Chiral nuclear forces: explicit Δ scenario

Hermann Krebs

Ruhr-Universität-Bochum

Computational and Theoretical Advances for Exotic Isotopes in the Medium Mass Region March 25, 2013, INT Program INT-13-1a, Seattle

With V. Bernard, E. Epelbaum, A. Gasparyan, U.-G. Meißner

Outline

- Nuclear forces in chiral EFT
- Role of Δ(1232) resonance
- Long-range part of three-nucleon forces up to N⁴LO
- N³LO-Δ vs. N⁴LO Δ-less
- Summary & Outlook

Nucleon-Nucleon forces

Phenomenological description by meson-exchange

- QCD Interpretation of NN forces
- NN force as residual strong interaction between hadrons

Boson-Exchange models as basis for NN-force
 Highly sophisticated phen. NN potentials
 Excellent description of many experimental data
 Connection to QCD is unclear

Chiral EFT Interpretation of NN forces

- Model independent treatment
- At low energies NN force dominated by Goldstone Boson dynamics + short range int.
- Systematic perturbative description of few nucleon potentials
- Underlying QCD symmetries implemented by construction

From QCD to nuclear physics

NN interaction is strong: resummations/nonperturbative methods needed

 $> 1/m_N$ - expansion: nonrelativistic problem ($|\vec{p_i}| \sim M_\pi \ll m_N$) \implies the QM A-body problem

$$\left[\left(\sum_{i=1}^{A}\frac{-\vec{\nabla}_{i}^{2}}{2m_{N}}+\mathcal{O}(m_{N}^{-3})\right)+\underbrace{V_{2N}+V_{3N}+V_{4N}+\ldots}_{\textit{derived within ChPT}}\right]|\Psi\rangle=E|\Psi\rangle \quad \text{Weinberg '91}$$

- unified description of $\pi\pi$, πN and NN
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei

Nucleon-nucleon force up to N³LO

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; Epelbaum et al. '98, '03; Kaiser '99-'01; Higa et al. '03; ...

+ 1/m and isospin-breaking corrections...

How to renormalize the Schrödinger Eq?

owest-order NN potential:
$$V_{2\mathrm{N}}^{(0)} = -\frac{g_A^2}{4F_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \frac{\vec{\sigma}_1 \cdot \vec{q} \ \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} + C_S + C_T \vec{\sigma}_1 \cdot \vec{\sigma}_2$$

Complication: iterations of the LS equation

L

$$T(\vec{p}',\vec{p}) = V_{2N}^{(0)}(\vec{p}',\vec{p}) + \int \frac{d^3k}{(2\pi)^3} V_{2N}^{(0)}(\vec{p}',\vec{k}) \frac{m_N}{p^2 - k^2 + i\epsilon} T(\vec{k},\vec{p})$$

generate divergences whose subtraction requires infinitely many CTs beyond $V_{2\rm N}^{(0)}$

Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, Epelbaum, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia, ...

→ use a **finite** cutoff (practical solution)

A new, renormalizable approach (yet to be explored...) Epelbaum, Gegelia '12

non-renormalizability of the LO equation is an artifact of the nonrelativistic expansion

renormalizable LO equation based on manifestly Lorentz-invariant Lagrangian

$$T(\vec{p}',\vec{p}) = V_{2N}^{(0)}(\vec{p}',\vec{p}) + \frac{m_N^2}{2} \int \frac{d^3k}{(2\pi)^3} \frac{V_{2N}^{(0)}(\vec{p}',\vec{k}) T(\vec{k},\vec{p})}{(k^2 + m_N^2) \left(E - \sqrt{k^2 + m_N^2} + i \epsilon\right)}$$

higher-order corrections (e.g. two-pion exchange) to be treated perturbatively in progress...

Neutron-proton phase shifts at N³LO

Entem, Machleidt '04; Epelbaum, Glöckle, Meißner '05

Chiral expansion of NN force

Epelbaum, Meißner Ann. Rev. Nucl. Part. Sci 62 (12) 159

$$\tilde{V}(\vec{r}) = \tilde{V}_C + \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \tilde{W}_C + \left[\tilde{V}_S + \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \tilde{W}_S\right] \vec{\sigma}_1 \cdot \vec{\sigma}_2 \\
+ \left[\tilde{V}_T + \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \tilde{W}_T\right] (3 \vec{\sigma}_1 \cdot \hat{r} \vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

Bands (800 MeV $\leq \tilde{\Lambda}$) visualize estimated scheme-dependence for separation between short- and long-range contributions

Long-range behavior at $r \ge 2 \text{ fm}$ of \tilde{W}_T is governed by 1π -exchange

 \bigvee V_C is governed by subleading 2π -exchange

Short-range part of the NN force is scheme-dependent (parametrization)

- Long-range part is scheme-independent and is predicted by chiral EFT
- Sonvergence of chiral expansion is clarified in a theory with explicit $\Delta(1232)$

Convergence of EFT potential

The subleading contributions are larger than the leading one!

Few-nucleon forces with the Delta

Isospin-symmetric contributions

	Two-nuc	eleon force	Three-nucleon forc			
	∆–less EFT	∆ -contributions	riangle -less EFT	△-contributions		
LO	+ X					
NLO	<pre>kd kd k</pre>	$\begin{vmatrix} < \downarrow \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		↓ ↓↓		
NNLO	♦ << ↓	Image: square squar	X			

NN potential with explicit Δ Epelbaum, H.K., Meißner, Eur. Phys. J. A32 (2007) 127

 $V_{\text{eff}} = V_C + W_C \vec{\tau}_1 \cdot \vec{\tau}_2 + [V_S + W_S \vec{\tau}_1 \cdot \vec{\tau}_2] \vec{\sigma}_1 \cdot \vec{\sigma}_2 + [V_T + W_T \vec{\tau}_1 \cdot \vec{\tau}_2] (3 \vec{\sigma}_1 \cdot \hat{r} \vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2)$

Much better convergence in all potentials

$^{3}F_{3}$ partial waves up to NNLO with and without Δ

(calculated in the first Born approximation)

Nuclear forces up to N³LO

dimensional analysis counting

Three-nucleon forces

Three-nucleon forces in chiral EFT start to contribute at N²LO

(Friar & Coon ´86; U. van Kolck ´94; Epelbaum et al. ´02; Nogga et al. ´05; Navratil et al. ´07)

 $c_{1,3,4}$ from the fit to πN -scattering data

D, *E* from ${}^{3}H, {}^{4}He, {}^{10}B$ binding energy + coherent *nd* - scattering length

LECs D and E incorporate short-range contr.

Resonance saturation interpretation of LECs

Delta contributions encoded in LECs (Bernard, Kaiser & Meißner '97)

$$c_3 = -2c_4 = c_3(\cancel{A}) - \boxed{\frac{4h_A^2}{9\Delta}}$$

Enlargement due to Delta contribution

polarization transfer: $E_p^{\text{Lab}} = 22.7 \text{ MeV}$

For references see recent reviews:

Epelbaum, Prog. Part Nucl. Phys. 57 (06) 654 Epelbaum, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773 Entem, Machleidt, Phys. Rept. 503 (11) 1 Epelbaum, Meißner, Ann. Rev. Nucl. Part. Sci. 62 (12) 159 Kalantar et al. Rep. Prog. Phys. 75 (12) 016301

- Generally good description of data. But some discrepancies survive. E.g. break-up observables for SCRE/SST configuration at low energy
- Hope for improvement at N³LO

Proton-³He elastic scattering

Viviani, Girlanda, Kievsky, Marcucci, Rosati arXiv: 1004.1306

p-³He differential cross section at low energies

proton vector analyzing power Ay-puzzle

As in n-d scattering case N^2LO 3NF's are not enough to resolve underprediction of A_y

Hope for improvement at higher orders

Three-nucleon forces

Three-nucleon forces at N³LO

Long range contributions

Bernard, Epelbaum, HK, Meißner ´08; Ishikawa, Robilotta ´07

- No additional free parameters
- \checkmark Expressed in terms of g_A, F_π, M_π
- Rich isospin-spin-orbit structure
- $\Delta(1232)$ -contr. are important

Shorter range contributions

Bernard, Epelbaum, HK, Meißner ´11

- LECs needed for shorter range contr. $g_A, F_{\pi}, M_{\pi}, C_T$
- Central NN contact interaction does not contribute
- Unique expressions in the static limit for a renormalizable 3NF

N³LO - contr. (leading 1 loop)

$$\begin{aligned} \mathcal{A}^{(4)}(q_2) &= \frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(2M_\pi^4 + 5M_\pi^2 q_2^2 + 2q_2^4 \right) + \left(4g_A^2 + 1 \right) M_\pi^3 + 2 \left(g_A^2 + 1 \right) M_\pi q_2^2 \Big] \,, \\ \mathcal{B}^{(4)}(q_2) &= -\frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(4M_\pi^2 + q_2^2 \right) + \left(2g_A^2 + 1 \right) M_\pi \Big] \begin{array}{l} \text{Ishikawa, Robilotta `07,} \\ \text{Bernard, Epelbaum, HK, Meißner `07} \\ \end{aligned}$$

No unknown parameters at this order

Severything is expressed in terms of loop function $A(q) = \frac{1}{2q} \arctan \frac{q}{2M_{\pi}}$

Additional unitarity transformations required for proper renormalization

N⁴LO - contr. (subleading 1 loop) Epelbaum, Gasparyan, HK, [^]12

 C_i 's LECs from $\mathcal{L}_{\pi N}^{(2)}$, d_i 's LECs from $\mathcal{L}_{\pi N}^{(3)}$, e_i 's LECs from $\mathcal{L}_{\pi N}^{(4)}$: fitted to πN - scattering data

 \blacksquare Leading Δ - contributions are taken into account through C_i 's

Solutions 1/m - contributions at this order

Two-pion-exchange 3NF at N⁴LO

$$\begin{aligned} \mathcal{A}^{(5)}(q_{2}) &= \frac{g_{A}}{4608\pi^{2}F_{\pi}^{6}} \Big[M_{\pi}^{2}q_{2}^{2} \big(F_{\pi}^{2} \left(2304\pi^{2}g_{A} \left(4\bar{e}_{14} + 2\bar{e}_{19} - \bar{e}_{22} - \bar{e}_{36} \right) - 2304\pi^{2}\bar{d}_{18}c_{3} \big) \\ &+ g_{A} \left(144c_{1} - 53c_{2} - 90c_{3} \right) \big) + M_{\pi}^{4} \left(F_{\pi}^{2} \left(4608\pi^{2}\bar{d}_{18}(2c_{1} - c_{3}) + 4608\pi^{2}g_{A} \left(2\bar{e}_{14} + 2\bar{e}_{19} - \bar{e}_{36} - 4\bar{e}_{38} \right) \right) \\ &+ g_{A} \left(72 \left(64\pi^{2}\bar{l}_{3} + 1 \right) c_{1} - 24c_{2} - 36c_{3} \right) \big) + q_{2}^{4} \left(2304\pi^{2}\bar{e}_{14}F_{\pi}^{2}g_{A} - 2g_{A}(5c_{2} + 18c_{3}) \right) \Big] \\ &- \frac{g_{A}^{2}}{768\pi^{2}F_{\pi}^{6}} L(q_{2}) \left(M_{\pi}^{2} + 2q_{2}^{2} \right) \left(4M_{\pi}^{2}(6c_{1} - c_{2} - 3c_{3}) + q_{2}^{2}(-c_{2} - 6c_{3}) \right) \\ \mathcal{B}^{(5)}(q_{2}) &= -\frac{g_{A}}{2304\pi^{2}F_{\pi}^{6}} \Big[M_{\pi}^{2} \left(F_{\pi}^{2} \left(1152\pi^{2}\bar{d}_{18}c_{4} - 1152\pi^{2}g_{A} \left(2\bar{e}_{17} + 2\bar{e}_{21} - \bar{e}_{37} \right) \right) + 108g_{A}^{3}c_{4} + 24g_{A}c_{4} \right) \\ &+ q_{2}^{2} \left(5g_{A}c_{4} - 1152\pi^{2}\bar{e}_{17}F_{\pi}^{2}g_{A} \right) \Big] + \frac{g_{A}^{2}c_{4}}{384\pi^{2}F_{\pi}^{6}} L(q_{2}) \left(4M_{\pi}^{2} + q_{2}^{2} \right) \end{aligned}$$

Some LECs can be absorbed by shifting c_i 's

 $c_1 \rightarrow c_1 - 2M_\pi^2 \left(\bar{e}_{22} - 4\bar{e}_{38} + \frac{\bar{l}_3 c_1}{F_\pi^2} \right)$

 $c_3 \rightarrow c_3 + 4M_{\pi}^2 \left(2\bar{e}_{19} - \bar{e}_{22} - \bar{e}_{36}\right)$

 $c_4 \rightarrow c_4 + 4M_{\pi}^2 (2\bar{e}_{21} - \bar{e}_{37})$

$$L(q) = \frac{\sqrt{q^2 + 4M_\pi^2}}{q} \log \frac{\sqrt{q^2 + 4M_\pi^2} + q}{2M_\pi}$$

No
$$d_i$$
 dependence of TPE-contr.
besides d_{18}

 $g_{\pi NN} = \frac{g_A m}{F_{\pi}} \left(1 - \frac{2M_{\pi}^2 \bar{d}_{18}}{g_A} \right) \Leftarrow$ Violation of Goldberger-Treiman relation

Two-pion-exchange at N⁴LO

Fettes, Meißner ´00; Epelbaum, Gasparyan, HK, ´12 KH ð [degree] 10 A $[M_{\pi}^{-3}]$ -5 **S**₃₁ -2 -10 0 N2LO 200 50 150 200 -3 150 0 100 150 20050 100 0 50 30 N3LO ð [degree] -4 N4LO P₃₃ 15 -5 100 150 200 50 100 150 200 50 100 150 200 $[0]{0}$ 0 50 0 ð [degree] 0.08 0.2 0.2 0.5 D₁₃ D₁₅ D₃₃ 0.040.1 $[M_{\pi}^{-5}]$ 0.4 0 200 150 150 200 150 50 100 200 50 100 0 50 100 0 0 0.3 0 p_{Lab} [MeV/c] p_{Lab} [MeV/c] р 0.2 D₃₅ -0.1 Data fitted for 0.1 $p_{Lab} < 150 \, MeV$ -0.2 100 150 200 50 0 p_{Lab} [MeV/c] 50 100 150 200 250 300 0

Karlsruhe-Helsinki (KH) PWA: R. Koch Nucl. Phys. A 448 (1986) 707

 q_2 [MeV]

Similar fit to George-Washington (GW) PWA: Arndt et al. Phys. Rev. C 74 (2006) 045205

	c_1	c_2	C_3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
GW-fit	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.80	1.76	-0.58	0.96
KH-fit	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26

No dependence on d_i 's e_i 's are of natural size
Good convergence of TPE 3NF

22

Most general structure of a local 3NF

Epelbaum, Gasparyan, HK, arXiv: 1302.2872

Up to N⁴LO, the computed contributions are local \longrightarrow it is natural to switch to r-space. A meaningful comparison requires a complete set of independent operators

 $\tilde{\mathcal{G}}_1 = 1$, $ilde{\mathcal{G}}_2 \;=\; oldsymbol{ au}_1 \cdot oldsymbol{ au}_3 \,,$ $\tilde{\mathcal{G}}_3 = \vec{\sigma}_1 \cdot \vec{\sigma}_3 \,,$ $ilde{\mathcal{G}}_4 \;=\; oldsymbol{ au}_1 \cdot oldsymbol{ au}_3 \, ec{\sigma}_1 \cdot ec{\sigma}_3 \, ,$ $ilde{\mathcal{G}}_5 = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 \, ec{\sigma}_1 \cdot ec{\sigma}_2 \, ,$ $ilde{\mathcal{G}}_6 \;=\; oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) \, ec{\sigma}_1 \cdot (ec{\sigma}_2 imes ec{\sigma}_3) \, ,$ $\tilde{\mathcal{G}}_7 = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_2 \cdot (\hat{r}_{12} \times \hat{r}_{23}) \,,$ $\tilde{\mathcal{G}}_{8} = \hat{r}_{23} \cdot \vec{\sigma}_{1} \, \hat{r}_{23} \cdot \vec{\sigma}_{3} \, ,$ $\tilde{\mathcal{G}}_9 = \hat{r}_{23} \cdot \vec{\sigma}_3 \, \hat{r}_{12} \cdot \vec{\sigma}_1 \, ,$ $\hat{\mathcal{G}}_{10} = \hat{r}_{23} \cdot \vec{\sigma}_1 \, \hat{r}_{12} \cdot \vec{\sigma}_3 \, ,$ $\tilde{\mathcal{G}}_{11} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{23} \cdot \vec{\sigma}_1 \, \hat{r}_{23} \cdot \vec{\sigma}_2 \,,$ $\tilde{\mathcal{G}}_{12} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{23} \cdot \vec{\sigma}_1 \, \hat{r}_{12} \cdot \vec{\sigma}_2 \,,$ $\tilde{\mathcal{G}}_{13} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{12} \cdot \vec{\sigma}_1 \, \hat{r}_{23} \cdot \vec{\sigma}_2 \,,$ $\tilde{\mathcal{G}}_{14} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{12} \cdot \vec{\sigma}_1 \, \hat{r}_{12} \cdot \vec{\sigma}_2 \,,$ $\tilde{\mathcal{G}}_{15} = \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{13} \cdot \vec{\sigma}_1 \, \hat{r}_{13} \cdot \vec{\sigma}_3 \,,$ $\hat{\mathcal{G}}_{16} = \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3 \, \hat{r}_{12} \cdot \vec{\sigma}_2 \, \hat{r}_{12} \cdot \vec{\sigma}_3 \, ,$ $ilde{\mathcal{G}}_{17} \;=\; m{ au}_1 \cdot m{ au}_3 \, \hat{r}_{23} \cdot m{ au}_1 \, \hat{r}_{12} \cdot m{ au}_3 \,,$ $\tilde{\mathcal{G}}_{18} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_1 \cdot \vec{\sigma}_3 \, \vec{\sigma}_2 \cdot (\hat{r}_{12} \times \hat{r}_{23}) \,,$ $\tilde{\mathcal{G}}_{19} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_3 \cdot \hat{r}_{23} \, \hat{r}_{23} \cdot (\vec{\sigma}_1 \times \vec{\sigma}_2) \,,$ $\tilde{\mathcal{G}}_{20} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_1 \cdot \hat{r}_{23} \, \vec{\sigma}_2 \cdot \hat{r}_{23} \, \vec{\sigma}_3 \cdot (\hat{r}_{12} \times \hat{r}_{23}) \, ,$ $\tilde{\mathcal{G}}_{21} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_1 \cdot \hat{r}_{13} \, \vec{\sigma}_3 \cdot \hat{r}_{13} \, \vec{\sigma}_2 \cdot (\hat{r}_{12} \times \hat{r}_{23}) \,,$ $\tilde{\mathcal{G}}_{22} = \boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \times \boldsymbol{\tau}_3) \, \vec{\sigma}_1 \cdot \hat{r}_{23} \, \vec{\sigma}_3 \cdot \hat{r}_{12} \, \vec{\sigma}_2 \cdot (\hat{r}_{12} \times \hat{r}_{23}) \, ,$

Building blocks:

 $\boldsymbol{ au}_1, \ \boldsymbol{ au}_2, \ \boldsymbol{ au}_3, \ ec{\sigma}_1, \ ec{\sigma}_2, \ ec{\sigma}_3, \ ec{r}_{12}, \ ec{r}_{23}$

Constraints:

Locality

🧢 Isospin symmetry

Parity and time-reversal invariance

derivable in ChPT; long-range terms parameter-free predictions

Two-pion-exchange up to N⁴LO

Epelbaum, Gasparyan, HK, arXiv: 1302.2872

Excellent convergence of TPE-force at distance $r \ge 2 \text{ fm}$

Two-pion-one-pion-exchange up to N⁴LO

Epelbaum, Gasparyan, HK, arXiv: 1302.2872

In nearly all cases subleading N⁴LO dominate leading N³LO contributions

Convergence of chiral expansion? Clarification in ChPT with explicit Δ 's

Ring-topology up to N⁴LO

Epelbaum, Gasparyan, HK, arXiv: 1302.2872

Comparison with NN force

Epelbaum, Meißner Ann. Rev. Nucl. Part. Sci 62 (12) 159

$$\tilde{V}(\vec{r}) = \tilde{V}_C + \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \tilde{W}_C + \left[\tilde{V}_S + \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \tilde{W}_S\right] \vec{\sigma}_1 \cdot \vec{\sigma}_2
+ \left[\tilde{V}_T + \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \tilde{W}_T\right] (3 \vec{\sigma}_1 \cdot \hat{r} \vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

Bands (800 MeV $\leq \tilde{\Lambda}$) visualize estimated scheme-dependence for separation between short- and long-range contributions

Long-range behavior at $r \ge 2 \text{ fm}$ of \tilde{W} -is governed by 1π eveloped

 $\bigvee_{T} W_{T}$ is governed by 1π -exchange

 \bigvee V_C is governed by subleading 2π -exchange

Size of various dominant contributions at $r=2\,\mathrm{fm}$

NN	$2\pi - 3NF$	$2\pi - 1\pi - 3\mathrm{NF}$	ring-3NF
$\sim 3 \dots 4 \text{ MeV}$	$\sim 0.7 \dots 1 \mathrm{MeV}$	$\sim 50 \text{ keV}$	$\sim 70 \text{ keV}$

Long-range 3NFs are considerably weaker than NN forces, but not negligible!

Small scale expansion of 3NF

Pion-nucleon scattering

Heavy baryon SSE calculation up to ε^3 : Fettes & Meißner ´01; Epelbaum, Gasparyan, HK, in preparation

Karlsruhe-Helsinki (KH) PWA: R. Koch Nucl. Phys. A 448 (1986) 707

N³LO-∆

	c_1	c_2	C_3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$
GW-fit	-1.70	1.19	-3.52	1.85	0.10	-1.26	0.71	-1.17
KH-fit	-1.41	1.40	-3.43	1.80	0.45	-2.36	1.43	-2.18

Δ-less N⁴LO

Ī	c_1	c_2	C_3	c_4	$\overline{d}_1 + \overline{d}_2$	\overline{d}_3	\overline{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\overline{e}_{18}
GW-fit	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.80	1.76	-0.58	0.96
KH-fit	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26

Similar results for TPE-3NF in N³LO- Δ and N⁴LO Δ -less approaches

We expect small explicit-∆ N⁴LO contributions to two-pion-exchange 3NF

Two-pion-exchange up to N⁴LO

Epelbaum, Gasparyan, HK, in preparation

 $\Delta\text{-less}$ and $\Delta\text{-full}$ approaches for TPE-force compared

similar results if contributions are sizeable

slightly different results if contributions are smaller

Two-pion-one-pion-exchange 3NF

Bands indicate physics which is not described by explicit Δ -contributions

Two-pion-one-pion-exchange 3NF

N³LO nucleon-contributions are of smaller size

Dominant effects come from N³LO Δ -/N⁴LO-contr. in Δ -full/ Δ -less approach

Ring - 3NFs

Narrow bands

➡ Higher order contributions beyond ∆ are small

Strong central isoscalar 3NF due to double-Δ excitation

Two different cases:

- Δ-resonance saturation contribution to a given F_i is sizable
 - N3LO-Δ and N4LO-Δ-less results are similar
- 2) Δ-resonance saturation contribution to a given F_i is negligible
 - N3LO-Δ and N4LO-Δ-less results deviate

Explicit- Δ approach is more efficient!

34

Partial wave decomposition Golak et al. Eur. Phys. J. A 43 (2010) 241 Faddeev equation is solved in the partial wave basis $|p,q,\alpha\rangle \equiv |pq(ls)j(\lambda\frac{1}{2})I(jI)JM_J\rangle |(t\frac{1}{2})TM_T\rangle$ Too many terms for doing PWD by hand _____ Automatization $\underbrace{\langle p'q'\alpha'|V|pq\alpha\rangle}_{\text{matrix}} = \int \underbrace{d\hat{p}'\,d\hat{q}'\,d\hat{p}\,d\hat{q}}_{\text{m}_{l},\dots} \left(\text{CG coeffs.}\right) \left(Y_{l,m_{l}}(\hat{p})\,Y_{l',m_{l}'}(\hat{p}')\,\dots\right) \underbrace{\langle m_{s_{1}}'m_{s_{2}}'m_{s_{3}}'|V|m_{s_{1}}m_{s_{2}}m_{s_{3}}\rangle}_{\text{can be reduced}}$ depends on spin & isospin to 5 dim. integral Ring-diagram-contr. expensive to calculate on the fly We prestore ring-contr. to 3nf's Numerical interpolation on a fine momentum grid of ring terms

PWD matrix-elements can be used to produce matrix-elements in harmonic oscillator basis see talk by Kai Hebeler & Angelo Calci

Straightforward implementation of high order 3nf's in many-body calc. within No-Core Shell Model

Ay-puzzle in elastic nd scattering

Witala et al. Proceedings of Few Body 20

Right panel: X = N³LO NN + N²LO 3NF + N³LO 3NF (1 π -cont.) + N³LO 3NF (cont.) = X + N³LO 3NF (2 π -exch.)

= X + N³LO 3NF (2π-exch. & 2π-1π-exch.)

 $= X + N^{3}LO 3NF (2\pi-exch. \& 2\pi-1\pi-exch. \& ring)$

Incomplete results: N³LO 3NF (2π -cont. & 1/m-corr.) are missing

- Long-range part of 3NFs is analyzed up to N⁴LO Δ -less/N³LO- Δ
 - Chiral expansion of TPE-3NF seems to be converged
 - TPE-3NF dominates 3NF but does not fill all 22 structures
 - Sizeable contr. are similar for 2π-1π-3NF in N⁴LO Δ-less and N³LO-Δ approach
 - Dominant effects come from N⁴LO-/N³LO Δ-contr. in Δ-less/Δ-full approach
 - Ring-3NFs fill all 22 structures
 - N⁴LO-/N³LO Δ-contr. in Δ-less/Δ-full approach dominate N³LO-nucleon contr.
 - Some missing sizeable Δ -contr. in N⁴LO results like central attractive force $\sim O(1/\Delta^2)$
- First (incomplete) results for A_y in nd elastic scattering with N³LO 3NF's

Outlook

- Partial wave decomposition of N³LO three-nucleon forces
- \checkmark N⁴LO Δ -less/N³LO- Δ calc. of shorter range part of 3NF
- N⁴LO with explicit-\Delta of long range part of 3NF (convergence-test)