω=16 MeV was used in all calculations.

the same problem. Only after including the chiral N2LO
NNN term, with the 3N cutoff of 500 MeV ncsm2, does
one get the correct ground state spin. Interestingly, the
weaker chiral N2LO NNN with the 3N cutoff 400 MeV,
ncsm1, fails to invert the 1+0 and 3+0 states, also pre-
dicting the wrong 10B ground state spin. See Fig. 2 for a
comparison of 10B excitation energies from different cal-
culations used in this paper. Also in the figure, the sta-
bility of the spectra with respect to the SRG Λ variation
and the size of the model space Nmax is demonstrated
for the ncsm2 case. The situation is somewhat reversed
in 12C, where the Hamiltonian ncsm2 with the stronger
3N interaction over-binds 12C by several MeV and over-
corrects the splitting of the 1+0 and 4+0 states [27]. Us-
ing the weaker 3N interaction (ncsm1) both the binding
energy and excitation energy description improves. Fur-
thermore, this Hamiltonian (ncsm1) also describes the
binding energies of oxygen and calcium isotopes [28] very
well. The stronger 3N interaction ncsm2, on the other
hand, provides a very good description of lighter nuclei
(A ≤ 10), resolving even long-standing analysing power
problems in p−4He scattering [30]. These observations
suggest that our knowledge of the 3N interaction in par-
ticular is incomplete and additional terms, such as those
at the N3LO of the chiral perturbation theory, must be
included. Further, the mass region of A=10− 12 is ideal

chiral NN  
chiral  

NN+3N(400)  
chiral  

NN+3N(500)  
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NCSM: CD-Bonn 2000 GFMC: AV18+IL7 experiment
10Be B(E2;2+1 → 0+1 ) 9.8(4) 8.8(4) 9.2(3)
10Be B(E2;2+2 → 0+1 ) 0.2(2) 1.8(1) 0.11(2)
10C B(E2;2+1 → 0+1 ) 10(2) 15.3(1.4) 8.8(3)

Table 6: B(E2) transition rates, in e2 fm4, from low-lying 2+ states to the ground states of 10Be and 10C.
Experimental values from Refs. [155, 156] are compared to the NCSM calculations [157, 158] with the CD-
Bonn NN potential and the GFMC calculations [156] with the AV18+IL7 NN + NNN potential.

Interaction CDB 2!Ω CDB 4!Ω CDB 6!Ω AV8′+TM′(99) 4!Ω experiment
(νe, e−) 2.27 3.2 3.69 6.8 8.9±0.3±0.9 [168]
(νµ, µ−) 0.218 0.337 0.374 0.65 0.56±0.08±0.1 [169]
µ-capture 1.46 2.07 2.38 4.43 6.0±0.4 [170]

Table 7: Predicted weak interaction rates for the 12C→ T=1 1+ transitions. The units are 10−42cm2 for the
(νe, e−) DAR cross section, 10−40cm2 for (νµ, µ−) DIF cross section and 103sec−1 for muon capture. The abre-
viation CDB referes to the CD-Bonn NN potential.

Observable Experiment NN only NN + NNN NN + NNN
[180] cD = −0.2 cD = −2.0

RMS 2.42(1) 2.28 2.25 2.24
Q 1.93(8) 1.87 1.03 1.19
µ 0.404 0.379 0.347 0.347

B(M1) 0.047(2) 1.002 0.037 0.098

Table 8: Properties of 14N without and with NNN interaction in the Nmax = 8 basis space with !Ω = 14
MeV. The magnetic moments, which tend to converge rapidly, are obtained at Nmax = 6. The point proton
root-mean-square radius (RMS) is quoted in fm. We corrected the measured charge radius (2.56(1) fm) for the
finite proton charge contribution. The magnetic moment µ is in nuclear magnetons e!/2mc; and the quadrupole
moment is in e2 f m4 (all for the g.s.). The B(M1) is the transition from the g.s. to the (0+, 1) state (the isobaric
analog of the 14C g.s.).

3H 3He 4He 6He 6Li 7Li 7Be 8He
INOY [MeV] 8.47(1) 7.71(1) 29.10(5) 29.38(10) 32.3(2) 39.6(4) 37.9(4) 30.30(30)
Expt. [MeV] 8.48 7.72 28.30 29.27 31.99 39.24 37.60 31.41

8Li 8B 9Li 9Be 10B 12C 14C 16O
INOY [MeV] 41.3(5) 36.1(1.0) 45.9(7) 59.1(1.2) 62.5(2.0) 93.5(2.5) 107.0(2.5) 138.0(4.0)
Expt. [MeV] 41.28 37.74 45.34 58.16 64.75 92.16 105.28 127.62

Table 9: Binding energies of selected p-shell nuclei from NCSM calculations with the INOY NN interaction.
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Reorientation-effect measurement of the 〈2+
1 ‖Ê2‖2+

1 〉 matrix element in 10Be
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The highly-efficient and segmented TIGRESS γ -ray spectrometer at TRIUMF has been used to perform a
reorientation-effect Coulomb-excitation study of the 2+

1 state at 3.368 MeV in 10Be. This is the first Coulomb-
excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying
first excited state from γ -ray data. With the availability of accurate lifetime data, a value of −0.110 ± 0.087 eb
is determined for the 〈2+

1 ‖Ê2‖2+
1 〉 diagonal matrix element, which assuming the rotor model, leads to a negative

spectroscopic quadrupole moment of Q
S
(2+

1 ) = −0.083 ± 0.066 eb. This result is in agreement with both
no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large
shell-model spaces, and Green’s function Monte Carlo predictions with two- plus three-nucleon potentials.

DOI: 10.1103/PhysRevC.86.041303 PACS number(s): 21.10.Re, 21.60.Cs, 23.20.−g, 27.20.+n

Modern nuclear theory provides numerical methods to
solve the nonrelativistic Schrödinger equation for light nuclear
systems [1,2]. Wave functions of nuclear states can be derived
from a large-scale diagonalization in the no-core shell model
(NCSM) [1] and from variational Monte Carlo methods [2],
enabling nuclear-structure properties to be calculated from
ab initio or first principles. While excitation energies [1,3,4]
and charge radii [5–7] are generally reproduced with high
accuracy, agreement with the experimental data often requires
very large shell-model space sizes [8,9] and the inclusion of
three-nucleon (3N ) forces in the full Hamiltonian [3,10,11].
Major recent breakthroughs of ab initio calculations include
the reproduction of the Hoyle state [12], and the computation
of fusion-reaction cross sections relevant to big bang nucle-
osynthesis and fusion-energy research [13]. With respect to ex-
citation energies and charge radii, electromagnetic-multipole
matrix elements can potentially provide more stringent tests
of wave functions because of the overlap between initial and
final nuclear states.

The nucleus 10Be is an important testing ground for ab initio
calculations of electric-quadrupole matrix elements [8,14,15].
The precise lifetime recently measured for the 2+

1 state at
3.368 MeV has underlined the relevance of constraining and
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constructing better-quality 3N potentials [15]. A reduced
attraction of the spin-orbit interaction in the IL7(3N ) Hamilto-
nian leads to a better reproduction of energies and transitional
matrix elements in Green’s function Monte Carlo (GFMC)
calculations. Stronger evidence regarding the effect of 3N
forces in 10Be is the reordering of nuclear levels predicted by
GFMC calculations. As opposed to using only the AV18(2N )
potential, a reversed level ordering for the first two J π = 2+

excited states is predicted by including the IL2(3N ) potential
[14]. Excitation energies of these J π = 2+ states calculated
with the NCSM and the CD-Bonn 2000(2N ) potential [8]
obtain the same ordering as the GFMC calculations with the
AV18(2N ) plus the IL2(3N ) interactions. This is probably
because of the stronger spin-orbit interaction generated by
the CD-Bonn 2000 potential, which is a nonlocal interaction
based on a boson-exchange picture, as compared with the
local AV18(2N ) interaction [8]. Nonetheless, GFMC calcu-
lations with the AV18(2N ) + IL7(3N ) Hamiltonian provide
an experimental means to test the reordering of the 2+

levels by predicting different signs for their spectroscopic
quadrupole moment (Q

S
) of the nuclear charge distribution

in the laboratory frame; that is, Q
S
(2+

1 )GFMC = −0.067(1) eb
and Q

S
(2+

2 )GFMC = +0.045(1) eb [16].
In this work, we test these predictions with a Coulomb-

excitation measurement of the 〈2+
1 ‖Ê2‖2+

1 〉 diagonal matrix
element of the electric-quadrupole tensor in 10Be. New NCSM
calculations of matrix elements involving the 2+

1 and 2+
2 states

in 10Be, as well as nuclear polarizabilities for the ground state

041303-10556-2813/2012/86(4)/041303(5) ©2012 American Physical Society

10C and 10Be  
 high-precision  

Q moment  
measurement  

proposed 
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Figure 21: Experimental and calculated B(M1;0+0 → 1+1) values, in µ2
N, for the 15.11 MeV T=1 1+ state

in 12C. Results obtained in basis spaces up to 6!Ω using OLS three-body effective interactions derived from
the AV8′+TM′(99) and AV8′ (left panel), OLS two-body effective interactions derived from the CD-Bonn NN
potential (left panel), OLS three-body effective interactions derived from the chiral NN and chiral NN +NNN
interactions (right panel) are compared. The HO frequency of !Ω = 15 MeV was used.

underestimated by a factor of 2.6. The inclusion of the NNN shows a significant improvement and, for 4!Ω,
theory is 34% lower than experiment. Again extrapolating using the trends of the inelastic electron-scattering
results suggests that a 6!Ω calculation that included a realistic NNN would come within 20% of experiment.

The (νµ, µ−) neutrino cross section to 12Ng.s. corresponds to the LSND muon neutrinos from decay-in-flight
(DIF) of the pion. This spectrum involves neutrinos up to about 250 MeV, with a average neutrino energy
of about 150 MeV and an average momentum transfer of about 200 MeV/c. In this case the 6!Ω CD-Bonn
calculation is off by a factor of 1.5 compared with experiment. The 4!Ω calculation that includes the 3-body
TM′(99) interaction is, in fact, in agreement with experiment. However, based on the trends established above,
this suggests that a larger model space may over-predict experiment. Examining the elastic-scattering form
factor suggests that the problem lies in the fact that at 200 MeV/c the predicted form factor is too large [171].
Of course, as the model space is increased we expect the form factor to be shifted down in momentum.

4.9 Beta decay of 14C
The measured lifetime of 14C, 5730 ± 30 years, is a valuable chronometer for many practical applications
ranging from archeology [174] to physiology [175]. The 14C lifetime is anomalously long compared to life-
times of other light nuclei undergoing the same decay process, allowed Gamow-Teller (GT) beta-decay. This
lifetime poses a major challenge to theory since traditional realistic NN interactions alone appear insufficient
to produce the effect[176], though it may be fit by a phenomenological NN tensor force [177].

Using Fermi’s Golden rule for the transition rate, the half life T1/2 for 14C is given by

T1/2 =
1

f (Z, E0)
2π3!7ln2
m5
ec4G2

V

1
gA2|MGT|2

, (40)

where MGT is the reduced GT matrix element; f (Z, E0) is the Fermi phase-space integral; E0 = 156 keV is
the β endpoint; GV = 1.136 10−11 MeV−2 is the weak vector coupling constant; gA = 1.27 is the axial vector
coupling constant; and me is the electron mass. MGT for the transition from the initial 14C (Jπ, T ) = (0+, 1)
ground state (Ψi) to the 14N (1+, 0) ground state (Ψ f ) is defined by the spin-isopin operator σ(k)τ+(k) acting on
all nucleons, k:

MGT =
∑

k

〈

Ψ f ||σ(k)τ+(k)||Ψi
〉

. (41)

32

Chiral 3N interaction changes occupations of the p3/2 and p1/2 orbits   
(“increases the gap” between them) 

Enhances the M1 transition from the g.s. to 1+ 1 state 
 

Similar increase of the Gamow-Teller transition between g.s. of 12B(12N) and 12C 



•  Tensor correlations related to           and  
–                                             … spin operators 

•  Experiment: Atsushi Tamii et al. 

•  Ab initio NCSM: 
–  12C Nmax=6 only 

Tensor correlations and 3N effects  
in ground states of 4He and 12C 
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“Anomalous Long Lifetime of Carbon-14” 

Impact Objectives  
!  Solve the puzzle of the long but 

useful lifetime of 14C 
!  Determine the microscopic origin 

of the suppressed !-decay rate 

!  Establishes a major role for strong 3-nucleon forces in nuclei 
!  Verifies accuracy of ab initio microscopic nuclear theory 
!  Provides foundation for guiding DOE-supported experiments 

!  Dimension of matrix solved 
for 8 lowest states ~ 1x109 

!  Solution takes ~ 6 hours on 
215,000 cores  on Cray XT5 
Jaguar at ORNL 

!  “Scaling of ab initio nuclear 
physics calculations on 
multicore computer 
architectures," P. Maris, M. 
Sosonkina, J. P. Vary, E. G. 
Ng and C. Yang, 2010 
Intern. Conf. on Computer 
Science, Procedia Computer 
Science 1, 97 (2010) 
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•  φ : antisymmetric cluster wave functions  
–  {ξ}: Translationally invariant internal coordinates 

   (Jacobi relative coordinates) 

–  These are known, they are an input 

a
1v( )

a
2v( )

a
1ν + a2ν = A


r
v

φ
1ν

φ
2ν

a
3µ( )

a
2µ( )


rµ2


rµ1

a
1µ( )

φ
1µ

φ
2µ

φ
3µ

a
1µ + a2µ + a3µ = A

a
1κ = A( )

φ
1κ

ψ (A)
= cκ

κ

∑ φ
1κ



ξ
1κ{ }( )

+ Âν
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•  Αν, Αµ : intercluster antisymmetrizers  
–  Antisymmetrize the wave function for exchanges of nucleons between clusters 

–  Example: 
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•  c, g and G: discrete and continuous 
linear variational amplitudes 

–  Unknowns to be determined 
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•  Discrete and continuous set of basis functions 
–  Non-orthogonal 

–  Over-complete  
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•  In practice: function space limited by using 
relatively simple forms of Ψ chosen according to 
physical intuition and energetical arguments 

–  Most common: expansion over binary-cluster basis    
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The ab initio NCSM/RGM in a snapshot 

•  Ansatz: 

Hamiltonian kernel Norm kernel 

§  Many-body Schrödinger equation: 

ê 

eigenstates of  
H(A-a) and H(a)  
in the ab initio  
NCSM basis 

realistic nuclear Hamiltonian 
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Including 3N interaction challenging: more than 2 body density required 

Direct potential: in the model space 
(interaction is localized!) 
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G. Hupin: Kernel derivations  
with many-body densities. 

Use of  existing codes:  
Applicable to A=3,4 targets 



J. Langhammer:  
 

Kernel derivations without the angular momentum  
re-coupling and the many-body density factorization. 

 
Kernel calculations directly from the target eigenvectors:  

Applicable to p-shell nuclei targets 
The same strategy possible for multi-nucleon projectiles  

and A>4 targets 
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∣â†
nljmj

1
2mt
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0.1 Types of kernels for single-nucleon projectiles using NN+3N interactions
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J. Langhammer 17

Computational challenge:  
Large scale parallelization,  
target eigenvectors for  
multiple M values 



n-4He scattering: NN vs. NN+NNN interactions, first results  

G. Hupin, J. Langhammer, S. Quaglioni, P. Navrátil, R. Roth, work in progress 

chiral NN+NNN(500)  
chiral NN+NNN-induced                           
SRG λ=2 fm-1                           
HO Nmax=13, hΩ=20 MeV 

The largest splitting 
between the P-waves 
obtained with the chiral 
NN+NNN interaction 
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0
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)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=
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0 0
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. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2
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HNCSM h̄
h̄ H

)
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2
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= EN+ 1
2
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(23)
That is, the eigenproblem

H

(

c̄
χ̄
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= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
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cluster form factor ḡλν(r) in the norm kernel
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NCSM sector: 

NCSM/RGM sector: 

3

The cluster states |A − a α1I
π1
1 T1〉, |a α2I

π2
2 T2〉 and

the A-body states |AλJπT 〉 are obtained by NCSM di-
agonalization of the microscopic Hamiltonians Ĥ(A−a),

Ĥ(a) and Ĥ , for A − a, a and A nucleons respectively,
using the same frequency !ω for the harmonic oscillator
(HO) basis. The size of the NCSM model space is de-
fined by the maximum number Nmax of HO excitation
quanta on top of the lowest configuration and it is the
same for all NCSM eigenstates of the same parity, and
differ by one unit for states of opposite parity. The NC-
SMC basis used in Eq. (1) is then an extension of the
NCSM/RGM basis, by inclusion of a NCSM sector. Or,
equivalently, the NCSM is extended by the inclusion of
clusterized states, which makes the theory able to handle
the scattering physics of the system. In other words, the
coupling of the NCSM with the continuum.

The A-nucleon microscopic Hamiltonian can be writ-
ten in the form

Ĥ = T̂rel + V̂rel + V̂C(r) + Ĥ(A−a) + Ĥ(a) (5)

where T̂rel is the relative kinetic energy between tar-
get and projectile and V̂rel includes all the interactions
between nucleons belonging to different clusters after
subtraction of the average Coulomb interaction between
them (see [17] for a detailed discussion on this point).

B. Kernels in the NCSM/RGM sector

We present here some details of the construction of the
norm and Hamiltonian kernels in the NCSM/RGM sec-
tor. This also represents a necessary introduction to un-
derstand the NCSMC equations and how to solve them.

As the channel states |ΦJπT
νr 〉 are not orthonormal to

each other, it is preferable to couple the NCSM states
|AλJπT 〉 with orthonormalized binary-cluster states

∑

ν′

∫

dr′r′
2 N− 1

2
νν′ (r, r′) Âν′ |ΦJπT

ν′r′ 〉, (6)

where use has been made of the inverse square root of
the NCSM/RGM norm kernel

N JπT
νν′ (r, r′) = 〈ΦJπT

νr |ÂνÂν′ |ΦJπT
ν′r′ 〉. (7)

When computing the above kernel, the “exchange” term
arising from the permutations in Âν that differ from the
identity is obtained by expanding the radial dependence
of the basis states of Eq. 2 on HO radial wave functions
Rnl(r). This HO basis has the same frequency used in
the NCSM cluster calculations. The HO model space is
indicated as P and its size is consistent with the model
space used in the cluster diagonalizations. The expansion
of the channel basis states reads

|ΦJπT
νr 〉 =

∑

n∈P

Rnl(r)|ΦJπT
νn 〉

(8)

with

|ΦJπT
νn 〉 =

=
[

(|A − a α1I
π1
1 T1〉|a α2I

π2
2 T2〉)(sT ) Y#(r̂A−a,a)

](JπT )

×Rnl(rA−a,a). (9)

Hence, using the expression of Eqs. 3 and 9, the r-space
representation of the NCSM/RGM norm kernel N can be
written as

N JπT
νν′ (r, r′) =

= δνν′

δ(r − r′)

rr′
+ N ex

νν′(r, r′)

= δνν′

δ(r − r′)

rr′

−(A − 1)
∑

n,n′

Rnl(r)〈ΦJπT
νn |P̂A−1,A|ΦJπT

ν′n′ 〉Rn′l′(r
′)

=

[

δνν′

δ(r − r′)

rr′
−
∑

nn′∈P

Rnl(r)δνν′δnn′Rn′l′(r
′)

]

+
∑

nn′∈P

Rnl(r)N JπT
νnν′n′Rn′l′(r

′)

(10)

where we introduced the model-space NCSM/RGM norm
kernel

N JπT
νnν′n′ =

= δνν′δnn′

−(A − 1)
∑

n,n′

Rnl(r) 〈ΦJπT
νn |P̂A−1,A|ΦJπT

ν′n′ 〉 Rn′l′(r
′).

(11)

The last line of Eq. 10 shows that the r-space represen-
tation of the kernel is given by the convolution of the
model-space kernel plus a correction due to the finite size
of the model space P . One can finally define the square

roots N± 1
2

νν′ (r, r′) as

N± 1
2

νν′ (r, r′) =

[

δνν′

δ(r − r′)

rr′
−
∑

nn′∈P

Rnl(r)δνν′δnn′Rn′l′(r
′)

]

+
∑

nn′∈P

Rnl(r)N
± 1

2
νnν′n′Rn′l′(r

′) (12)

where the square root of the model-space Nνnν′n′ is ob-
tained from the spectral theorem.

The NCSM/RGM-sector Hamiltonian H in the orthog-
onalized basis

Hνν′(r, r′) =

=
∑

µµ′

∫ ∫

dydy′y2y′2N− 1
2

νµ (r, y)Hµµ′ (y, y′)N− 1
2

µ′ν′(y′, r′)(13)

3

The cluster states |A − a α1I
π1
1 T1〉, |a α2I

π2
2 T2〉 and

the A-body states |AλJπT 〉 are obtained by NCSM di-
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(HO) basis. The size of the NCSM model space is de-
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the scattering physics of the system. In other words, the
coupling of the NCSM with the continuum.

The A-nucleon microscopic Hamiltonian can be writ-
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them (see [17] for a detailed discussion on this point).

B. Kernels in the NCSM/RGM sector
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∫
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2 N− 1

2
νν′ (r, r′) Âν′ |ΦJπT

ν′r′ 〉, (6)
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with
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=
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Hence, using the expression of Eqs. 3 and 9, the r-space
representation of the NCSM/RGM norm kernel N can be
written as
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δ(r − r′)

rr′

−(A − 1)
∑

n,n′

Rnl(r)〈ΦJπT
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−
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′)

]

+
∑
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Rnl(r)N JπT
νnν′n′Rn′l′(r

′)

(10)

where we introduced the model-space NCSM/RGM norm
kernel

N JπT
νnν′n′ =

= δνν′δnn′

−(A − 1)
∑

n,n′

Rnl(r) 〈ΦJπT
νn |P̂A−1,A|ΦJπT

ν′n′ 〉 Rn′l′(r
′).

(11)

The last line of Eq. 10 shows that the r-space represen-
tation of the kernel is given by the convolution of the
model-space kernel plus a correction due to the finite size
of the model space P . One can finally define the square

roots N± 1
2

νν′ (r, r′) as

N± 1
2

νν′ (r, r′) =

[
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rr′
−
∑

nn′∈P

Rnl(r)δνν′δnn′Rn′l′(r
′)

]

+
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nn′∈P

Rnl(r)N
± 1

2
νnν′n′Rn′l′(r

′) (12)

where the square root of the model-space Nνnν′n′ is ob-
tained from the spectral theorem.

The NCSM/RGM-sector Hamiltonian H in the orthog-
onalized basis

Hνν′(r, r′) =

=
∑

µµ′

∫ ∫

dydy′y2y′2N− 1
2

νµ (r, y)Hµµ′ (y, y′)N− 1
2

µ′ν′(y′, r′)(13),r’) 
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4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2
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HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem
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c̄
χ̄

)

= E
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c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)
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APPENDIX A

In this appendix we briefly outline the explicit steps for the derivation of the orthogonalized cluster form factors of
Eq. (25) and (26) and provide their algebraic expressions.

The orthogonalized cluster form factor in r-space representation of Eq. (25) reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rn$(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn (A1)

=
∑

n∈P

Rn$(r) ḡλνn , (A2)

where the orthogonalized cluster form factor in the model-space is given by the model-space non-orthogonalized cluster
form factor times the model-space norm kernel:

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn =

∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn . (A3)

At the same time, the translational-invariant non-orthogonalized cluster form factors in the model space, gλνn, can
be conveniently derived starting from the Slater-determinant (SD) NCSM eigenstates,

|AλJπT 〉SD = |AλJπT 〉ϕ00(#R
(A)
c.m.) , (A4)

and the SD channel states

|ΦJπT
νn 〉SD =

[

(|A − a α1I
π1
1 T1〉SD|a α2I

π2
2 T2〉)(sT ) Y$(R̂

(a)
c.m.)

](JπT )
Rn$(R

(a)
c.m.) , (A5)

and removing the spurious motion of the center of mass. Here, the c.m. coordinates of Eqs. (A4) and (A5) are given
by

#R(A)
c.m. =

1√
A

A
∑

i=1

#ri , #R(a)
c.m. =

1√
a

A
∑

i=A−a+1

#ri , (A6)

and ϕ00(#R
(A)
c.m.) is the HO wave function R00(R

(A)
c.m.)Y00(R̂

(A)
c.m.). The resulting expression for the non-orthogonalized

cluster form factor in the single-nucleon projectile (a = 1) basis is:

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈n%00, %|00n%, %〉 1
(A−1)

SD〈AλJπT |ÂνΦJπT
νn 〉SD

=
1

〈n%00, %|00n%, %〉 1
(A−1)

1

Ĵ T̂

∑

j

(−1)I1+J+j ŝĵ

{

I1
1
2 s

% J j

}

SD〈AλJπT |||a†

n$j 1
2
|||A − 1α1I

π1
1 T1〉SD . (A7)

The Moshinsky brackets 〈n%00, %|00n%, %〉 allows us to transform from the SD to the Jacobi-coordinate states. This
expression was first derived in Ref. [36] where further details on the derivation can be found.

The orthogonalized coupling form factor in r-space representation of Eq. (26) reads

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Ĥ|Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rn$(r)
∑

ν′n′∈P

〈AλJπT |Ĥ|Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn + Rnmax+1 $(r)〈AλJπT |ÂνΦJπT

νnmax
〉〈nmax%|T̂rel|nmax + 1 %〉

=
∑

n∈P

Rn$(r)h̄λνn + Rnmax+1 $(r) 〈nmax%|T̂rel|nmax + 1 %〉 gλνnmax
, (A8)
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Straightforward to calculate 
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1
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P
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1
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4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

4

is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

Orthogonalization: 

5

and

uJπT
ν (r) =

i

2
v
− 1

2
ν [δνiH

−
l (ην ,κνr)−SJπT

νi H+
l (ην ,κνr)], for larger

(28)
for bound and scattering states, respectively. Wl(ην ,κνr)
are Wittaker functions and H±

l (ην ,κνr) are the incom-
ing and outgoing Coulomb functions. The scattering
states are defined through the scattering matrix SJπT

νi be-
tween the initial state i and the channel ν. The function
uJπT

ν (r) stands for either the non-orthogonalized func-
tion χJπT

ν (r) or for the orthogonalized χ̄JπT
ν (r). (note:

plus some detail and then refering to PRC79 and papers
on the subject)

One of the advantages of the R-matrix method is that
the wave function uJπT

ν (r) in the internal region can be
expanded on a set of square-integrable functions. We
adopted here the set of Lagrange functions fn(r) associ-
ated with the shifted Lagrange polynomials and defined
on the mesh points rn ∈ [0, a]. When the Gauss-Legendre
quadrature approximation is adopted, the Lagrange func-
tions are orthogonal to each other. n indeces the mesh
points, whose number has to be large enough to have a
correct representation of the wave functions.

The match between the internal and the external re-
gions and hence the imposition of the asymptotic be-
havior of Eqs. 27 and 28, is ensured by using the Bloch
surface operator

L̂ν =

(

0 0
0 1

2δ(r − a)( d
dr − Bν

r )

)

(29)

and solving the Bloch-Schrödinger equations

(Ĥ + L̂ − E)

(

c̄
χ̄

)

= L̂

(

c̄
χ̄

)

. (30)

H + L̂ is Hermitian when the boundary parameter Bν

is real. Because of the Bloch operator, the wave func-
tion in the right hand side of Eq. 30 is approximated by
its asymptotic behavior. When searching for the bound
states, Bν is chosen in such a way that the r.h.s. vanishes,
and one is left with the diagonalization problem

(H + L̂)

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

. (31)

For the scattering states, the R matrix and the scattering
matrix S are computed from the NCSMC/RGM sector of
the H +L̂ Hermitian operator, for each impinging kinetic
energy Ekin of the projectile. The phase shifts δ(Ekin)
should then be extracted from an analysis of the scat-
tering matrix in the complex plane [ref.]. In this work,
we approximate the phase shifts by extracting them from
the diagonal elements of the scattering matrix, by writ-
ing them as e2iδ. Open and closed channels are treated
on equal footing when applying the R-matrix method.

E. Cluster and coupling form factors

(We could expand the text to two columns for this
subsection.)

The orthogonalized cluster form factor in r-space rep-
resentation reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

n∈P

Rnl(r)
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn ≡
∑

n∈P

Rnl(r)ḡλνn

(32)

where

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn (33)

is the model-space orthogonalized cluster form factor.
The proof of Eq. (32) is in App. A.

The model-space non-orthogonalized cluster form fac-
tor gλνn is given by

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈nl00, l|00nl, l〉 1
(A−1)

×
∑

j

(−1)I1+J+j ŝĵ

{

I1 1/2 s
l J j

}

1

Ĵ T̂

×〈AλJπT |||a†

nlj 1
2
|||ΦJπT

νn 〉SD

(34)

and it is computed by expanding the channel cluster
states on a Slater determinant (SD) basis and removing
the spurious center-of-mass component. The Moshinky
brakets 〈nl00, l|00nl, l〉 allows us to transform from the
SD to the Jacobi-coordinate states. The proof of Eq. (34)
is also in App. A.

The orthogonalized coupling form factor in r-space rep-
resentation reads

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Ĥ|Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Ĥ|Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

+Rnmax+1l(r)〈AλJπT |ΦJπT
νnmax

〉〈ΦJπT
νnmax

|T̂rel|ΦJπT
νnmax+1

〉

≡
∑

n∈P

Rnl(r)h̄λνn

+ Rnmax+1l(r) 〈nmaxl|T̂rel|nmax+1l〉 gλνnmax

(35)

5

and

uJπT
ν (r) =

i

2
v
− 1

2
ν [δνiH

−
l (ην ,κνr)−SJπT

νi H+
l (ην ,κνr)], for larger

(28)
for bound and scattering states, respectively. Wl(ην ,κνr)
are Wittaker functions and H±

l (ην ,κνr) are the incom-
ing and outgoing Coulomb functions. The scattering
states are defined through the scattering matrix SJπT

νi be-
tween the initial state i and the channel ν. The function
uJπT

ν (r) stands for either the non-orthogonalized func-
tion χJπT

ν (r) or for the orthogonalized χ̄JπT
ν (r). (note:

plus some detail and then refering to PRC79 and papers
on the subject)

One of the advantages of the R-matrix method is that
the wave function uJπT

ν (r) in the internal region can be
expanded on a set of square-integrable functions. We
adopted here the set of Lagrange functions fn(r) associ-
ated with the shifted Lagrange polynomials and defined
on the mesh points rn ∈ [0, a]. When the Gauss-Legendre
quadrature approximation is adopted, the Lagrange func-
tions are orthogonal to each other. n indeces the mesh
points, whose number has to be large enough to have a
correct representation of the wave functions.

The match between the internal and the external re-
gions and hence the imposition of the asymptotic be-
havior of Eqs. 27 and 28, is ensured by using the Bloch
surface operator

L̂ν =

(

0 0
0 1

2δ(r − a)( d
dr − Bν

r )

)

(29)

and solving the Bloch-Schrödinger equations

(Ĥ + L̂ − E)

(

c̄
χ̄

)

= L̂

(

c̄
χ̄

)

. (30)

H + L̂ is Hermitian when the boundary parameter Bν

is real. Because of the Bloch operator, the wave func-
tion in the right hand side of Eq. 30 is approximated by
its asymptotic behavior. When searching for the bound
states, Bν is chosen in such a way that the r.h.s. vanishes,
and one is left with the diagonalization problem

(H + L̂)

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

. (31)

For the scattering states, the R matrix and the scattering
matrix S are computed from the NCSMC/RGM sector of
the H +L̂ Hermitian operator, for each impinging kinetic
energy Ekin of the projectile. The phase shifts δ(Ekin)
should then be extracted from an analysis of the scat-
tering matrix in the complex plane [ref.]. In this work,
we approximate the phase shifts by extracting them from
the diagonal elements of the scattering matrix, by writ-
ing them as e2iδ. Open and closed channels are treated
on equal footing when applying the R-matrix method.

E. Cluster and coupling form factors

(We could expand the text to two columns for this
subsection.)

The orthogonalized cluster form factor in r-space rep-
resentation reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

n∈P

Rnl(r)
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn ≡
∑

n∈P

Rnl(r)ḡλνn

(32)

where

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

≡
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn (33)

is the model-space orthogonalized cluster form factor.
The proof of Eq. (32) is in App. A.

The model-space non-orthogonalized cluster form fac-
tor gλνn is given by

gλνn = 〈AλJπT |ÂνΦJπT
νn 〉

=
1

〈nl00, l|00nl, l〉 1
(A−1)

×
∑

j

(−1)I1+J+j ŝĵ

{

I1 1/2 s
l J j

}

1

Ĵ T̂

×〈AλJπT |||a†

nlj 1
2
|||ΦJπT

νn 〉SD

(34)

and it is computed by expanding the channel cluster
states on a Slater determinant (SD) basis and removing
the spurious center-of-mass component. The Moshinky
brakets 〈nl00, l|00nl, l〉 allows us to transform from the
SD to the Jacobi-coordinate states. The proof of Eq. (34)
is also in App. A.

The orthogonalized coupling form factor in r-space rep-
resentation reads

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Ĥ|Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

=
∑

n∈P

Rnl(r)
∑

ν′n′∈P

〈AλJπT |Ĥ|Âν′ΦJπT
ν′n′ 〉 N− 1

2
ν′n′,νn

+Rnmax+1l(r)〈AλJπT |ΦJπT
νnmax

〉〈ΦJπT
νnmax

|T̂rel|ΦJπT
νnmax+1

〉

≡
∑

n∈P

Rnl(r)h̄λνn

+ Rnmax+1l(r) 〈nmaxl|T̂rel|nmax+1l〉 gλνnmax

(35)
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is obtained from the Hamiltonian kernel

Hνν′(r, r′) = 〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉

= 〈ΦJπT
νr |Ĥ − 1

2
(Ĥ

A−a
∑

i

P̂iA −
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉.

(14)

See Ref. [17] for more details about the NCSM/RGM
kernels.

C. The NCSMC kernels

The NCSMC wave functions are obtained as solutions
of the following equation

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (15)

where

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2
νν′ (r, r′)

γν′(r′)

r′
(16)

is the NCSM/RGM sector of the wave function when
working with the orthogonalized cluster channel states
of Eq. 6.

The NCSM sector of the Hamiltonian kernel reads

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = εJπT
λ δλλ′ (17)

with the NCSM eigenvalues εJπT
λ on the diagonal.

Because of the orthogonalization procedure of Eq. 13,
both diagonal blocks in the NCSMC norm kernel N are
identities

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (18)

The coupling between the two sectors is described by the
cluster form factor ḡλν(r) in the norm kernel

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r)

(19)
and by the coupling form factor h̄λν(r) in the Hamilto-
nian kernel

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N− 1
2

ν′ν (r′, r).

(20)
A detailed expression for the above form factors can be
found in Sect. II E.

In an analogous way to the NCSM/RGM sector, the
non-unity NCSMC norm can be orthogonalized away. To
define the inverse square root of the NCSMC norm in
the r-space representation, the latter can be written as

the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P

Nλλ′

νrν′r′ =

=

(

0 0

0 δνν′

δ(r−r′)
rr′

−
∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)(

1 0
0 R

)

. (21)

In the previous expression, we used the relation ḡλν(r) =
∑

n Rnl(r)ḡλνn, demonstrated in Sect. II E, between the
r-space and the model-space cluster form factors. The
square roots of N can then be defined as

(Nλλ′

νrν′r′)±
1
2 =

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −

∑

nn′∈P Rnl(r)δνν′δnn′Rn′l′(r′)

)

+

(

1 0
0 R

)(

1 ḡλν′n′

ḡλ′νn δνν′δnn′

)± 1
2
(

1 0
0 R

)

. (22)

Inserting the identity N− 1
2 N+ 1

2 in Eq. 15, and multiply-
ing by N− 1

2 from the left, one gets

N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 N+ 1

2

(

c
χ

)

= EN+ 1
2

(

c
χ

)

.

(23)
That is, the eigenproblem

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

(24)

for the orthogonalized NCSMC Hamiltonian

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (25)

with the orthogonal wave functions
(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (26)

The explicit expression of the Hamiltonian kernels can
be found in Sect. ...

D. Solving the NCSMC equations

At large intercluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region r ! a and an external re-
gion r " a and applying the coupled-channel R-matrix
method on a Lagrange mesh [reference]. The separation
point r = a must be large enough to ensure that the
wave function of the A-body states |AλJπT 〉 vanishes
when approaching the external region, where the asymp-
totic behavior of the NCSMC solutions is described by
the radial wave functions

uJπT
ν (r) = CJπT

ν Wl(ην ,κνr), for larger (27)

Start from 
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§  NCSMC and NSCM/RGM energies where 
phase shift derivative maximal 

§  NCSMC and NSCM/RGM widths from the 
derivatives of phase shifts 

Experimental controversy:  
Existence of low-lying 1/2- state  
… not seen in these calculations 

7

tion for the 6He + n threshold energy is within ∼ 1 MeV
from the experimental value when a low-momentum res-
olution λ = 2.02 fm−1 is used. This allows us to per-
form qualitatively and quantitatively meaningful calcu-
lations and to discuss the physics involved in the scat-
tering process. All calculations shown in this work are
done with λ = 2.02 fm−1 two-body low-momentum inter-
actions, while the implementation of 3NF is in progress
[Ref.] and its inclusion is left for the future. At variance
with effective interactions that change as a function of
the model-space size (i.e., through the Lee-Suzuki renor-
malization, [Ref.]), the SRG potential enters unaltered
all the calculations. This makes the theories variational.

The NCSM/RGM and the NCSMC phase shifts for
the 7He negative-parity states up to J = 5/2 and for
the Jπ = 1/2+ state are shown in Fig. 2. We adopt
the standard notation 2s+1"Jπ for the channel quantum
numbers, where the total spin s of the two clusters and
the relative orbital angular momentum " add up to give
the total spin of the system #J = #s+#" (cf. Eq. 2). All the
phase shifts in Fig. 2 have been obtained using the lowest
three 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states). The NCSMC basis includes
also the lowest six (four) 7He negative- (positive-) parity
eigenstates. The neutron kinetic energy corresponding
to a phase shift of π/2 is taken as the resonance centroid
and it is plotted in Fig. 1, while the resonance width is
computed as [Ref.]

Γ =
2

∂δ(Ekin)/∂Ekin

∣

∣

∣

∣

Ekin=ER

(38)

evaluated at the resonance centroid ER and with the
phase shift in radians. Computed centroids and widths
are reported in Tab. I, together with the available ex-
perimental data. While the above procedure to extract
centroid energy and resonance width is safely applicable
to sharp resonances, broad resonances would require an
analysis of the scattering matrix in the complex plane.
As we are more interested in a qualitative discussion of
the results, we extend here the above extraction proce-
dure to broad resonances.

As expected for a variational theory, the introduction
of the additional A-body basis states |AλJπT 〉 and the
coupling to the continuum lead to lower centroid values
for all 7He resonances when going from NCSM/RGM
to NCSMC. In particular, the 7He 3/2− ground state
and 5/2− excited state are sensitevely pushed toward the
6He + n threshold, getting closer to the experiment. The
resonance widths also shrink toward the observed data.

NCSM/RGM and NCSMC theories predict a 1/2− res-
onance above the 5/2− excited state, in contrast with the
NCSM. The latter, though, is not expected to provide a
reliable description for broad resonances, as this requires
a correct description of the coupling to the continuum.

The NCSM and the NCSM/RGM centroid energies for
the 3/2- and 5/2- resonances are just ! 200 keV apart,
while a significant energy shift is brought by the coupling
to the continuum, with a compression of the separation
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FIG. 2: NCSM/RGM (a) and NCSMC (b) 6He + n phase
shifts as a function of the kinetic energy of the impinging
neutron projectile. The phase shifts are taken from the diag-
onal matrix elements of the scattering matrix (see Sect. IID).
The dashed vertical area centered at 0.44 MeV indicates the
experimental centroid and width of the 7He ground state [29].
In all calculations the lowest three 6He states have been in-
cluded in the construcction of the basis states (cf. Eq. 2).

Jπ experiment NCSM NCSM/RGM NCSMC
E Γ Ref. E E Γ E Γ

3/2− 0.44(3) 0.16(3) [29] 1.30 1.42 0.52 0.75 0.31

5/2− 2.9(3) 2.2(3) [30] 4.56 4.58 3.06 3.69 2.57

1/2− 3.54 10 [42] 3.26 4.96 14.95 4.01 15.15

3.04 2 [38]

TABLE I: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He.

energy of about 0.4 MeV, closer to the experimental find-
ings.

All these results show that the coupling to the contin-
uum is strong, which leads to an overcompleteness of the
NCSMC basis. This overcompleteness is at the heart of
the method, which is then able to get converged results
with fewer cluster states than the NCSM/RGM. The lat-
ter often requires many target states |A − a α1I

π1
1 T1〉 to

Best agreement with the neutron 
pick-up and proton-removal 
reactions experiments [11]  

4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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[17] P. Navrátil, J. P. Vary and B. R. Barrett, Phys. Rev.
Lett. 84, 5728 (2000).

[18] G. Hagen, T. Papenbrock, D. J. Dean and M. Hjorth-

4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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Conclusions and Outlook 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM   

•  We demonstrated its capabilities in calculations of 7He resonances 

•  3N interaction inclusion straightforward - under way  
 

•  Outlook: 
–  Problems with the 3N interaction input for medium mass nuclei solvable 
–  Extension of the NCSMC formalism to composite projectiles (deuteron, 3H, 3He, 4He) 
–  Extension of the formalism to coupling of three-body clusters (6He ~ 4He+n+n) 

PRL 110, 022505 (2013) 

•  3N interaction applications in many-body calculations  
–  Technically solved for NCSM 

–  Medium mass nuclei: The HO cut for 3N matrix elements needs to be increased beyond 
E3max=16 – further algorithmic development required 

–  Promising results for scattering within the NCSM/RGM   
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