Stochastic generation of low-energy configurations and configuration mixing calculation

T. Nakatsukasa (RIKEN Nishina Center)

Collaborators Y. Fukuoka (Univ. of Tsukuba) S. Shinohara (Semiconductor Energy Lab) Y. Funaki (RIKEN Nishina Center) K. Yabana (Univ. of Tsukuba)

INT workshop, April 15, 2013

Microscopic structure theories

- Ab-inito-type approaches
 - GFMC, NCSM, CCM, etc.
 - Computationally very demanding for heavier nuclei
- Shell model approaches
 - CI calculation in a truncated space
 - Difficulties in cross-shell excitations
- Microscopic cluster models
 - RGM, GCM, etc.
 - Interaction is tuned for each nucleus
- Energy density functional approaches
 - New configuration-mixing (multi-ref.) calculation

Toward low-energy complete spectroscopy

Shinohara, Ohta, TN, Yabana, PRC 84, 054315 (2006)

- Beyond the mean field
 - Correlations, excited states
- Beyond (Q)RPA
 - States very different from the g.s.
- Beyond GCM
 - Lift a priori generator coordinates

Toward the *theoretical complete spectroscopy* of low-lying states with *an effective Hamiltonian* and with a *very large model space*:

"Stochastic" approach to configuration mixing

Configuration mixing with parity and angular momentum projection

- 1. Generation and selection of Slater det's in the 3D Cartesian Coordinate space $\{\Phi^i\} \ (i = 1, \dots, N)$
- 2. Projection on good J^{π} (3D rotation) $|\Phi_{MK}^{J}\rangle = P^{\pm}P_{MK}^{J}|\Phi\rangle$
- 3. Solution of generalized eigenvalue eq. $(\mathbf{H}^{J\pm} - E\mathbf{N}^{J\pm})\mathbf{g} = 0$

$$\frac{H_{nK,n'K'}^{J\pm}}{N_{nK,n'K'}^{J\pm}} = \left\langle \Phi^{n} \left| \begin{cases} H \\ 1 \end{cases} P^{\pm} P_{KK'}^{J} \right| \Phi^{n'} \right\rangle$$

Variational approach

¹⁶O
 BKN interaction
 Two Parity-projected Slater determinants

 $\begin{array}{l} \Psi^{1(+)} = 0.72 \, \Phi^{1(+)} - 0.24 \, \Phi^{2(+)} \\ \Psi^{2(+)} = 1.12 \, \Phi^{1(+)} - 1.40 \, \Phi^{2(+)} \end{array}$

	E
Variational	-142.54
PPHF	-133.35

"Singular" Slater determinants

Imaginary-time evolution

- Quickly removing high-energy (highmomentum) components
- Slowly moving on low-energy collective surface
- Finding local minima

Efficient method to construct configurations associated with many kinds of low-energy collective motions

Generation of basis states: Imaginary-time method in 3D coordinate space

Long-range correlations in terms of the configuration mixing

Imaginary-time Method

$$\left|\phi_{i}^{(n+1)}\right\rangle = e^{-\Delta t h[\rho]} \left|\phi_{i}^{(n)}\right\rangle, \quad i = 1, \cdots A$$

A well-known method in the Skyrme HF calculations

3D space is discretized in lattice Single-particle orbital:

$$\phi_i(\mathbf{r}) = \{\phi_i(\mathbf{r}_k)\}_{k=1,\cdots,Mr}, \quad i = 1,\cdots,N$$

Generation of many S-det's

Screening of Slater determinants

3D angular momentum projection

Parity and angular momentum projected state

$$\Psi_{M}^{J(\pm)} \rangle = \frac{2J+1}{8\pi^{2}} \sum_{K} g_{K} \int d\Omega D_{MK}^{J^{*}}(\Omega) \hat{R}(\Omega) \left| \Phi^{(\pm)} \right\rangle$$

$$\hat{R}(\Omega) = e^{-i\alpha \hat{J}_{z}} e^{-i\beta \hat{J}_{y}} e^{-i\gamma \hat{J}_{z}}$$
Parity-projected SD

Construct the angular momentum eigenstate by the explicit 3D rotation

Numerical detail

- Three-dimensional (3D) Cartesian mesh
 - Mesh size: 0.8 fm
 - All the mesh points inside the sphere of radius of 8 fm
- Euler angles
 - Discretization
 - $(\alpha, \beta, \gamma) = (18, 30, 18)$ points
- Numerical difficulties

 Limiting number of SD
 - 50 Slater determinantns

How *complete* is the calculation?

2012/3/6

- Ten different sets of Slater determinants, generated with different random numbers.
- Low-energy spectra within several hundred keV
- Transition strength within about 10 %

.....(10 sets)

13

¹²C (Sly4)

Excitation Energy [MeV]

Exp: M. Chernykh *et al.*, PRL 98,032501 (2007)
AMD: Y. Kanada-En'yo, PTP117,655(2007)
GCM: E. Uegaki, *et al.*, PTP57,4 (1977)1262
RGM: M. Kamimura, NPA351,456-480(1981)

B(E2) in units of e²fm⁴

Radius, B(E2), B(E3), M(E0)

$=$ I^{π}	EXP	nresent	Transitions	Exp	Cal
$\frac{J}{0^+}$	$\frac{D}{\Lambda 1}$	252 ± 0.01	$B(E2; 2^+_1 \to 0^+_1)$	7.6 ± 0.4	8.6 ± 0.2
0_1	2.31(2)	2.52 ± 0.01	$B(E2:4^+_1 \rightarrow 2^+_1)$		13.4 ± 0.5
0^{+}_{2}		$2.73 {\pm} 0.02$	$D(D_2, 1) + D(D_2, 0^+)$	1919	19.2 ± 0.0
0^{+}_{2}		$3.20{\pm}0.05$	$B(E2; 0_2^+ \rightarrow Z_1^+)$	13 ± 2	13.0 ± 1.2
3^{+}		2.60 ± 0.01	$B(E2; 2_2^+ \to 0_2^+)$		0.17 ± 0.23
<u> </u>	fm	2.00±0.01	$B(E2; 2^+_3 \to 0^+_2)$		$5.9{\pm}0.7$
		IM	$B(E2; 2_4^+ \to 0_2^+)$		10 ± 1
Li	near-chain s	tate	$B(E2; 2_4^+ \to 0_3^+)$		91 ± 13
		e ² fm ⁴	$B(E2; 4_2^+ \to 2_4^+)$		131 ± 22
		e²fm ⁶	$B(E3; 3_1^- \to 0_1^+)$	107 ± 14	77 ± 4
		efm ²	$M(E0; 0_1^+ \to 0_2^+)$	5.4 ± 0.2	$4.5 {\pm} 0.2$

12 NEGATIVE parity

The lowest negative-parity state in each J A few MeV higher than experiment.

Charge form factors

Too large diffuseness

Functional dependence

- Robust result
 - G.s. correlation energy varies by about 1 MeV

Hoyle state

Radius

J^{π}	present	AMD	FMD	$3\alpha RGM$	BEC	3α GCM	
0^+_1	2.53 ± 0.03	2.53	2.39	2.40	2.40	2.40	
0_{2}^{+}	2.72 ± 0.003	3.27	3.38	3.47	3.83	3.40	Hoyle state
0^{+}_{3}	3.15 ± 0.02	3.98	4.62			3.52	Linear-chain state
2^+_1	2.61 ± 0.002	2.66	2.50	2.38	2.38	2.36	

Exp, FMD: M. Chernykh *et al.*, PRL 98,032501 (2007) AMD: Y. Kanada-En'yo, PTP117,655(2007) GCM: E. Uegaki, *et al.*, PTP57,4 (1977)1262 RGM: M. Kamimura, NPA351,456-480(1981)

Monopole transition

$$M(E0;0_1^+ \rightarrow 0_2^+) = 4.5 \pm 0.2 \text{ e fm}^2$$

5.4 \pm 0.2 Experiment
6.5 - 6.7 Other cal. based on the
gaussian anzats

Shrinkage of the Hoyle state

3-alpha configurations used in the GCM calculation by Uegataki et al.

E. Uegaki, et al., PTP57,4 (1977)1262

	EXP	IT	$IT + 3\alpha$	3lpha	3α (Uegaki)
$\operatorname{radius}(0_1^+)$	$2.31 {\pm} 0.02$	2.53	2.54	2.80	2.40
$\operatorname{radius}(0_2^+)$		2.76	2.73	3.31	3.40
$M(E0; 0_2^+ \to 0_1^+)$	5.4 ± 0.2	4.57	4.13	8.72	6.6

- 3-alpha configurations keep the radius of Hoyle state large.
- Other configurations generated by the imaginarytime propagation makes it much smaller.

*E*_{нг}=-90.6 MeV

Adopting the three-alpha configurations utilized in GCM: E. Uegaki, *et al.*, PTP57,4 (1977)1262

16 POSITIVE parity

 \checkmark correlation energy is 3.3MeV

 ✓ particle-hole excitation is good agreement with experimental values

- ✓ Correlation energy of about 6 MeV
- ✓ B(E2) in good agreement
- ✓ Too large moment of inertia

✓ Candidate for parity-doublet partner

✓ $K^{\pi=2^{-}}$ band: $(p)^{-1}(sd)^{5}$

Computational cost of finite range interaction

■ Skyrme interaction

$$\begin{split} \left\langle \Phi \left| \widehat{V_{t0}^F} \right| \Phi \right\rangle &= -\frac{t_0}{2} x_0 \sum_{i,j} \left\langle \phi_i \phi_j \right| \delta(\vec{r}_1 - \vec{r}_2) \widehat{P}_r \widehat{P}_\sigma \widehat{P}_\tau \left| \phi_i \phi_j \right\rangle \\ &= -\frac{t_0}{2} x_0 \sum_{\tau} \int d\vec{r} \,\rho(\vec{r}\,)^2 \qquad \rho(\vec{r}) = \sum_{i,\sigma} \phi_i^*(\vec{r},\sigma) \phi_i(\vec{r},\sigma) \end{split}$$

Computational cost : $N_x^3 \times \underline{N_i}$

Gogny interaction

of orbits

$$\left\langle \Phi \left| \widehat{V_{W_l}^F} \right| \Phi \right\rangle = -\frac{W_l}{2} \sum_{\tau} \int d\vec{r} \int d\vec{r}' \rho(\vec{r}\sigma, \vec{r}'\sigma') \rho(\vec{r}'\sigma', \vec{r}\sigma) \exp\{-(\vec{r} - \vec{r}')^2 / \mu_l^2\}$$

$$\rho(\vec{r}\sigma, \vec{r}'\sigma') \equiv \sum_{i,\sigma} \phi_i^*(\vec{r}, \sigma) \phi_i(\vec{r}', \sigma') \quad \text{Computational cost} : N_x^6 \times N_i$$

 \checkmark Same scaling of orbit as the case of Skyrme interaction

 \checkmark scaling of space is power of two

Method 1: finite spherical lattice

The range of Gogny interaction is about 4 fm.

it is sufficient to integrate r' inside 4fm sphere.

Numerical cost : $N_x^3 \times M \times N_i$ cf. Skyrme interaction $N_x^3 \times N_i$

✓ Same scaling as the case of Skyrme interaction, except M

Excitation Energy [MeV]

Summary

Shinohara et al, PRC **74**, 054315 (2006) Fukuoka et al, in preparation

- Complete low-lying spectroscopy with the Skyrme Hamiltonian
- Capable of describing a variety of excited states in a unified way, such as vibrational excitations, cluster excitations, singleparticle excitations.

<u>Problems</u>

- 2nd 0⁺ state in ¹⁶O
 - Energy too high by about 3 MeV
 - B(E2) Underestimated
 - Center of mass? Weak-coupling phenomena?
- Moment of inertia of ²⁰Ne
 - Too large
 - Pairing?
- Hoyle state
 - All properties reasonably agree with experiments, except for its radius.
 - Three-alpha configurations produce a large radius
 - Configuration mixing with other states makes the Hoyle state shrunk