Current challenges in electronic structure theory for open-shell molecules and molecular clusters

> Dmitry I. Lyakh quant4me@gmail.com

Quantum Theory Project University of Florida Gainesville, FL

Formal computational problem

Born-Oppenheimer system:

(a) a set of *M* fixed nuclei; (b) *N* electrons; (c) external electro-magnetic fields;

(d) non-relativistic Hamiltonian (not important for this talk).

i ℏ ∂ ∂ *t* $|\Psi_k\rangle = \hat{H} |\Psi_k\rangle \wedge (Dirichlet || Periodic) \wedge_i \hat{S}^2 |\Psi_k\rangle = s_k (s_k + 1) |\Psi_k\rangle$ $\hat{H}|\Psi_k\rangle = E_k|\Psi_k\rangle \wedge (Dirichlet || Periodic) \wedge_p \hat{S}^2|\Psi_k\rangle = s_k(s_k+1)|\Psi_k\rangle$

Non-relativistic Hamiltonian:

$$
\hat{H} = \sum_{k=1}^{N} \left(-\frac{1}{2} \hat{\nabla}_{k}^{2} + F(\hat{r}_{k}, t) + \sum_{\alpha=1}^{M} \frac{-Z_{\alpha}}{|\hat{r}_{k} - R_{\alpha}|} + \frac{1}{2} \sum_{j \neq k}^{N} \frac{1}{|\hat{r}_{k} - \hat{r}_{j}|} \right) + \frac{1}{2} \sum_{\alpha=1}^{M} \sum_{\beta \neq \alpha}^{M} \frac{Z_{\alpha} Z_{\beta}}{|R_{\alpha} - R_{\beta}|}
$$

Many-particle Hilbert space −1 $+1$ **¹** 1-particle basis: $\{\boldsymbol{\phi}_k(x, y, z, \sigma)\}_{k=1,n}$: $\mathbb{R}^3 \times \{\sigma\}$ *,* \rightarrow C 2 2 ● A tensor-product basis of antisymmetrized *N*-body functions (Slater determinants or independent particle states, IPS): $\forall i_1 i_2..i_N:\{\Phi^{i_1 i_2..i_N}(r_1 r_2...r_N)\}=\{\phi_{i_1}(r_1) \wedge \phi_{i_2}(r_2) \wedge ... \wedge \phi_{i_N}(r_N)\}$ where ∧ defines an *antisymmetrized tensor product*: $\phi_k(r_1) \wedge \phi_j(r_2) = 1/\sqrt{2}$ / $(\phi_k(r_1) \phi_j(r_2) - \phi_j(r_1) \phi_k(r_2))$ *N* −1 $+1$ $\mathbb{R}^3\times\{$ *,* $\left(\frac{1}{2}\right)$ $\rightarrow \mathbb{C}$ $- +$ 2 *<u> Thermi Level</u> Tensor product structure* **Doubly Excited Determinant Triply Excited Determinant Singly Excited Determinant** (Single Excitation) (Double Excitation) (Triple Excitation) $\Psi(r_1 r_2 ... r_N) = \sum C_{i_1 i_2 ... i_N} \Phi^{i_1 i_2 ... i_N}(r_1 r_2 ... r_N) \rightarrow \text{Full CI limit}$ $i_1 < i_2 < ... < i_N$

Electron Correlation

Effective 1-body problem: SCF eigenvectors (IPS): $|0\rangle = |\phi_1(r_1) \wedge \phi_2(r_2) \wedge ... \wedge \phi_N(r_N)\rangle = |\phi_1 \phi_2 ... \phi_N\rangle$ $\hat{H} = \sum$ $k = 1$ *N* $\hat{h}(k)$, $\rho(r_1...r_m) = \prod$ $k = 1$ *m*≤*N* $\rho(r_k)$, $\hat{\rho}_1 = \sum$ $k = 1$ *N* $|\phi_k\rangle\langle\phi_k| = \hat{\rho}_1^2$ 2

● 2-body (and higher) terms: Inter-particle *Correlations*: *Dynamic* and *Non-dynamic* (spatial 2-body Coulomb term):

$$
\sum_{i < j}^{N, N} \left| \hat{r}_i - \hat{r}_j \right|^{-1} \quad \text{or} \quad \sum_{i < j}^{N, N} \left| \hat{r}_i - \hat{r}_j \right|^{-1} - \sum_{i = 1}^{N} \nu(\hat{r}_i)
$$

Static (proper spin-coupling, other symmetries): • In general, the *antisymmetry* requirement mixes both $\hat{S}^2 = \hat{S}$ \hat{x} ² + \hat{S} $^{2}_{y}+\hat{S}$ *z* $\hat{s}_x^2 = \sum \hat{s}_x(i)\hat{s}_x(j) + \sum \hat{s}_y(i)\hat{s}_y(j) + \sum \hat{s}_z(i)\hat{s}_z(j)$ *i*, *j i*, *j i*, *j i*, *i*, *j* N^{\bullet}, N and N^{\bullet}, N is N^{\bullet}, N

Correlated wavefunction ● Non-separability of the *N*-body problem: $\rho(r_1, r_2) = \rho(r_1)\rho(r_2) + \sigma(r_1, r_2)$: 2-body cumulant! In the basis of arbitrary Slater determinants, a correlated wavefunction is always multicomponent: $\forall \{\bm{\phi}_{i_1}, \bm{\phi}_{i_2}, ..., \bm{\phi}_{i_N}\}: \ |\bm{\mathit{Y}}\> \neq |\bm{\phi}_{i_1}\bm{\phi}_{i_2}...\bm{\phi}_{i_N}\rangle$ $\rho(r_1...r_m) \neq \prod_{k=1}^{n} \rho(r_k), \quad \hat{\rho}_1 \neq \hat{\rho}_1^2$ $k = 1$ 2≤*m*≤*N* 2 $| \Psi \rangle = | 0 \rangle + \sum \sum C^{a_1 a_2 ... a}_{i_1 i_2 ... i_m}$ $m=1$ $a_1 < a_2 < ... < a_m$ *N* $i_1 < i_2 < ... < i_m$ $a_1 a_2 ... a_m \begin{vmatrix} i_1 i_2 ... i_m \\ a_1 a_2 ... a_m \end{vmatrix}$ $\frac{i_1 i_2 \dots i_m}{a_1 a_2 \dots a_n}$ $\Big)$ = $=$ $|0\rangle$ + \sum $m=1$ $a_1 < a_2 < ... < a_m$ *N* \sum $C^{a_1 a_2 ... a}_{i_1 i_2 ... i_m}$ $i_1 < i_2 < ... < i_m$ $a_1 a_2 ... a_m$ $\hat{\tau}^{i_1 i_2 ... i_m}_{a_1 a_2 ... a_m}$ $\left. \begin{array}{l} \frac{i_1i_2..i_m}{a_1a_2..a_m} |0\rangle \end{array} \right. \ \textsf{Hole-particle formalism}$ $\hat{\tau}_{a_1 a_2 \ldots a_N}^{l_1 l_2 \ldots l_N}$ $a_{1}^{i_{1}i_{2}...i_{N}}_{a_{1}a_{2}...a_{N}} \equiv \hat{a}_{1}^{+}$ \hat{a}_2^+ $\stackrel{+}{2}$.. \hat{a}^+_N $\hat{i}_N \hat{i}_N..\hat{i}_2 \hat{i}_1$ **Hole-particle vacuum**

Strength of the electron correlation • 2x2 model: $span\{|0\rangle, |_{a_1 a_2}^{i_1 i_2}\rangle\}$: $\left|H_{10}H_{11}\right|$ $\left|\beta(\alpha+\Delta)\right|$ Off-diagonal coupling due to 2-body terms State 0: \overline{H}_{00} H_{10} \overline{H}_{01} H_{11} \vert $\equiv \Big| \begin{array}{c} c \\ l \end{array} \Big|$ α β β $(\alpha + \Delta)$ $\langle \left| \frac{a_1 i_2}{a_1 a_2} \right\rangle \}$: $|\Psi\rangle$ = C₀ | 0 \rangle + $C_{i_1 i_2}^{a_1 a_2}$ $a_1 a_2 \nvert_{a_1 a_2}^{i_1 i_2}$ $\begin{pmatrix} i_1 i_2 \\ a_1 a_2 \end{pmatrix}$ $E=\alpha +$ Δ $\frac{2}{2} - \sqrt{\frac{2}{2}}$ Δ $\overline{2}$ 2 $+\beta^2 \approx \alpha +$ Δ $\frac{2}{2}$ - $\frac{2}{2}$ Δ 2 β^2 Δ − $\overline{\beta}^4$ $\overline{\Delta^3}$ $C^{a_1 a}_{i_1 i_2}$ $a_1 a_2$ C_0 $\approx -\left(\frac{I}{2}\right)$ β $\left(\frac{P}{\Delta}\right)$ + $\left(\frac{P}{\Delta}\right)$ β $\overline{\Delta}$ \vert 3 $C^{a_1 a}_{i_1 i_2}$ $a_1 a_2$ C_0 = 1 $\frac{1}{2}$ β $\overline{\Delta}$ \vert −1 $-\sqrt{\frac{1}{4}}$ 1 $\overline{4}$ $\overline{}$ β $\overline{\Delta}$ \vert −2 $+1$

Plotted on-line by http://rechneronline.de/function-graphs/

Structure of a correlated wavefunction

• *Dynamic* (*weak*): $|\beta/\Delta| \ll 1$

The wavefunction is dominated by only *one* Slater determinant. Dispersion effects (fluctuations of the electron charge).

• **Non-dynamic/static (moderate or strong):** $|\beta/\Delta|$ ~ 1

The wavefunction is dominated by *multiple/many* Slater determinants with similarly large weights (*multireference*): $\langle 1000 \rightarrow \text{moderate}$ (current focus), $>1000 \rightarrow \text{strong}$.

Localization of electrons during bond breaking, interaction among closely lying orbitals, spin-coupling. **Independent particle picture becomes qualitatively wrong!**

Multireference wavefunctions spread more over the Hilbert space

Single-reference Multireference

(SR) (MR)

Multireference problems

- Bond breaking/formation, especially for multiple bonds
- Molecules with open shells (radicals, biradicals)
- Excited electronic states, especially doubly-excited electronic states and charge-transfer excitations
- Molecular resonances
- Reaction dynamics involving multiple potential energy surfaces (conical intersections and avoided crossings)
- Conjugation in organic molecules and polymers
- Molecules, molecular complexes, and macromolecules containing d- and f-transition metals
- Any kind of orbital *quasidegeneracy* which leads to quasidegeneracy of many-particle basis functions (Slater determinants)

D.I.Lyakh, M.Musial, V.Lotrich, R.J.Bartlett, Chem. Rev. 112, 182 (2012).

N2 molecule triple-bond breaking (separation of two N atoms with 3 open-shell electrons on each: CAS(6,6)

Wavefunction complexity

- The best case: only one Slater determinant is present in the wavefunction (SR)
- The worst case: all Slater determinants have the same weights (strong MR)
- Let's use the Shannon entropy to characterize the complexity of the wavefunction (needs some additional normalization w.r.t. basis set size and *N*):

$$
I_C = -\sum_{k} \frac{|C_k|^2}{Z} \log_2 \frac{|C_k|^2}{Z}, \quad Z = \sum_{k} |C_k|^2 \sum_{\text{Mol. Phys. 103, 2131 (2005)}}
$$

- The Shannon index is superior to other wavefunction diagnostics, like T1 (the latter mostly shows the orbital relaxation effects: Thouless theorem)
- The Shannon entropy is also routinely used for the 1-body density

Wavefunction *VS* **Density entropy**

- The *density entropy* characterizes the complexity of the *physical* problem (its Full CI value is invariant w.r.t. arbitrary orbital rotations)
- The *wavefunction entropy* characterizes the complexity of the *computational* problem in a given many-particle basis set (its Full CI value is *not* invariant w.r.t. orbital rotations):

 $|\phi\rangle = |X_1\rangle + |X_2\rangle$ \rightarrow $|\phi^\alpha \phi^\beta \rangle = |X_1^\alpha X_1^\beta \rangle + |X_2^\alpha X_2^\beta \rangle + |X_1^\alpha X_2^\beta \rangle + |X_2^\alpha X_1^\beta \rangle$

- The preliminary SCF "compression" (capturing all meanfield effects) is mandatory in order to focus solely on the complexity of the correlated problem (also Brueckner).
- Separable *N*-body problem: HF vs Full CI: |HF>=*ne* \hat{T}_1 $\ket{0}$
- The wavefunction complexity does depend on the Fermi vacuum chosen

SR/MR excitation rank hierarchies

Supports of SR and MR wavefunctions in the many-particle Hilbert space have different structures:

 $\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$ \searrow 2 1 2) and 2 1

1st-order interaction space

Model space

 $2nd$ -order interaction space

The minimal number of Slater determinants, required for a *qualitatively* correct description of the many-particle state, spans the *model space* of the problem:

$$
|\Theta\left>\equiv\sum_{\alpha=1}^{D}C^{\alpha}|\Phi_{\alpha}\right>,\hspace{0.5cm}\hat{P}=\sum_{\alpha=1}^{D}|\Phi_{\alpha}\rangle\langle\,\Phi_{\alpha}|
$$

2

The essence of any MR method is a *quantitatively* correct construction of the wavefunction in the model and MR 1storder interaction spaces (chemical accuracy, 1 kcal/mol):

 $|\Psi\rangle = \hat{\Omega} |\Theta\rangle$: (MR) CI/CC/MBPT

D.I.Lyakh, M.Musial, V.Lotrich, R.J.Bartlett, Chem. Rev. 112, 182 (2012).

The beauty of an exponential

The structure of the exponential wave operator (coupled cluster) reflects the direct product structure of the Hilbert space spanned by Slater determinants:

$$
\begin{aligned}\n\left| \frac{i_1}{a_1} \right\rangle &= \hat{\tau}^{i_1}_{a_1} |0 \rangle, \qquad \left| \frac{i_1 i_2}{a_1 a_2} \right\rangle = \left| \frac{i_1}{a_1} \right\rangle \times \left| \frac{i_2}{a_2} \right\rangle = \hat{\tau}^{i_1}_{a_1} \times \hat{\tau}^{i_2}_{a_2} |0 \rangle = \hat{\tau}^{i_1 i_2}_{a_1 a_2} |0 \rangle \\
\left| \frac{\Psi}{\psi} \right\rangle &= e^{\hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_N} |0 \rangle = \left(1 + \hat{T}_1 + \hat{T}_2 + \frac{1}{2!} \hat{T}_1 \hat{T}_1 + \dots \right) |0 \rangle, \qquad \hat{T}_m = \frac{1}{m!^2} \sum_{a_1 \dots a_m \atop i_1 \dots i_m} t^{a_1 \dots a_m}_{i_1 \dots i_m} \hat{\tau}^{i_1 \dots i_m}_{a_1 \dots a_m}\n\end{aligned}
$$

• Hole-particle structure of the wavefunction is expressed in terms of *connected* and *dicsconnected* contributions:

$$
\left| \langle \begin{matrix} a_1 a_2 \\ i_1 i_2 \end{matrix} \right| e^{\hat{T}_1 + \hat{T}_2 + \dots + \hat{T}_N} |0 \rangle = \langle \begin{matrix} a_1 a_2 \\ i_1 i_2 \end{matrix} \right| \left| \hat{T}_2 + \frac{1}{2!} \hat{T}_1 \hat{T}_1 \right| |0 \rangle = t_{i_1 i_2}^{a_1 a_2} + \frac{1}{2!} t_{i_1}^{a_1} \wedge t_{i_2}^{a_2}
$$

 Collective (cumulative) Two independent double excitation (correlation) single excitations

- The larger the cluster amplitude, the stronger the correlation (coupling) between the corresponding holes and particles (in contrast, CI coefficients do not necessarily reflect the correlations!)
- Size-extensivity of the energy, fast convergence! Totally exponential EST: D.I.Lyakh,R.J.Bartlett, Mol. Phys. (under review).

Active orbital space

Strongly coupled orbitals, which are essential for reproducing the principal character of the calculated state, form the *Active Orbital Space* (AOS).

All distributions of *n* **active electrons on** *m* **active orbitals: CAS(n,m)**

MR diagnostics & selection of the active space

SR **normal-ordered** Hamiltonian (SCF energy shifted):

$$
{\hat H}_N\!=\!{\hat H}\!-\!\langle 0|\hat H\,|0\rangle\!=\!\sum_{p_1}\limits_{q_1}\!H_{q_1}^{p_1}\!\{\hat p_1^+\hat q_1^-\}\!+\!\sum_{p_1p_2}\limits_{q_1q_2}\!H_{q_1q_2}^{p_1p_2}\!\{\hat p_1^+\hat p_2^+\hat q_2^-\hat q_1^-\}
$$

Run a preliminary SR calculation of SD level (CISD/CCSD), then analyze the *complexity* of the wavefunction obtained:

$$
I_C = -\sum_{m=1}^{2} \sum_{\substack{a_1...a_m \\ a_1...a_m}} \frac{|C^{a_1...a_m}_{i_1...i_m}|^2}{Z} \log_2 \frac{|C^{a_1...a_m}_{i_1...i_m}|^2}{Z}, \quad Z = \sum_{m=1}^{2} \sum_{\substack{a_1...a_m \\ a_1...a_m}} |C^{a_1...a_m}_{i_1...i_m}|^2
$$

If the Shannon index exceeds some threshold, determine the *active orbital space*:

1) The importance of the orbital *p*1 in the CISD wavefunction:

$$
\xi(p_1) = \sum_{m=1}^{2} \sum_{p_1 \in \{a_1 \dots a_m\} \atop i_1 \dots i_m} |C^{a_1 \dots a_m}_{i_1 \dots i_m}|^2
$$

2) OR Compute and diagonalize the 1-RDM: Occupation Numbers

CAS state-universal HS-MRCC

- *N*-electron reference wavefunction (0th order): • Jeziorski-Monkhorst wave operator: $|\Theta_k\rangle = ∑$ $\alpha = 1$ $\alpha = 1$ *D* $C^{\alpha}_{k}|\Phi_{\alpha}\rangle$, $P_{\alpha} = |\Phi_{\alpha}\rangle\langle\Phi_{\alpha}|$, $P = \sum$ *D* P_{α} , $\hat{I} = \hat{P} + \hat{Q} + \hat{Q}$ *'* $\hat{\Omega}=\sum$ α $\exp(\hat{T}_1^{(\alpha)} + \hat{T}_2^{(\alpha)}$ $\hat{T}_m = \hat{T}_m$ $|\Psi_k\rangle = \hat{\Omega}|\Theta_k\rangle = \sum C_k^{\alpha} \exp(\hat{T}_1^{(\alpha)} + \hat{T}_2^{(\alpha)})$ α $\binom{(\alpha)}{2} \big| \boldsymbol{\varPhi}_{\boldsymbol{\alpha}} \big\rangle$ 1 *m !* $\frac{1}{2}$ \sum $a_1... a_m$ $\frac{i}{1}$... *i^m* $t^{a_1...a}_{i_1...i_m}$ $a_1...a_m$ $\hat{a}_1^+...$ $\hat{a}_m^+ \hat{i}_m^-.$ $\hat{i}_1^ \hat{H} \; \hat{\Omega} \! = \! \hat{\Omega} \; \hat{H} \; \hat{\Omega} \, , \quad \tilde{H}_{\alpha \beta} \! = \! \langle \, \boldsymbol{\varPhi}_{\alpha} \vert \bigl(\hat{H} \; \hat{\Omega} \bigr)_{\! C} \vert \, \boldsymbol{\varPhi}_{\beta} \, \rangle$
- D *N*-electron states are obtained simultaneously
- The WF does not satisfy the projected SE: $\hat{\mathcal{Q}}\big(\hat{H} E_{_k}\big||\Psi_{_k}\rangle\neq0$
- **Intruder** state problem: severe convergence problems
- Not invariant to active orbital rotations
- Does not naturally reduce to an SR method

Solutions to the Intruder State Problem

- Incomplete and general model spaces: Mukherjee, Pal, Meissner, Kucharski, Bartlett, Paldus: different GMS-SU-MRCC: the issue of size-consistency
- State-specific approaches: one state at a time:

$$
|\Psi\rangle = \sum_{\alpha} C^{\alpha} \exp(\hat{T}_1^{(\alpha)} + \hat{T}_2^{(\alpha)}) |\Phi_{\alpha}\rangle
$$

- Underdefined problem: **Sufficiency conditions** (Mukherjee): Different ways of resolving redundancy:
	- 1) BW-MRCC: only moderate MR, not size-extensive;
	- 2) Mk-MRCC: only moderate MR, poor for excited states;
	- 3) sr-MRCC: only moderate MR, poor for excited states;
	- 4) MRexpT (Hanrath): accurate, but only core-extensive.
- All, except MRexpT, do not satisfy the projected SE: triples become essential \rightarrow higher cost.
- Yet, all do not naturally reduce to an SR case.

Internally-contracted MRCC

A single exponential acts on the entire MR reference function as a whole: 1

$$
|\Psi\rangle \!=\! \exp(\hat{T}_1 + \hat{T}_2)|\varTheta\rangle, \quad \hat{T}_m \!=\! \frac{1}{m\,!^2} \sum_{\bar{q}_1 \ldots \bar{q}_m \atop \bar{t}_1 \ldots \bar{t}_m} t_{\bar{i}_1 \ldots \bar{i}_m}^{\bar{a}_1 \ldots \bar{a}_m \cdot \hat{a}_1 + \ldots \hat{a}_m + \hat{\bar{t}}_1 - \ldots \hat{\bar{t}}_1}
$$

- Invariance w.r.t. active orbital rotations.
- SE is satisfied in *P*+*Q*.
- Non-commuting cluster operators: longer BCH expansion: much more diagrams.
- Overparameterized ansatz \rightarrow SVD.
- The working equations make use of the GWT.
- Mukherjee/Koehn: **ic-MRCC**: chemically accurate, possible SVD dependence and convergence issues.
- Chan, Yanai: **CTCC** (anti-hermitian cluster operator): $\hat{T}_m = -\hat{T}_m$ much larger active spaces are accesible via DMRG; necessary BCH truncation and density cumulant use; possible SVD dependence and convergence issues.

Fock-space MRCC

- $FS =$ Union of HS with different numbers of particles (sectors of the FS): ionization, attachment, excited states...
- Valence-universal wave operator: $\hat{\Omega} = \{ \exp(\hat{T}_1 + \hat{T}_2 + \hat{S}) \}$ $|\Psi^{(k,l)}\rangle\!=\!\hat{\Omega}|\Phi^{(k,l)}\rangle\!=\!\{ \exp{(\hat{T}_1\!+\!\hat{T}_2\!+\!\hat{S})}\}|\Theta^{(k,l)}\rangle$

 $|\mathcal{\varTheta}^{(0,1)}\rangle\!=\!\sum_{\mathcal{I}}% \sum_{\mathcal{I}}\left\vert \mathcal{I}_{\mathcal{I}}\left(\mathcal{I}_{\mathcal{J}}\right) \mathcal{I}_{\mathcal{I}}\left(\mathcal{I}_{\mathcal{J}}\right) \right\rangle \left\vert \mathcal{I}_{\mathcal{I}}\right\vert ^{2}$ *I* C_I^I ^{\rangle}, $|\Theta^{(1,0)}\rangle = \sum$ | *A* $C^A|_A\rangle, \quad |\Theta^{(1,1)}\rangle = \sum_i$ *I , A* $C^{A}_{I} |_{A}^{I}$ \rangle Active space $\hat{I}^{(k,l)} = \hat{P}^{(k,l)} + \hat{Q}^{(k,l)} + \hat{Q}^{\prime(k,l)}$

- Full separability (inter-sector) of the FSMRCC wave operator
- Different components of *S* do not commute \rightarrow impose *normal ordering* w.r.t. to some Slater determinant (Lindgren)
- SEC and valence-universal hierarchical solver: difficulty in getting to higher sectors: Rapidly growing number of diagrams: $\hat{\mathcal{Q}}^{(k,\,l)}\!\!\left(\hat{H}\,e^{\hat{T}_1+\hat{T}_2}\right]\!_Ce^{\hat{S}}\hat{P}^{(k,\,l)}\!\!=\!\!\hat{Q}^{(k,\,l)}e^{\hat{S}}\!\left(\hat{H}\,e^{\hat{T}_1+\hat{T}_2}\!\right]\!_C\hat{P}^{(k,\,l)}\!\quad\text{Each subsequent (k+l)}\ \text{must have all preceding}\ \text{in the left and right,}\ \hat{Q}^{(k,\,l)}\!\left(\hat{H}\,e^{\hat{T}_1+\hat{T}_2}\right)\!\right\}$ must have all preceding solved!
- *T* captures global correlations; *S* delivers local corrections
- Invariant to active orbital rotations
- Orbital relaxation effects become important for higher sectors

Systematic decoupling in the Hamiltonian

Stolarzcyk & Monkhorst: consecutive SU-FSMRCC *similarity transformations* (a generalization of SRCC):

Intermediate Hamiltonian FSMRCC

- FSMRCC Bloch equation is also plagued by intruders!
- $Malrieu \rightarrow Mukherjee \mid Kaldor, Eliav \mid Meissner, Musial, Bartlett:$ three Intermediate Hamiltonian formalisms.
- The elegant Meissner's scheme (Musial, Bartlett):

 $\tilde{\hat{H}}^{(k,l)} = \tilde{\hat{H}}^{(k,l)} + (\tilde{\hat{H}} \hat{Q})$ *' e* $\hat{\hat{S}}$ \vert **Dressing**

EOMCC similarity transformed Hamiltonian: $\overline{\hat{H}}^{(k,l)} \equiv (P+Q)^{(k,l)} \left(e^{-\hat{T}}\hat{H}e^{\hat{T}}\right)(P+Q)^{(k,l)} = (P+Q)^{(k,l)}\left(\hat{H}e^{\hat{T}}\right)_{C}(P+Q)^{(k,l)}$

- Meissner's IHFSMRCC is *equivalent* to FSMRCC, but without convergence problems (non-linear solver \rightarrow diagonalization)!
- The IHFSMRCC Hamiltonian is the EOMCC Hamiltonian + specific *Dressing* term which depends on the FSMRCC cluster amplitudes from preceding sectors.
- Also EOMCCx (Musial, Bartlett); STEOM (Nooijen, Bartlett).

EOM based MRCC

• MR-MI/MA-EOMCC scheme of Bartlett & Musial: $|\Psi\rangle$ = $\hat{R}e^{\hat{T}}$ $\mid \! 0 \rangle$

 $(N+2)$ -electron vacuum state

N-electron reference determinants

Higher excitations can be required in the EOM CI operator.

- Also SF-EOMCC scheme of Krylov et al.
- pIC-MR-EOMCC scheme of Nooijen et al: $|\varPsi\!\rangle {=} {\hat R}\,e^{\hat T}$ $|\bm{\varTheta}\,\rangle$
- All above: assumption on the transferability of the electron correlation. Orbital relaxtion effects (similar to FSMRCC).
- Multiple electronic states can be accessed simultaneously.

Alternative CAS/GMS MRCC schemes

- Single-reference based MRCC (SRMRCC): $|\Psi\rangle = \hat{\Omega} |\Theta_{MR}\rangle = \exp(\hat{T}_1 + \hat{T}_2 +$ $\tilde{\hat{T}}_3 + ... +$ $\langle \hat{T}_m \rangle |0 \rangle$ but starting from a single Slater determinant Constructing the same MR wavefunction, (Oliphant & Adamowicz)
- CASCCSD (Ivanov, Lyakh, Adamowicz): all singles and doubles from a multidimensional reference function $|\Theta_{\scriptscriptstyle MR}\rangle$:

$$
||\Psi\rangle = \hat{\Omega}|\Theta_{MR}\rangle = \exp\left(\hat{T}'_1 + \hat{T}'_2 + \hat{\tilde{T}}'_3 + ... + \hat{\tilde{T}}'_m\right)\left(1 + \hat{C}_1 + \hat{C}_2 + \hat{C}_3 + ... + \hat{C}_m\right)|0\rangle
$$

- Chemical accuracy in many severe cases (N2, C2)
- Much more diagrams; much larger scaling prefactor due to the inclusion of **selected** higher excitations (still $O(N^6)$)
- Not invariant w.r.t. the choice of the reference determinant (a symmetry distortion can occur, discontinuity)
- Related methods: RMRCCSD (Paldus) uses MRCI; TCCSD (Kinoshita, Bartlett, et al) lacks *P*-*Q* coupling.

D.I. Lyakh, V.V.Ivanov, L. Adamowicz, J. Chem. Phys. 122, 024108 (2005) D.I. Lyakh, V.V.Ivanov, L. Adamowicz, J. Chem. Phys. 128, 074101 (2008)

Automerization of cyclobutadiene

Minimum

Transition State

54 N.S

D.I.Lyakh, V.Lotrich, R.J.Bartlett, Chem. Phys. Lett. 501, 166 (2011)

Problems with SRCC/MRCC ansaetze

- **Chemical reactions**: the structure of the active space can easily change along the PES: SR regions, MR regions \rightarrow necessity of maintaining the largest active space (expensive); the lack of natural reduction to an SR problem.
- The size of the active space affects the computational cost **exponentially**! (CASSCF \rightarrow DMRG, TNS, GCF, GHF).
- Not "black box" enough \rightarrow Lambda-CCSD(T) (Kucharski, Taube, Bartlett), CCSD(TQ) (Bartlett), perturbative CRCC & MMCC (Piecuch et al) methods: except the (2,2) cases, one has an **unbalanced** and **incomplete** treatment of the MR 1st order interaction space; divergence of the perturbation theory (e.g., in N2); **UHF** behaves much better.
- Standard (SRCC/MRCC) methods have a *fixed* form of the correlated ansatz: the complexity of the CC ansatz used often *does not match* the complexity of the electronic state!
	- Poor error control.

Adaptive CC: @CC

Let us further exploit the flexibility of the exponential ansatz, following the ideas from the importance-selected CI:

 $\langle \omega$ CC ansatz: $| \Psi \rangle = e$ $\tilde{\hat{T}}_1 + \tilde{\hat{T}}_2 + ... \tilde{\hat{T}}_m$ $|0\rangle$: No restrictions on *m* and \tilde{T}_k structure!

- Once all important cluster amplitudes are included in the @CC ansatz, all important correlations are accounted for, the problem is solved (SR or MR).
- **Adaptivity**: New (important) amplitudes are gradually added into the @CC ansatz until the convergence of the size-intensive quantity of interest is achieved (complexity matching): naturally reduces to SR when the MR character is lost.
- Given a good discriminatory function (DF), a fast convergence to the Full CI answer can be achieved: proper topological properties of DF.
- No need in active space.
- Each T_k operator becomes **sparse** when using *localized* orbitals (ACCSD of Auer and Nooijen). $\tilde{\hat{T}}_k$
	- For any desired *relative accuracy* in the correlation energy, the number of @CC amplitudes will grow *linearly* with the system size (in a local basis). In contrast, the number of CI coefficients will grow at least *quadratically*!
- Still, @CC can be computationally expensive for some problems.
- Requires a good initial guess for excited states.
- Can have spin contaminations (though controlable). D.I.Lyakh, R.J. Bartlett, J. Chem. Phys. 133, 244112 (2010)

MRCC problems yet to be addressed

- *Very large* model spaces (CASSCF \rightarrow DMRG, TNS, GHF): GWT.
- **Orbital relaxation** for FS-MRCC/MR-EOMCC.
- A**daptivity**: reasonable error control in the method (+basis).
- *Locality* exploitation.
- *Iteration convergence* control.
- *Non-adiabatic* extensions (conical intersections, avoided crossings).
- **Push a button**: Advanced internal logic built-in into an MRCC method which will tune all the internal parameters of the method with respect to the calculated system.
	- *Heterogeneity* of the working equations: Usually, the MRCC equations have much more terms (diagrams), each of which may have very different scaling.
- Efficient (and usable) *parallel* implementation, including the analytical energy *gradients* and molecular properties.

Automated symbolic algebra

- Working equations of advanced quantum many-body methods (e.g., MRCC) can consist of thousands of tensor expressions of significantly varying computational costs.
- <u>Fully automated approach</u>: Formal model \rightarrow Working equations (tensor expressions) \rightarrow factorized equations \rightarrow cost-optimized sequence of elementary tensor operations to $perform \rightarrow parallel code written either in a domain specific$ language (like SIAL in ACESIII) or regular language (Fortran, C), or direct interpretation (in progress now at UF/OSU: hybrid parallelization, optimized data distribution and data processing).

DIAGEN (D.I.L.): (a) arbitrary rank/structure tensors; (b) enhanced support of MR methods, active/inactive indices; (c) non-commutative exponentials; (d) massive parallelism via data locality (in progress).

V.V.Ivanov, D.I.Lyakh, Kharkiv University Bulletin: Chemistry 549, 15 (2002) D.I.Lyakh, V.V.Ivanov, L.Adamowicz, J. Chem. Phys 122, 024108 (2005) D.I.Lyakh, R.J.Bartlett, 50th Sanibel Symposium, Feb 2010.

DIAGEN input

```
<domain name="DIP-EOMCC: active space">
```

```
set H12=ham(1)+ham(2)set P0 = P()set 00 = P(2i + 2j + 1)set Q1=P(3i+;1a-;2J+)
set 02 = P(4i + 2a - 2j + 1)set R0=C(2i-2J-1)set R1=C(3i-;1a+;2J-)set R2=C(4i-2a+2J-1)set R012=C(2i-;2J-)+C(3i-;1a+;2J-)+C(4i-;2a+;2J-)
set T12=S(1i-;1a+)+S(2i-;2a+)
```

```
product Q0*H12*expn(T12,4,8)*R012*P0
connect(2,3)(2,4)
```

```
product Q1*H12*expn(T12,4,8)*R012*P0
connect(2,3)(2,4)
```

```
product Q2*H12*expn(T12,4,8)*R012*P0
connect(2,3)(2,4)
```

```
input H(1i+;1i-)input H(1i+;1a-)input H(1a+;1i-)input H(1a+:1a-)input H(2i+;2i-)input H(2i+;1i-;1a-)input H(2i+;2a-)input H(1i+; 1a+; 2i-)input H(1i+; 1a+; 1i-; 1a-)input H(1i+; 1a+; 2a-)
```
DIAGEN output

(285) 192.3.896:
$$
Z_{I_1^a I_2^a I_1^b}^{A_1^b} = H_{d_1^a, d_2^a}^{l_1^a K_1^a} S_{I_1^a}^{d_2^a} S_{I_2^a}^{d_2^a} C_{I_1^b, l_1^a K_1^a}^{A_1^b} \cdot +1/2
$$

$$
(286) \qquad 198.1.932: Z_{I_1^a I_2^a I_1^b}^{A_1^b} + = H_{d_1^b, d_2^b}^{l_1^b, l_2^b} S_{I_1^b}^{d_1^b} S_{l_1^b}^{d_2^b} C_{I_1^a I_2^a, l_2^b}^{A_1^b} \tag{447}
$$

$$
(287) \qquad 198.2.933: Z_{I_1^a I_2^a I_1^b}^{A_1^b} + = H_{d_1^a, d_1^b}^{l_1^b, l_1^a} S_{I_1^a}^{d_1^a} S_{l_1^b}^{d_1^b} C_{I_2^a I_1^b, l_1^a}^{A_1^b} \tag{448}
$$

$$
(288) \t198.4.935: Z_{I_1^a I_2^a I_1^b}^{A_1^b} + = H_{d_1^b, d_1^a}^{l_1^a, l_1^b} S_{I_1^b}^{d_1^a} S_{I_1^a}^{d_1^a} C_{I_1^a I_2^a, l_1^b}^{A_1^b} \t\t(449)
$$

$$
(289) \qquad 198.5.936: \quad Z_{I_1^a I_2^a I_1^b}^{A_1^b} + = H_{d_1^a, d_2^a}^{l_1^a, l_2^a} S_{I_1^a}^{d_1^a} S_{l_1^a}^{d_2^a} C_{I_2^a I_1^b, l_2^a}^{A_1^b} \tag{450}
$$

$$
(290) \qquad 202.1.946: Z_{I_1^a I_2^a I_1^b}^{A_1^b} + = H_{d_1^a d_1^b}^{l_1^b, K_1^a} S_{l_1^b}^{A_1^b} S_{l_1^a l_1^b}^{d_1^a d_1^b} C_{I_2^a, K_1^a} \tag{451}
$$

$$
I_1^{a_1} I_2^{a_2} = I_1^{a_1} A_1^{a_1} - I_2^{a_2} I_1^{a_1} A_1^{a_1}
$$

325.85.1.1.3.1.0.20333376.09 : $Z_{I_1^{a_1} I_2^{a_2} i_1^{b}}^{l^b} + = H_{i_1^{b_1}, d_1^{a_1}}^{l^b_1, l^a_1} C_{I_1^{a_1} I_2^{a_1} l^a_1^{a_1}}^{l^a} - 1$
821.177.2.1.2.1.0.49593600.07 : $Z_{I_1^{a_1} I_2^{a_2} i_1^{b}}^{l^b} + = S_{i_1^{a_1}}^{d_1^{b_1}} R_{I_1^{a_1} I_2^{a_1} A_1^{b_1}}^{l^b} - 1$.
938.199.1.2.2.2.0.11716488.10 : $R_{I_1^{a_1} i_1^{b_1}}^{l^b_1, K_1^{a_1}} + H_{d_1^{a_1} d_1^{b_1}}^{l^b_1, K_1^{a_1}} S_{I_1^{a_1} i_1^{b_1}}^{d_1^{a_1} d_1^{b_1}}$

324.85.1.1.3.1.0.20333376.09 : $Z_{I_1^a I_2^a i_1^b}^{l_1^b} + = H_{i_1^b, d_1^b}^{l_1^b, l_2^b} C_{I_1^a I_2^a, l_2^b}^{d_1^b} \cdot -1.$

331.86.1.1.2.1.0.10042704.09 : $Z^{l_1^b}$, $Z^{l_2^b}$, $A = H^{l_1^b, K_1^a} C^{d_1^b}$, $A = -1$.

Epoch of massive parallelism

- An increase in computational power is governed by the increasing level of parallelism
- Many new computer architectures include accelerators (GPU, Intel MIC) => non-trivial task-scheduling problem due to heterogeneity of the computer architecture => maximization of the communication/computation overlap (data prefetching)
- For massively parallel computers, a global minimization of MPI communications is vital => exploration of data locality
- For GPUs: not every tensor operation can take advantage
- In progress: Automated parallel MPI/OMP/GPU framework for tensor algebra (Florida UF, Columbus OSU)

Conclusions: Complexity requires complexity

- Many open-shell systems are already accessible by existing MRCC methods $(-10$ open-shell particles)
- Efficient treatment of large active spaces
- Efficient analytical gradients and properties
- Reasonable approximations to reduce the cost
- Locality exploitation
- **Adaptivity**
- Iteration convergence control
- Efficient parallelization

THANK YOU!