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Stochastic generation of low-energy 
configurations and configuration mixing 

calculation 



Microscopic structure theories	
•  Ab-inito-type approaches 

– GFMC, NCSM, CCM, etc. 
– Computationally very demanding for heavier nuclei  

•  Shell model approaches 
– CI calculation in a truncated space 
– Difficulties in cross-shell excitations 

•  Microscopic cluster models 
– RGM, GCM, etc. 
–  Interaction is tuned for each nucleus 

•  Energy density functional approaches 
– New configuration-mixing (multi-ref.) calculation 



Toward low-energy complete spectroscopy 

•  Beyond the mean field 
–  Correlations, excited states 

•  Beyond (Q)RPA 
–  States very different from the g.s. 

•  Beyond GCM 
–  Lift a priori generator coordinates 

Toward the theoretical complete spectroscopy of low-
lying states with an effective Hamiltonian and with a 
very large model space: 

“Stochastic” approach to configuration mixing 

Shinohara, Ohta, TN, Yabana, PRC 84, 054315 (2006) 	



1.  Generation and selection of Slater det’s in 
the 3D Cartesian Coordinate space 

2.  Projection on good Jπ (3D rotation) 

3.  Solution of generalized eigenvalue eq. 

Configuration mixing with parity and 
angular momentum projection 
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Ψ1(+)=0.72Φ1(+)-0.24Φ2(+)	

Ψ2(+)=1.12Φ1(+)-1.40Φ2(+)	
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Φ2	

E 

Variational	 -142.54	

PPHF	 -133.35	

16O 
BKN interaction 
Two Parity-projected Slater determinants 

“Singular” Slater determinants 

Variational approach	



Imaginary-time evolution	CONFIGURATION MIXING CALCULATION FOR . . . PHYSICAL REVIEW C 74, 054315 (2006)

(A)

(B)(C)

FIG. 1. Schematic picture of the energy surface. Two crosses
represents minima of the energy surface. Three paths, (A), (B), and
(C), show imaginary-time trajectories starting from different initial
Slater determinants. The dotted arrow of (B) indicates the trajectory
(B) passes through a shoulder state.

Figure 1 shows a schematic picture of the imaginary-time
calculations starting from different initial configurations. The
imaginary-time iteration has a property suitable for generating
the basis to calculate the long-range correlations. It quickly
removes high-energy components of the wave function in a
early stage of the iteration. The Slater determinant is expected
to rapidly fall onto a potential energy surface important for
low-energy modes of excitation. This is the very property we
want, because we should exclude Slater determinants that take
account of the short-range correlation in the Hamiltonian.
Therefore, we simply dispose all the Slater determinants
generated in the first few hundred iterations of the imaginary-
time evolution and then select Slater determinants after the
rate of energy decrease becomes relatively slow.

A series of Slater determinants generated with the
imaginary-time calculation starting from an arbitrary initial
state eventually converge to a self-consistent solution; either
the Hartree-Fock ground state [paths (A) and (B) in Fig. 1]
or local minima solutions [path (C) in Fig. 1]. During the
iterations, it sometimes happens that the configuration changes
very slowly and the state stays almost unchanged for a long
period of the iterations [a part presented by the dotted arrow
of path (B)]. This is called a shoulder state. Although these
shoulder states are not self-consistent solutions, they may play
an important role for the low-lying excitation spectra and the
ground-state correlation.

We repeat the imaginary-time iteration many times starting
from different initial configurations. We construct the initial
Slater determinants by a stochastic procedure: The single-
particle orbitals of the initial Slater determinant are in a
Gaussian form whose centers are randomly chosen. After
generating large number of imaginary-time trajectories, we
may expect that those Slater determinants span the complete
space for calculation of the long-range correlations.

Figure 2 is an example of the actual imaginary-time
calculations for 16O, showing the energy expectation value,
E(Nit) = 〈!(Nit)|H |!(Nit)〉, as a function of the iteration
number, Nit. The path is similar to (B) in Fig. 1, passing
through a shoulder state. In Nit < 100, the energy expectation
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FIG. 2. An example of the imaginary-time evolution in 16O
started from a randomly generated Slater determinant. Solid line
indicates energy expectation value of the Slater determinant, |!(Nit)〉,
as a function of iteration number, Nit. Snapshots of the density
distribution at every 500 iterations are shown. The dashed and the
dash-dotted line indicate energy of even and odd parity component
of the Slater determinant, respectively. The imaginary-time step of
"τ = 0.001 h̄/MeV is adopted in the calculation.

value decreases very rapidly. From Nit = 200 to 1500, the
energy decreases very slowly, corresponding to a shoulder
state. We have found that this shoulder state corresponds
to the cluster structure of 12C+α, which is considered as
a dominant component of the first excited state of 16O
in the cluster model studies. The dashed and dash-dotted
curves are the energy expectation value after parity projection,
E(±)(Nit) = 〈!(±) (Nit)|H | !(±)(Nit)〉/〈!(±)(Nit)|!(±)(Nit)〉,
where |!(±)(Nit)〉 = P ±|!(Nit)〉.

B. Selection of Slater determinants

During the imaginary-time iterations of Ntotal steps, Slater
determinants for every Ns iterations are taken as candidates
of the basis states. Thus, the Slater determinants at Nc

it =
Ns, 2Ns, . . . , knNs are nominated first. The number of Slater
determinants taken from a single path is kn = Ntotal/Ns .
The typical numbers are Ns = 50 and Ntotal = 2000, leading
to kn = 40. However, we cannot include all these Slater
determinants in the basis set of the configuration mixing
calculation, because too many Slater determinants lead to a
numerical instability caused by the overcompleteness. Thus,
we need to reduce their number. Here, we impose two
additional constraints on those candidates:

(i) E(Nc
it ) < EHF + 30 MeV.

(ii) Overlap between any pair of selected Slater determinants
must be less than 0.7 (see below for details).

The condition (a) means that the energy expectation value of
each Slater determinant, E(Nc

it ) = 〈!(Nc
it )|H |!(Nc

it )〉, should
not be so large because we are interested in low-lying states
and the long-range correlations only. In the present work, we
adopt the cut-off energy as 30 MeV above the Hartree-Fock
ground-state energy.

The second condition is directly related to the linear
independence among the Slater determinants. To determine

054315-3

•  Quickly removing 
high-energy (high-
momentum) 
components 

•  Slowly moving on 
low-energy 
collective surface 

•  Finding local minima	

Efficient method to construct configurations associated with many 
kinds of low-energy collective motions	



Generation of basis states: 
Imaginary-time method in 3D coordinate space 

A well-known method in the Skyrme HF calculations	

3D space is discretized in lattice 

Single-particle orbital: 

NiMrkkii ,,1,)}({)( ,1  == =rr φφ

Imaginary-time Method 

Long-range correlations in terms of the configuration mixing 
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Generation of many S-det’s 

Gaussian wave 
packets (n & p) 
whose positions are 
determined by 
random numbers. 

Initial state 

Imaginary-time evolution 
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3D real space 

# of iterations�

12C	
E

 [ 
M

eV
 ]�



Screening of Slater determinants	
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30 MeV	

Φi H Φi < EHF +30 MeV

Φi Φ j < 0.7 ( j =1,M )

12C	

Φi is adopted as the (M+1)-th basis 
configuration, if it satisfies 	

EHF + 30 MeV�

Every one-hundred iterations, 
we pick up a Slater determinant	 Φi



Parity and angular momentum projected state 

ΨM
J  (±) =

2J +1
8π 2

gK dΩDMK
J  * (Ω)R̂(Ω) Φ(±)∫

K
∑

yz z
ˆˆ ˆ-i J-i J -i JR̂( ) = e e eβα γΩ Parity-projected SD 

Construct the angular momentum eigenstate 
by the explicit 3D rotation 

3D angular momentum projection	



Further Selection … 

NnK ,mK '
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Eigenvalues of the norm matrix 
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Numerical detail�

8.0fm�
0.8fm�

•  Computational cost : 
    512CPU x 11.5 h @YITP 
    (20 Ne, PROJECTION)�

•  Three-dimensional (3D) Cartesian mesh 
– Mesh size: 0.8 fm 
– All the mesh points inside the sphere of radius 

of 8 fm 
•  Euler angles 

– Discretization 
                                   points 

•  Numerical difficulties 
– Limiting number of SD 
– 50 Slater determinantns 

α,β,γ( ) = (18,30,18)



l  Ten different sets of Slater 
determinants, generated  with 
different random numbers. 

l  Low-energy spectra within 
several hundred keV 

l  Transition strength within about  
10 % 

, …….(10 sets)�, �
2012/3/6 13

How complete is the calculation?�

12C	



Exp:   M. Chernykh et al.,  PRL 98,032501 (2007) 
AMD:   Y. Kanada-En’yo, PTP117,655(2007) 
GCM: E. Uegaki, et al., PTP57,4 (1977)1262 
RGM: M. Kamimura,  NPA351,456-480(1981)�

B(E2) in units of e2fm4	
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ü  Correlation energy is 5 MeV 
ü  Hoyle state is around 9 MeV 
ü  Ground-state rotational band �
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3-alpha linear chain �



Radius, B(E2), B(E3), M(E0)	 9

Jπ EXP present AMD FMD GCM RGM THSR

0+1 2.31(2) 2.52±0.01 2.53 2.39 2.40 2.40 2.39

0+2 2.73±0.02 3.27 3.38 3.40 3.47 3.80

0+3 3.20±0.05 3.98 4.62 3.52

2+1 2.60±0.01 2.66 2.50 2.36 2.38 2.36

TABLE II. Mass rms radii of the ground and excited states of
12C. The experimental data is taken from Ref. [38]. For com-
parison, we show the results of AMD [11], FMD [34], GCM
[24] , RGM [25] and THSR (Funaki).

states. This is again smaller than those by other models
listed in Table.II, while it is simiar to the value (3.26 fm)
in Ref. [35].

E. Charge form factors

A charge form factor from the initial state
∣∣Ji,Mi

〉
to

the final state
∣∣Jf ,Mf

〉
is defined as follows,

|FJi→Jf (q
2)|2= 1

Z

1

2Ji + 1

×
∑

MiMj

∣∣〈JfMf |
∑

k

1 + τz(k)

2
ei!q·!rk |JiMi

〉∣∣2

×F 2
p (q

2)× F 2
cm(q

2), (21)

where Z is the proton number and "q is the transferred
momentum. Fp(q2) is a correction factor for the pro-
ton size for which we employ Fp(q2) = exp(−a2pq

2/6)
with ap = 0.831 fm. To correct the center-of-mass mo-
tion, we simply assume that the center-of-mass motion is
separated and described by the harmonic oscillator wave
function of the same oscillator constant, h̄ω = 41A−1/3

MeV, for both initial and final states. Thus, this leads
to F 2

cm(q
2) = exp(q2b2/2A) with b = 1.66 fm.

In Fig. 6, we show charge form factors for the elastic
(left) and inelastic 0+1 → 0+2 (right) processes. Red solid
curves show our results, blue dashed curves show the re-
sults of AMD calculation [43], and crosses with error bars
show experimental results [39–42]. For the elastic form
factor, we also show that of Skyrme HF solution in the
ground state.
In the small momentum transfer region q2 < 2 fm−2,

the elastic form factor is well reproduced by the calcu-
lation. For q2 > 2 fm−2, our calculation underestimates
the form factor, though position of the dip at around
3 fm−2 is reproduced well. The inelastic form factor
for 0+1 → 0+2 transition is underestimated for a whole
momentum transfer region. The position of the dip at
around 4 fm−2 is reproduced well.
We show results by the AMD calculation. They are in

better agreement with measured values, although the dip
position in the elastic form factor is located at somewhat
smaller q2 value. Microscopic cluster calculations also
reproduce the form factors well [24, 25].

The underestimation of the elastic form factor at large
q2 value indicates that the density in our calculation lacks
high momentum component. Since the HF solution gives
a better description for the form factor at high momen-
tum, the superposition of a number of Slater determi-
nants reduces spatial fluctuation of the density distribu-
tion. As for the underestimation in the inelastic form
factor of 0+1 → 0+2 transition, a possible reason is the
difference in the character of the wave functions between
the ground and 0+2 states. As we discussed in the radii,
a rather small radius of 0+2 state in our calculation may
indicate a small fraction of three-alpha component in the
ground state. The inelastic form factor may be reduced
if the correlation structures are different between two
states. It has been argued that the magnitude of this
form factor at small q2 is quite sensitive to the radius of
the 0+2 state [44]: the magnitude of the form factor at
small q2 reduces as the radius of the 0+2 state increases.
Our result here is opposite, however. The radius of 0+2
state in our calculation is smaller than those by cluster
models, and the magnitude of the inelastic form factor is
also small.

F. Analysis for wave functions

In order to clarify what kinds of correlations are in-
cluded in the wave function after configuration mixing,
ΨJπ

n , we calculate the overlap between the energy eigen-
state and the projected single SD state,

P Jπ,iK
n =

∣∣∣
〈
Φi

∣∣P̂ J†
MK P̂π|ΨJπ

n

〉∣∣∣
2

∣∣〈Φi

∣∣P̂ J
KK P̂π

∣∣Φi

〉∣∣
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∑

jν

fJπ,n
jν

1√
eJπjν

∑
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〈
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∣∣P̂ J
KK′ P̂π
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〉
√〈

Φi

∣∣P̂ J
KK P̂π

∣∣Φi

〉

∣∣∣∣∣

2

,

(22)

and find the SDs which have large overlap values with
ΨJπ

n . We show density distributions of the SDs to visu-
alize the correlations included.

In the following, we use the sequential number of the
SDs which we assigned in Sec. II A, using the result of the
first set of SDs in Fig. 2. We also show the K quantum
number of the SD and the value of the overlap, P Jπ,iK

n ,
in Eq. (22).

1. The ground rotational band

In Table III, we show the sequential number of the SDs
which have large overlap values with the wave function
of the ground rotational band, 0+1 , 2+1 , and 4+1 . The
overlap values P Jπ,iK

n defined by Eq. (22) and K values
are shown as well. Since the SDs are non-orthogonal, the
sum of the overlap values is not equal to but much larger
than unity.

8

Transitions Exp Cal AMD GCM RGM NCSM THSR

B(E2; 2+1 → 0+1 ) 7.6±0.4 8.6 ±0.2 8.5 8.0 9.3 4.146ɹ 9.06

B(E2; 4+1 → 2+1 ) 13.4±0.5 16 10.73

B(E2; 0+2 → 2+1 ) 13±2 13.6±1.2 25.5 3.5 5.5 4.71

B(E2; 2+2 → 0+2 ) 0.17±0.23 391

B(E2; 2+3 → 0+2 ) 5.9±0.7

B(E2; 2+4 → 0+2 ) 10±1 100∗

B(E2; 2+4 → 0+3 ) 91±13 310∗

B(E2; 4+2 → 2+4 ) 131±22 600∗

B(E3; 3−1 → 0+1 ) 107± 14 77± 4 99 124

M(E0; 0+1 → 0+2 ) 5.4±0.2 4.5±0.2 6.7 6.6 6.7 6.50

TABLE I. B(E2), B(E3) and M(E0) values of 12C in units of e2fm4, e2fm6 and efm2 respectively. Experimental and calculated
values are shown in the first and second column, respectively. For comparison, results of the AMD[11], GCM[24], RGM[25],
NCSM[26] and THSR (Funaki) are shown. See text for details. The values indicated by * correspond to B(E2; 2+2 → 0+2 ),
B(E2; 2+2 → 0+3 ) and B(E2; 4+2 → 2+2 ) in Ref. [11]. See text for details.

linear-chain states. The large B(E2) values are quali-
tatively consistent with our result, though the absolute
magnitudes of the transition strengths are much smaller
in the present calculation.
For negative-parity states, experimental data for

B(E3; 3−1 → 0+1 ) are available. The present calculation
gives 77±4e2fm6, which is slightly smaller than the mea-
sured value, 107± 14e2fm6.
Finally, we discuss the M(E0) transition strength be-

tween 0+2 and 0+1 states. In the studies by cluster models,
it has been argued that the magnitude of this transition
strength reflects the spatial extension of the 0+2 state [33].
Our calculated value, 4.5 ± 0.2efm2, is slightly smaller
than the measured value, 5.4 ± 0.2efm2. In contrast,
microscopic cluster models and AMD have reported an
opposite feature, slightly larger values, 6.6 − 6.7 e fm2,
than measurement[11, 24, 25]. Experimentally measured
value, 5.4 ± 0.2efm2 [27], is located between our result
and those of the other calculations.

D. Radii

We next examine root-mean-square (rms) radii of the
ground and excited states. Since our wave function does
not allow an exact separation of the center-of-mass mo-
tion from the internal one, we estimate an approximate
correction for the radius due to the center-of-mass mo-
tion, and subtract it from the calculated values. We as-
sume a harmonic oscillator motion for the center-of-mass
with the oscillator constant given by h̄ω = 41A−1/3 =
17.9 MeV. The value of the correction in this model
is estimated to be 0.07 fm in the harmonic oscillator
shell model. The calculated radii after the correction
are shown in Table II.
Our calculated value in the ground state is 2.52± 0.01

fm. This value is somewhat larger than the measured
value, 2.31±0.02 fm. In the HF calculation, the radius is

given by 2.44 fm. Our configuration mixing calculation,
therefore, slightly increases the radius. Comparing with
other theories, our value is larger than those of GCM and
FMD, and is comparable to the value of AMD.

For the 2+1 state, our calculated radius is slightly larger
than that of the ground state. Other theories report al-
most the same or slightly larger radius for this state.

For the 0+2 state, we find a significant difference be-
tween the present calculation and the others. Our cal-
culated radius is 2.73 ± 0.02 fm, which is larger than
the radius in the ground state. However, this is much
smaller than the other calculations which give more than
3 fm [11, 22, 24, 25, 34]. In the recent AMD+GCM cal-
culation [35], the radius of 2.9 fm was reported, similar
to ours. It has been found that the radius of the 0+2
state is quite sensitive to the spin-orbit interaction used
in the AMD calculation [36]. The radius of the 0+2 state
decreases as the strength of the spin-orbit interaction in-
creases. This dependence is understood as follows [36].
If the strength of the spin-orbit interaction is weak, the
ground state wave function contains substantial amount
of the three-α-cluster component. Then, the 0+2 wave
function, which is dominated by dilute three-α compo-
nents, spatially expands to ensure the orthogonalization
to the ground state. As the spin-orbit interaction in-
creases, the three-α component decreases in the ground
state, which allows 0+2 wave function to include more
compact three-α structure. This change results in de-
crease of the radius in 0+2 state. This mechanism may
explain the discrepancy in the 0+2 radius between our cal-
culation and other theories. It should be noted again that
our calculated value for the M(E0) transition strength is
smaller than the calculated values by other theories. We
also note that an indirect measurement of radius for the
0+2 state using diffraction inelastic scattering [37] was re-
ported, giving 2.89± 0.04 fm.

For the 0+3 state, our calculated radius is 3.20 ± 0.05
fm, which is much larger than the radii of 0+1 and 0+2

fm	fm	

e2fm6	

e2fm4	

efm2	

Linear-chain state	



NEGATIVE parity �

K = 1	
K = 3	

The lowest negative-parity state in each J 
A few MeV higher than experiment.	



Charge form factors�
•  Elastic (ground)                    Inelastic (01

+ à 02
+) �

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  2  4  6  8  10  12  14

|F
(q

)|2

q2 (fm-2)

01
+ A 01

+

EXP
AMD

present
HF

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  2  4  6  8  10  12  14

|F
(q

)|2

q2 (fm-2)

01
+ A 02

+

EXP
AMD

present

Too large diffuseness	



Functional dependence�
•  Robust result 

– G.s. correlation energy varies by about 1 MeV �
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Hoyle state	

5.4± 0.2

Radius	

Monopole transition	
M (E0;01

+ → 02
+ ) = 4.5± 0.2 e fm2

Experiment	

6.5− 6.7 Other cal. based on the 
gaussian anzats	

Linear-chain state	
Hoyle state	

Exp, FMD:   M. Chernykh et al.,  PRL 98,032501 (2007) 
AMD:   Y. Kanada-En’yo, PTP117,655(2007) 
GCM: E. Uegaki, et al., PTP57,4 (1977)1262 
RGM: M. Kamimura,  NPA351,456-480(1981)�



Shrinkage of the Hoyle state 	

14

EXP IT IT + 3α 3α 3α(Uegaki)

radius(0+1 ) 2.31±0.02 2.53 2.54 2.80 2.40

radius(0+2 ) 2.76 2.73 3.31 3.40

M(E0; 0+2 → 0+1 ) 5.4± 0.2 4.57 4.13 8.72 6.6

TABLE VII. Radii (fm) and M(E0) (efm2) calculated in various model spaces. Results of GCM calculation [24] is also shown.
See text for details.
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FIG. 13. Energy levels of 12C in the configuration mixing cal-
culation with the SDs constructed by the imaginary-time evo-
lution (IT), and 3α, and all of these configurations (IT+3α).
See text for details.

are well described. The lowest excited states of negative
parity, 1−, 2−, and 3−, are also reasonably described,
although the excitation energies are slightly too high.
The Slater determinants which dominate in these states

show three-α structure. Our calculation also reproduces
the excitation energy of the Hoyle (0+2 ) state reasonably.
This state is found to be described by superposition of
many Slater determinants, consistent with the former
cluster-model calculations. However, the radius of the
0+2 state is calculated to be significantly smaller than the
those. The energy gain associated with the spin-orbit in-
teraction in the present method seems to be responsible
for this difference. The three-α liner-chain structure ap-
pears at around 15 MeV excitation, forming a rotational
band.

The success for the description of 12C nucleus reported
in this paper clearly shows that the present approach
is promising for systematic description of various many-
body correlations including clustering in light nuclei.
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•  3-alpha configurations keep the radius of Hoyle 
state large. 

•  Other configurations generated by the imaginary-
time propagation makes it much smaller.	
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FIG. 11. Density distributions of some SDs out of 31 SDs which are used in Ref. [24]. Unit of vertical and horizontal axes are
fm.

as that shown in the left part of Fig. 13, except that the
total energies are plotted here.
After mixing both configurations of the imaginary-time

and the three-α, we find the results are very close to the
calculation using the imaginary-time configurations only.
Namely, 31 SDs of the three-α wave functions do not mix
with those prepared by the imaginary-time method. This
is due to the large energy difference between those two
sets of configurations.
In the calculation using configurations generated by

the imaginary-time method, the contribution of the spin-
orbit interaction to the binding energy is as large as 17
MeV with SLy4. This large energy gain is missing in the
pure three-α configurations.
In Table VII, we show the calculated radii and the

M(E0) transition strength. Using the 31 SDs of three-
α wave functions, our calculation gives large values for
both the 0+1 and 0+2 states. The radius of the 0+2 state
is 3.31 fm, close to the value by the GCM calculation,
3.4 fm. The M(E0) value is also large, 8.72efm2, even
larger than the three-α GCM calculation [24]. However,
in the configuration mixing calculation using both con-
figurations, our calculated values are very close to the
calculation using the 50 SDs prepared by the imaginary-
time method. This result is consistent with the fact that
the energy spectra is very little affected by adding the
three-α wave functions.

V. SUMMARY

We have investigated structure of the 12C nucleus em-
ploying a configuration-mixing approach with Skyrme in-
teraction. In this approach, we first generate a number
of Slater determinants using the imaginary-time method
[19] starting from initial Slater determinants prepared
in a stochastic way. These Slater determinants show
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FIG. 12. Energy levels of 12C employing 3α SDs with Skyrme
SLy4 interaction (left), the results of GCM calculation of
Ref. [24] (center) and experiments (right).

various shapes and clustering. They are projected on
parity and angular momentum, then, are superposed
by the configuration-mixing calculation. We have gen-
erated several sets of Slater determinants and compare
the results with the differnt sets, to quantify the reli-
ability of the calculation. A few low-lying states for
each parity and angular momentum are well converged
with small variance among the different sets of the Slater
determinants. This fact indicates that the present cal-
culation provides unique and convergent results for the
ground and a few low-lying excited states, once the effec-
tive nucleon-nucleon force, the Skyrme interaction in the
present calculation, is given.

Our calculation reasonably reproduces the overall fea-
tures of the structure of 12C. The energies and the B(E2)
transition strength of the ground state rotational band

3-alpha configurations 
used in the GCM 
calculation by 
Uegataki et al. 

E. Uegaki, et al., PTP57,4 (1977)1262 
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FIG. 10. Density distributions of some SDs out of 31 SDs which are used in Ref. [21]. Unit of vertical and horizontal axes are
fm.

EXP IT All Cluster II Cluster I GCM

radius(0+1 ) 2.31±0.02 2.60 2.61 2.60 2.87 2.40

radius(0+2 ) 2.83 2.80 2.97 3.38 3.40

|M(E0; 0+2 → 0+1 )| 5.4± 0.2 4.57 4.13 6.72 8.72 6.6

TABLE VII. Radii and M(E0) in various sets of SD. Results of GCM calculation is also shown [21].
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FIG. 11. Excitation levels employing SDs in the microscopic
α cluster model with Skyrme SLy4 interaction (left) and the
results GCM calculation of Ref. [21](right).

cluster structure. Our calculation also reproduces the 0+2
state reasonably. This level is found to be described by
superposing a number of Slater determinants, This fact is
consistent with a picture of three α condensation which
has been attracting much attention recently [17].
The success for the description of 12C nucleus reported

in this paper clearly shows that the present approach is
promising for systematic description of clustering states

as well as shell-model-like states of light nuclei.
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FIG. 12. Energy levels in the configurations obtained by the
imaginary-time evolution (IT), Cluster I, Cluster II, and all
of these configurations (All). See text for details

VI. ACKNOWLEDGMENT

Numerical calculations for the present work have been
carried out by T2K-Tsukuba System at Center for
Computational Sciences in University of Tsukuba and
SR16000 at YITP in Kyoto University.

Adopting the three-alpha configurations utilized in 
GCM: E. Uegaki, et al., PTP57,4 (1977)1262 

Present cal.	

ΔE ≈ 20 MeV

3α config.	

SLy4	

EHF=−90.6 MeV	

Large energy gain mostly 
associated with the spin-
orbit force	



present� EXP �

45.1�

46.3�

HF state: 80% �

16O" POSITIVE parity �

ü  correlation energy is  3.3MeV 



CAL� EXP �

ü  particle-hole excitation is good agreement with 
experimental values 

parity doublet partner � particle-hole-like  
excitation �

NEGATIVE parity�16O"



EXP �

51.6�

50.0�CAL�

63.5�

POSITIVE parity �

ü  Correlation energy of about 6 MeV 
ü  B(E2) in good agreement 
ü  Too large moment of inertia �



parity doublet partner �

EXP �CAL�
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83.6�

57.6�

87.7�

NEGATIVE parity �

ü  Candidate for parity-doublet partner 
ü  Kπ=2- band:  (p)−1(sd)5
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 Gogny interaction 

𝜌 𝑟𝜎, 𝑟′𝜎′ ≡ 𝜙∗ 𝑟, 𝜎 𝜙 𝑟′, 𝜎′
,

 

Φ 𝑉 Φ   = −
𝑊
2 ∫ 𝑑𝑟∫ 𝑑𝑟 𝜌(𝑟𝜎, 𝑟′𝜎′)  𝜌 𝑟 𝜎 , 𝑟𝜎 exp  {− 𝑟 − 𝑟 /𝜇 } 

Computational cost :  𝑵𝒙
  𝟔 × 𝑵𝒊 

Computational cost of finite range interaction 

 Same scaling of orbit as the case of Skyrme interaction 
 scaling of space is power of two 

Φ 𝑉 Φ = −
𝑡
2 𝑥 𝜙 𝜙 𝛿 𝑟 − 𝑟 𝑃 𝑃 𝑃 𝜙 𝜙

,

 

              = −
𝑡
2 𝑥 ∫ 𝑑𝑟 𝜌 𝑟    

 Skyrme interaction 

Computational cost : 𝑵𝒙
  𝟑 × 𝑵𝒊 

𝜌 𝑟 = 𝜙∗ 𝑟, 𝜎 𝜙 (𝑟, 𝜎)
,

   

We try two method to reduce computational cost.  

# of orbits 

𝑵𝒙
    points 



𝑊   Fock term 

𝜌 𝑟𝜎, 𝑟′𝜎′ ≡ 𝜙∗ 𝑟, 𝜎 ϕ 𝑟′, 𝜎′
,

 

The range of Gogny interaction is about 4 fm. 

𝑉 = −
𝑊
2 ∫ 𝑑𝑟∫ 𝑑𝑟 𝜌(𝑟𝜎, 𝑟′𝜎′)  𝜌 𝑟 𝜎 , 𝑟𝜎 exp  {− 𝑟 − 𝑟 /𝜇 } 

it is sufficient to integrate 𝑟’ inside 4fm sphere. 

 Same scaling as the case of Skyrme 
interaction, except M 

Method 1: finite spherical lattice 
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Numerical cost : 𝑵𝒙
  𝟑 ×𝑴 ×𝑵𝒊 

𝑟 
Radius ~4fm  

20fm 

20
fm

 

r⃗ : 8,000 points 

r⃗ ‘:  ~500 points 

cf. Skyrme interaction 
     𝑵𝒙

  𝟑 × 𝑵𝒊 

𝑵𝒙
  𝟑 

𝑴 



Skyrme(SLy4)�

Gogny(D1S)�

positive parity �

Integral points: 
(α, β, γ)=(18, 20, 18) 
512 core x  9h 
31 SDs �

cf. Skyrme 
(α, β, γ)=(18, 30, 18) 
512 core x 1.8h 
45 SDs �

SR16000@YITP �

7.5 times �

CPU time�

ü  Computational cost is 7.5 times 
ü  Energy spectrum is almost same �

12C	



Skyrme(SLy4)	

Gogny(D1S)	

negative parity	

ü  Energy spectrum is almost same	

12C	



Summary 
•  Complete low-lying spectroscopy with the Skyrme Hamiltonian 
•  Capable of describing a variety of excited states in a unified 

way, such as vibrational excitations, cluster excitations, single-
particle excitations. 

 
Problems 
•   2nd 0+ state in 16O 

–  Energy too high by about 3 MeV 
–  B(E2) Underestimated 
–  Center of mass?    Weak-coupling phenomena? 

•  Moment of inertia of 20Ne 
–  Too large 
–  Pairing? 

•  Hoyle state 
–  All properties reasonably agree with experiments, except for its radius. 
–  Three-alpha configurations produce a large radius 
–  Configuration mixing with other states makes the Hoyle state shrunk  

Shinohara et al, PRC 74, 054315 (2006) 
Fukuoka et al, in preparation 


