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Formal computational problem
● Born-Oppenheimer system:

(a) a set of M fixed nuclei;
(b) N electrons;
(c) external electro-magnetic 
fields;

(d) non-relativistic Hamiltonian
     (not important for this talk).
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Many-particle Hilbert space
● 1-particle basis:

● A tensor-product basis of antisymmetrized N-body functions 
(Slater determinants or independent particle states, IPS):

where      defines an antisymmetrized tensor product:
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Electron Correlation
● Effective 1-body problem: SCF eigenvectors (IPS):

● 2-body (and higher) terms: Inter-particle Correlations:

Dynamic and Non-dynamic (spatial 2-body Coulomb 
term):

Static (proper spin-coupling, other symmetries):

● In general, the antisymmetry requirement mixes both

∣0 〉=∣1r 1∧2r 2∧...∧N  rN  〉≡∣12 ...N 〉

H=∑
k=1

N

h k  , r 1 .. rm=∏
k=1

m≤N

 r k  , 1=∑
k=1

N

∣k 〉 〈 k∣= 1
2

∑
i j

N , N

∣r i−r j∣
−1 or ∑

i j

N , N

∣r i−r j∣
−1−∑

i=1

N

v  r i 

S 2
= S x

2
S y

2
 S z

2
=∑

i , j

N , N

sx i  s x  j ∑
i , j

N , N

s y i  s y  j ∑
i , j

N , N

sz i  sz  j 



  

Correlated wavefunction
● Non-separability of the N-body problem:

                                              :  2-body cumulant!

● In the basis of arbitrary Slater determinants, a 
correlated wavefunction is always multicomponent:
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Strength of the electron correlation
● 2x2 model:                     :

                                        Off-diagonal coupling due to 2-body terms

● State 0:

● State 1:
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Strength of the electron correlation
● Parameter       regulates the strength of the 

electron correlation:       as a function of      :C i1 i2

a1a 2

C0
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Plotted on-line by http://rechneronline.de/function-graphs/



  

Structure of a correlated wavefunction
● Dynamic (weak):

The wavefunction is dominated by only one Slater determinant.

Dispersion effects (fluctuations of the electron charge).

● Non-dynamic/static (moderate or strong):

The wavefunction is dominated by multiple/many Slater 
determinants with similarly large weights (multireference):
<1000 → moderate (current focus), >1000 → strong.

Localization of electrons during bond breaking, interaction 
among closely lying orbitals, spin-coupling. Independent 
particle picture becomes qualitatively wrong!

● Multireference wavefunctions spread more over the Hilbert space

                  Single-reference              Multireference

                         (SR)                                   (MR)

∣/∣≪1

∣/∣~1



  

Multireference problems
● Bond breaking/formation, especially for multiple bonds

● Molecules with open shells (radicals, biradicals)

● Excited electronic states, especially doubly-excited 
electronic states and charge-transfer excitations

● Molecular resonances

● Reaction dynamics involving multiple potential energy 
surfaces (conical intersections and avoided crossings)

● Conjugation in organic molecules and polymers

● Molecules, molecular complexes, and macromolecules 
containing d- and f-transition metals

● Any kind of orbital quasidegeneracy which leads to 
quasidegeneracy of many-particle basis functions (Slater 
determinants)

D.I.Lyakh, M.Musial, V.Lotrich, R.J.Bartlett, Chem. Rev. 112, 182 (2012).



  

N2 molecule triple-bond breaking (separation of two 
N atoms with 3 open-shell electrons on each: CAS(6,6)

D.I.Lyakh, V.V.Ivanov, L.Adamowicz, Mol. Phys. 105, 1335 (2007)

D.I.Lyakh, M.Musial, V.Lotrich, R.J.Bartlett, Chem. Rev. 112, 182 (2012)

UHF-SRCC is better, but still inaccurate in the spin-recoupling region!



  

Wavefunction complexity
● The best case: only one Slater determinant is 

present in the wavefunction (SR)
● The worst case: all Slater determinants have the 

same weights (strong MR)
● Let's use the Shannon entropy to characterize the 

complexity of the wavefunction (needs some 
additional normalization w.r.t. basis set size and N):

V.V.Ivanov, D.I.Lyakh, L.Adamowicz,

Mol. Phys. 103, 2131 (2005)

● The Shannon index is superior to other wavefunction 
diagnostics, like T1 (the latter mostly shows the 
orbital relaxation effects: Thouless theorem)

● The Shannon entropy is also routinely used for the 
1-body density
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Wavefunction VS Density entropy
● The density entropy characterizes the complexity of the 

physical problem (its Full CI value is invariant w.r.t. 
arbitrary orbital rotations)

● The wavefunction entropy characterizes the complexity 
of the computational problem in a given many-particle 
basis set (its Full CI value is not invariant w.r.t. orbital 
rotations):

● The preliminary SCF ”compression” (capturing all mean-
field effects) is mandatory in order to focus solely on the 
complexity of the correlated problem (also Brueckner).

● Separable N-body problem: HF vs Full CI:

● The wavefunction complexity does depend on the Fermi 
vacuum chosen
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SR/MR excitation rank hierarchies
● Supports of SR and MR wavefunctions in the many-particle 

Hilbert space have different structures:

                                   Model space

                            1st-order interaction space

                            2nd-order interaction space

● The minimal number of Slater determinants, required for a 
qualitatively correct description of the many-particle state, 
spans the model space of the problem:

● The essence of any MR method is a quantitatively correct 
construction of the wavefunction in the model and MR 1st-
order interaction spaces (chemical accuracy, 1 kcal/mol):

D.I.Lyakh, M.Musial, V.Lotrich, R.J.Bartlett, Chem. Rev. 112, 182 (2012).
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The beauty of an exponential
● The structure of the exponential wave operator (coupled 

cluster) reflects the direct product structure of the Hilbert 
space spanned by Slater determinants:

● Hole-particle structure of the wavefunction is expressed in 
terms of connected and dicsconnected contributions:

             Collective (cumulative)            Two independent
       double excitation (correlation)       single excitations

● The larger the cluster amplitude, the stronger the 
correlation (coupling) between the corresponding holes and 
particles (in contrast, CI coefficients do not necessarily 
reflect the correlations!)

● Size-extensivity of the energy, fast convergence!
Totally exponential EST: D.I.Lyakh,R.J.Bartlett, Mol. Phys. (under review).
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Multireference methods

Active-space based Active-space free

PT

Hilbert space CCFock space CC

MCSCF, DMRG, TNS, GHF, GCF

State-Universal CC State-Specific CC

Dressed CI CCCI

CASGMS

BWMRCC

MkMRCC

sr-MRCC
MRexpT

SRMRCC

MMCC

Lambda-CC

BCC
MR-EOMCCGVB-CC

ECC

SRCCPT

@CC

RMRCCSDCASCCSD SF-EOMCC

IHFSMRCC

MI/MA-MRCC

CTCC

icMRCC

TCCSD

(N,M)-CCSD CASSUMRCC

GMSSUMRCC

MRCI ISCI

MRAQCC



  

Active orbital space 
● Strongly coupled orbitals, which are essential for 

reproducing the principal character of the calculated state,
form the Active Orbital Space (AOS).

All distributions of n active electrons on m active orbitals: CAS(n,m)



  

MR diagnostics & selection of the active space
● SR normal-ordered Hamiltonian (SCF energy shifted):

● Run a preliminary SR calculation of SD level (CISD/CCSD), then 
analyze the complexity of the wavefunction obtained:

● If the Shannon index exceeds some threshold, determine the 
active orbital space:

1) The importance of the orbital p1 in the CISD wavefunction:

2) OR Compute and diagonalize the 1-RDM: Occupation Numbers
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CAS state-universal HS-MRCC
● N-electron reference wavefunction (0th order):

● Jeziorski-Monkhorst wave operator:

● D N-electron states are obtained simultaneously

● The WF does not satisfy the projected SE:

● Intruder state problem: severe convergence problems

● Not invariant to active orbital rotations

● Does not naturally reduce to an SR method
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Solutions to the Intruder State Problem
● Incomplete and general model spaces: Mukherjee, Pal, 

Meissner, Kucharski, Bartlett, Paldus: different GMS-SU-
MRCC: the issue of size-consistency

● State-specific approaches: one state at a time:

● Underdefined problem: Sufficiency conditions (Mukherjee): 
Different ways of resolving redundancy:

1) BW-MRCC: only moderate MR, not size-extensive;

2) Mk-MRCC: only moderate MR, poor for excited states;

3) sr-MRCC: only moderate MR, poor for excited states;

4) MRexpT (Hanrath): accurate, but only core-extensive.

● All, except MRexpT, do not satisfy the projected SE:
triples become essential → higher cost.

● Yet, all do not naturally reduce to an SR case.
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Internally-contracted MRCC
● A single exponential acts on the entire MR reference function as 

a whole:

● Invariance w.r.t. active orbital rotations.

● SE is satisfied in P+Q.

● Non-commuting cluster operators: longer BCH expansion: much 
more diagrams.

● Overparameterized ansatz → SVD.

● The working equations make use of the GWT.

● Mukherjee/Koehn: ic-MRCC: chemically accurate, possible SVD 
dependence and convergence issues.

● Chan, Yanai: CTCC (anti-hermitian cluster operator):
much larger active spaces are accesible via DMRG; necessary 
BCH truncation and density cumulant use; possible SVD 
dependence and convergence issues.
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Fock-space MRCC
● FS = Union of HS with different numbers of particles (sectors of 

the FS): ionization, attachment, excited states...
● Valence-universal wave operator:

● Full separability (inter-sector) of the FSMRCC wave operator
● Different components of S do not commute → impose normal 

ordering w.r.t. to some Slater determinant (Lindgren)
● SEC and valence-universal hierarchical solver: difficulty in getting 

to higher sectors: Rapidly growing number of diagrams:

● T captures global correlations; S delivers local corrections
● Invariant to active orbital rotations
● Orbital relaxation effects become important for higher sectors
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Systematic decoupling in the Hamiltonian
● Stolarzcyk & Monkhorst: consecutive SU-FSMRCC 

similarity transformations (a generalization of SRCC):
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Intermediate Hamiltonian FSMRCC
● FSMRCC Bloch equation is also plagued by intruders!

● Malrieu → Mukherjee | Kaldor, Eliav | Meissner, Musial, Bartlett: 
three Intermediate Hamiltonian formalisms.

● The elegant Meissner's scheme (Musial, Bartlett):

● Meissner's IHFSMRCC is equivalent to FSMRCC, but without 
convergence problems (non-linear solver → diagonalization)!

● The IHFSMRCC Hamiltonian is the EOMCC Hamiltonian + 
specific Dressing term which depends on the FSMRCC cluster 
amplitudes from preceding sectors.

● Also EOMCCx (Musial, Bartlett); STEOM (Nooijen, Bartlett).
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EOM based MRCC
● MR-MI/MA-EOMCC scheme of Bartlett & Musial:

Higher excitations can be required in the EOM CI operator.

● Also SF-EOMCC scheme of Krylov et al.

● pIC-MR-EOMCC scheme of Nooijen et al:

● All above: assumption on the transferability of the electron 
correlation. Orbital relaxtion effects (similar to FSMRCC).

● Multiple electronic states can be accessed simultaneously.

|〉= Re
T | 0 〉

|〉= Re
T |〉



  

Alternative CAS/GMS MRCC schemes
● Single-reference based MRCC (SRMRCC):

● CASCCSD (Ivanov, Lyakh, Adamowicz): all singles and 
doubles from a multidimensional reference function       :

● Chemical accuracy in many severe cases (N2, C2)

● Much more diagrams; much larger scaling prefactor due to 
the inclusion of selected higher excitations (still O(N^6))

● Not invariant w.r.t. the choice of the reference determinant 
(a symmetry distortion can occur, discontinuity)

● Related methods: RMRCCSD (Paldus) uses MRCI;
TCCSD (Kinoshita, Bartlett, et al) lacks P-Q coupling.

∣ 〉= ∣MR 〉=exp  T 1 T 2
T 3... T m∣0 〉

∣MR 〉

∣ 〉= ∣MR 〉=exp  T ' 1 T ' 2 T ' 3... T 'm 1 C1
C 2

C 3... Cm ∣0 〉

D.I. Lyakh, V.V.Ivanov, L. Adamowicz, J. Chem. Phys. 122, 024108 (2005)
D.I. Lyakh, V.V.Ivanov, L. Adamowicz, J. Chem. Phys. 128, 074101 (2008)

Constructing the same MR wavefunction,
but starting from a single Slater determinant
(Oliphant & Adamowicz)



  

Automerization of cyclobutadiene

Method Barrier

CCSD 23.2

CCSD(T) 18.3

Mk-MRCCSD(T) 8.9

SU-MRCCSD(T) 5.9

TCCSD(T) 7.0

Experiment 1.6-10.0

D.I.Lyakh, V.Lotrich, R.J.Bartlett, Chem. Phys. Lett. 501, 166 (2011)



  

Problems with SRCC/MRCC ansaetze
● Chemical reactions: the structure of the active space can 

easily change along the PES: SR regions, MR regions → 
necessity of maintaining the largest active space (expensive);
the lack of natural reduction to an SR problem.

● The size of the active space affects the computational cost 
exponentially! (CASSCF → DMRG, TNS, GCF, GHF).

● Not ”black box” enough → Lambda-CCSD(T) (Kucharski, Taube, 
Bartlett), CCSD(TQ) (Bartlett), perturbative CRCC & MMCC 
(Piecuch et al) methods: except the (2,2) cases, one has an 
unbalanced and incomplete treatment of the MR 1st order 
interaction space; divergence of the perturbation theory (e.g., in 
N2); UHF behaves much better.

● Standard (SRCC/MRCC) methods have a fixed form of the 
correlated ansatz: the complexity of the CC ansatz used often 
does not match the complexity of the electronic state!

● Poor error control.



  

Adaptive CC: @CC
● Let us further exploit the flexibility of the exponential ansatz, following the 

ideas from the importance-selected CI:

● Once all important cluster amplitudes are included in the @CC ansatz, all 
important correlations are accounted for, the problem is solved (SR or MR).

● Adaptivity: New (important) amplitudes are gradually added into the @CC 
ansatz until the convergence of the size-intensive quantity of interest is 
achieved (complexity matching): naturally reduces to SR when the MR 
character is lost.

● Given a good discriminatory function (DF), a fast convergence to the Full CI 
answer can be achieved: proper topological properties of DF.

● No need in active space.
● Each     operator becomes sparse when using localized orbitals (ACCSD of 

Auer and Nooijen).
● For any desired relative accuracy in the correlation energy, the number of 

@CC amplitudes will grow linearly with the system size (in a local basis). In 
contrast, the number of CI coefficients will grow at least quadratically!

● Still, @CC can be computationally expensive for some problems.
● Requires a good initial guess for excited states.
● Can have spin contaminations (though controlable).

@CC ansatz:  |〉=e
T 1

T 2... T m | 0 〉 : No restrictions on m  and T k structure!

D.I.Lyakh, R.J. Bartlett, J. Chem. Phys. 133, 244112 (2010)

T k



  

MRCC problems yet to be addressed
● Very large model spaces (CASSCF → DMRG, TNS, GHF): GWT.

● Orbital relaxation for FS-MRCC/MR-EOMCC.

● Adaptivity: reasonable error control in the method (+basis).

● Locality exploitation.

● Iteration convergence control.

● Non-adiabatic extensions (conical intersections, avoided 
crossings).

● Push a button: Advanced internal logic built-in into an MRCC 
method which will tune all the internal parameters of the method 
with respect to the calculated system.

● Heterogeneity of the working equations: Usually, the MRCC 
equations have much more terms (diagrams), each of which may 
have very different scaling.

● Efficient (and usable) parallel implementation, including the 
analytical energy gradients and molecular properties.



  

Automated symbolic algebra
● Working equations of advanced quantum many-body 

methods (e.g., MRCC) can consist of thousands of tensor 
expressions of significantly varying computational costs.

● Fully automated approach: Formal model → Working 
equations (tensor expressions) → factorized equations → 
cost-optimized sequence of elementary tensor operations to 
perform → parallel code written either in a domain specific 
language (like SIAL in ACESIII) or regular language 
(Fortran, C), or direct interpretation (in progress now at 
UF/OSU: hybrid parallelization, optimized data distribution 
and data processing).

● DIAGEN (D.I.L.): (a) arbitrary rank/structure tensors; 
(b) enhanced support of MR methods, active/inactive 
indices; (c) non-commutative exponentials; (d) massive 
parallelism via data locality (in progress).
V.V.Ivanov, D.I.Lyakh, Kharkiv University Bulletin: Chemistry 549, 15 (2002)
D.I.Lyakh, V.V.Ivanov, L.Adamowicz, J. Chem. Phys 122, 024108 (2005)
D.I.Lyakh, R.J.Bartlett, 50th Sanibel Symposium, Feb 2010.



  

DIAGEN input



  

DIAGEN output



  

Epoch of massive parallelism
● An increase in computational power is governed by the 

increasing level of parallelism

● Many new computer architectures include accelerators 
(GPU, Intel MIC) => non-trivial task-scheduling problem 
due to heterogeneity of the computer architecture => 
maximization of the communication/computation overlap 
(data prefetching)

● For massively parallel computers, a global minimization of 
MPI communications is vital => exploration of data 
locality

● For GPUs: not every tensor operation can take advantage

● In progress: Automated parallel MPI/OMP/GPU framework 
for tensor algebra (Florida UF, Columbus OSU)



  

Conclusions:
Complexity requires complexity

● Many open-shell systems are already accessible by 
existing MRCC methods (~10 open-shell particles)

● Efficient treatment of large active spaces

● Efficient analytical gradients and properties

● Reasonable approximations to reduce the cost

● Locality exploitation

● Adaptivity

● Iteration convergence control

● Efficient parallelization



  

THANK YOU!
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