Open-shell nuclei from coupled-cluster theory

Gustav R. Jansen^{1,2}

gustav.jansen@utk.edu

¹University of Tennessee, Knoxville

²Oak Ridge National Laboratory

April 09. 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Collaborators and acknowledgements

- Andreas Ekström (UiO, MSU)
- Christian Forrsen (Chalmers)
- Gaute Hagen (ORNL)
- Morten Hjorth-Jensen (UiO, MSU)
- Gustav R. Jansen (UTK, ORNL)
- Ruprecht Machleidt (UI)
- Hai Ah Nam (ORNL)
- Witold Nazarewicz (UTK, ORNL)
- Thomas Papenbrock (UTK, ORNL)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Coupled cluster theory.
- Two-particles attached EOMCC.
- Shell evolution in oxygen isotopes.
- ²⁶F with 2PA-EOMCC.
- Shell evolution in calcium isotopes.
- NNLO (POUNDerS)

The nuclear manybody problem

Need to solve the Schrödinger equation

$$\hat{\mathrm{H}}|\Psi\rangle = \left(\hat{\mathrm{T}} + \hat{\mathrm{V}}_1 + \hat{\mathrm{V}}_2 + \hat{\mathrm{V}}_3 \dots\right)|\Psi\rangle = \mathrm{E}|\Psi\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Two ingredients

- 1. The nuclear interaction.
- 2. A method to solve the many body problem.

Chiral effective field theory D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003)

4N Force

- Direct link to QCD.
- Perturbative expansion in momentum.
- Chiral symmetry is spontaneously and explicitly broken.
- The hierarchy of nuclear forces unfolds automatically.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Finite basis expansion

• The wavefunction is expanded in Slater determinants

$$|\Psi
angle = \sum_{i}^{D} c_{i} |\Phi_{i}
angle.$$

 The number of possible Slater determinants is ⁽ⁿ⁾_A, where n is the number of single particle states and A is the number of nucleons.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Curse of dimensionality

ロトメ目とメヨトメヨトニヨーのへで

Reduction of the number of degrees of freedom

$$\hat{\mathbf{T}} = \hat{\mathbf{T}}_1 + \hat{\mathbf{T}}_2 + \ldots + \hat{\mathbf{T}}_A$$

$$= \sum_{ia} t_i^a \left\{ a_a^{\dagger} a_i \right\} + \sum_{ijab} t_{ij}^{ab} \left\{ a_a^{\dagger} a_b^{\dagger} a_j a_i \right\} + \ldots +$$

$$\sum_{\substack{i_1, \ldots, i_A \\ a_1, \ldots, a_A}} t_{i_1, \ldots, i_A}^{a_1, \ldots, a_A} a_{a_1}^{\dagger} \ldots a_{a_A}^{\dagger} a_{i_A} \ldots a_{i_1}$$

590

з.

Exponential ansatz

$$|\Psi\rangle \approx |\Psi_{CC}\rangle = e^{\hat{\mathrm{T}}}|\Phi_0\rangle = \left(\sum_{n=1}^{\infty} \frac{1}{n!} \hat{\mathrm{T}}^n\right) |\Phi_0\rangle,$$

Include terms like

$$e^{\hat{\mathrm{T}}} \leftarrow \frac{1}{6}\hat{\mathrm{T}}_1^3 + \frac{1}{2}\hat{\mathrm{T}}_1\hat{\mathrm{T}}_2 + \frac{1}{A!}\hat{\mathrm{T}}_1^A$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Similarity transformed Hamiltonian

 $\bar{\mathbf{H}} = e^{-\hat{\mathbf{T}}} \hat{\mathbf{H}}_{N} e^{\hat{\mathbf{T}}}$

・ロト ・ 日 ・ モ ・ ト ・ 田 ・ うへの

Similarity transformed Hamiltonian

▲日▼▲□▼▲□▼▲□▼ □ ののの

Similarity transformed Hamiltonian

CCSD

▲日▼▲□▼▲□▼▲□▼ □ ののの

Similarity transformed Hamiltonian

CCSDT

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Similarity transformed Hamiltonian

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ●

Excited states using EOM-CC

Eigenvalues of $\bar{\mathrm{H}} = e^{-\hat{\mathrm{T}}}\hat{\mathrm{H}}e^{\hat{\mathrm{T}}} - \langle \Phi_0|\hat{\mathrm{H}}|\Phi_0\rangle$

$$\left(\bar{\mathrm{H}}\hat{\mathrm{R}}\right)_{c} = \omega\hat{\mathrm{R}}$$

Properties of \overline{H} .

- Non-symmetric (non-hermetian) operator.
- For CCSD and a twobody hamiltonian six-body operator.
- The matrix representation is very sparse.
- Generally too large to store and diagonalize exactly.

Efficient implementation of
$$\left(ar{\mathrm{H}} \hat{\mathrm{R}}
ight)_{\mathcal{C}}$$
 is key.

Two particles attached (2PA-EOM-CCSD)

- Access to additional isotopes.
- Possibility of effective interactions for shell model.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Two particles attached (2PA-EOM-CCSD)

Eigenvalue problem

$$\left(\bar{\mathrm{H}}\hat{\mathrm{R}}\right)_{c} = \omega\hat{\mathrm{R}}$$

2PA-EOM-CCSD(2p0h)

$$\hat{\mathbf{R}} = \hat{\mathbf{R}}_2 = \frac{1}{2} \sum_{a,b} r^{ab} a^{\dagger}_a a^{\dagger}_b$$

2PA-EOM-CCSD(3p1h)

$$\hat{\mathbf{R}} = \hat{\mathbf{R}}_2 + \hat{\mathbf{R}}_3 = \frac{1}{2} \sum_{a,b} r^{ab} a^{\dagger}_a a^{\dagger}_b + \frac{1}{6} \sum_{a,b,c,i} r^{abc}_i a^{\dagger}_a a^{\dagger}_b a^{\dagger}_c a_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Testcase - ⁶He

GRJ, M. Hjorth-Jensen, G. Hagen, and T. Papenbrock, Phys. Rev. C 83, 054306, 2011

	0^+_1	2^+_1	0^+ $\langle J angle$	$2^+_1 \langle J angle$
CCSD	-22.732	-20.905	0.78	2
CCSDT-1	-24.617	-21.586	0.25	2
CCSDT	-24.530	-21.786	0.01	2
2PA-EOM-CCSD(2p-0h)	-21.185	-18.996	0	2
2PA-EOM-CCSD(3p-1h)	-24.543	-21.634	0	2
FCI	-24.853	-21.994	0	2

Table : Energies (in MeV) for the ground state and first excited state of ⁶He and the expectation value of the total angular momentum, calculated with coupled-cluster methods truncated at the 2-particle-2-hole (CCSD) level, 3-particle-3-hole (CCSDT) and a hybrid (CCSDT-1) where the 3-particle-3-hole amplitudes are treated perturbatively.

Convergence GRJ, arXiv:1207.7099 (2012)

୍ର୍ବ୍

4p-2h states in ¹⁸O GRJ, arXiv:1207.7099 (2012)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Density dependent chiral threebody force

Integrating over the third leg in infinite nuclear matter and derive density dependent corrections to the nucleon-nucleon interaction. J. W. Holt N. Kaiser and W. Weise. Phys.Rev.C 79, 054331 (2009) K. Hebeler and A. Schwenk (2010)

Our strategy: C_D is given by fit to triton half-life, we fix C_E and k_F from fit to binding energy in selected medium mass nuclei: **Schematic three-nucleon forces**

< 日 > < 同 > < 回 > < 回 > < 回 > <

-

Oxygen isotopes from chiral interaction

- Inclusion of effective 3NF places dripline at ²⁵O.
- Overall the odd-even staggering in the neutron rich oxygen is well reproduced.
- We find ²⁶O to unbound with respect to ²⁴O by ~100keV, agreement with E. Lunderberg et al., Phys. Rev. Lett. 108 (2012) 142503
- We find ²⁸O to be unbound with a resonance width of ~2MeV

G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, T. Papenbrock, Phys. Rev. Lett. 108, 242501 (2012).

Chiral three-nucleon force at order N2LO. k = 1.05 fm⁻¹, $C_{\rm D} = 0.2$, $C_{\rm E} = 0.71$ (k_f and $c_{\rm E}$ fitted to to the binding Energy of ¹⁶O and ²²O). -100 ← → NN only -110 Experiment Effective 3NF -120 -130 3 (MeV) 140 -150 -160 -170 15 19 25 26 27 28 А

Oxygen isotopes from chiral interaction

Excited states in ²⁴O computed with EOM-CCSD and compared to experiment

J^{π}	2 ⁺	1_{1}^{+}	4_{1}^{+}	3_{1}^{+}	2^{+}_{2}	1_{2}^{+}
$E_{\rm CC}$	4.56	5.2	6.2	6.9	7.0	8.4
$E_{\rm Exp}$	4.7(1)	5.33(10)				
$\Gamma_{\rm CC}$	0.03	0.04	0.005	0.01	0.04	0.56
$\Gamma_{\rm Exp}$	$0.05^{+0.21}_{-0.05}$	$0.03\substack{+0.12 \\ -0.03}$				

The effects of three-nucleon forces decompress the spectra and brings it in good agreement with experiment.

We find several states $(4^*,3^+,2^+)$ near the observed peak at ~7.5MeV in ²⁴O C. R. Hoffman et al Phys. Rev. C **83**, 031303 (2011)

Matter and charge radii for ²¹⁻²⁴O Computed from intrinsic densities and Compared to experiment.

Threebody forces in ²⁶F A. Lepailleur *et al.*, Phys. Rev. Lett. 110, 082502 (2013)

Technical details

- Chiral interaction at N³LO.
- Identical threebody force as established in the oxygen chain.
- 17 major harmonic oscillator shells with a Gamow-Hartree-Fock basis for vs_{1/2} and vd_{3/2}
- CCSD with triples corrections (Λ-CCSD(T)) for ²⁴O, with 2PA-EOMCC.

ъ

• ${}^{26}F_{free} = B({}^{25}O) + B({}^{25}F) - B({}^{24}O)$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Threebody forces are crucial for correct levelspacing.

Evolution of single particle energies

Technical details

- J. Meng, H. Toki,
 J. Y. Zeng, S. Q. Zhang and S. -G. Zhou, PRC 65 041302(R) (2002).
- Relativistic mean-field including continuum effects.

Main features

- Bunching of single-particle energies outside the *pf*-shell.
- No shell-gap in ⁶⁰Ca ⁷⁰Ca.
- Large deformations and no shell-closure.
- Continuum effects responsible for bound ⁶⁰Ca - ⁷²Ca.

-

・ロッ ・ 一 ・ ・ ・ ・

Evolution of single particle energies S. M. Lenzi, F. Nowacki, A. Poves and K. Sieja, PRC 82 054301 (2010)

Main features

- Shell-model calculation in the pf-shell including 0g_{9/2} and 2d_{5/2} for neutrons.
- Inversion of the 0g_{9/2} and the 2d_{5/2} single particle states in ⁶⁰Ca.
- Bunching of levels including the 0f_{5/2} state indicates no shell-closure.

Binding energies in calcium isotopes

G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012)

Technical details

- Chiral interaction at N³LO.
- Density dependent three body force with $k_F = 0.95 \text{fm}^{-1}$, $c_D = -0.2$ and $c_E = 0.735$. $N_{max} = 18$ and $\hbar\omega = 26$ MeV.
- Mass of ⁵¹Ca and ⁵²Ca from A. T. Gallant *et al.*, PRL 109, 032506 (2012)

Main features

< ロ > < 同 > < 回 > < 回 >

- Total binding energies agree well with experimental masses.
- ⁶⁰Ca is not magic.
- Three nucleon force is repulsive.

Shell evolution in neutron rich calcium isotopes.

Details

- J. D. Holt, T. Otsuka, A. Schwenk and T. Suzuki, J Phys G39 085111 (2012)..
- $J^{\pi} = 2^+$ systematics in even calcium isotopes.

Main features

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Threebody forces needed to make ⁴⁸Ca magic.
- Different models have ⁵⁴Ca magic, semi magic and not magic at all.

э

$J^{\pi} = 2^+$ systematics in even calcium isotopes G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012)

Technical details

- Chiral interaction at N³LO.
- Density dependent three body force with $k_F = 0.95 \text{fm}^{-1}$, $c_D = -0.2$ and $c_E = 0.735$. $N_{max} = 18$ and $\hbar\omega = 26$ MeV.

Main features

・ロト ・ 同ト ・ ヨト ・ ヨト

- Good agreement between theory and experiment.
- Shell closure in ⁴⁸Ca.
- Sub-shell closure in ⁵²Ca.

э

 Predict weak sub-shell closure in ⁵⁴Ca.

Spectra in calcium isotopes

G. Hagen, M. Hjorth-Jensen, GRJ, R. Machleidt, and T. Papenbrock, PRL109 032502 (2012)

Technical details

- Chiral interaction at N³LO.
- Density dependent three body force with $k_F = 0.95 \text{fm}^{-1}$, $c_D = -0.2$ and $c_E = 0.735$. $N_{max} = 18$ and $\hbar\omega = 26$ MeV.
- Continuum included for selected weakly bound and resonant states.

Main features

ヘロト ヘ部ト ヘヨト ヘヨト

- Inversion of g_{9/2} and d_{5/2}.
- 1/2⁺ groundstate in ⁶¹Ca.
- Continuum effects are crucial.

NNLO (POUNDerS)

4N Force

- Want to derive consistent forces.
- All contributions at a given order are evaluated.
- Currently NNLO.
- Apply numerical optimization algorithms to find the optimal parameters.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Triton binding energy

A. Ekström, Baardsen, Forssén, Hagen, Hjorth-Jensen, GRJ, Machleidt, Nazarewicz, Papenbrock, Sarich, Wild, arXiv:1303.4674 (2013)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

⁴He binding energy

A. Ekström, Baardsen, Forssén, Hagen, Hjorth-Jensen, GRJ, Machleidt, Nazarewicz, Papenbrock, Sarich, Wild, arXiv:1303.4674 (2013)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ● ●

Oxygen spectra with NNLO (POUNDerS)

A. Ekström, Baardsen, Forssén, Hagen, Hjorth-Jensen, GRJ, Machleidt, Nazarewicz, Papenbrock, Sarich, Wild, arXiv:1303.4674 (2013)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへ⊙

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

E 990

E 990

Questions?

Gustav R. Jansen gustav.jansen@utk.edu

This work was partly supported by the Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory), under Contracts No. DE-FG02-96ER40963 (University of Tennessee) and No.DE-SC0008499 (NUCLEI SciDAC-3 Collaboration).

An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-000R22725 and used computational resources of the National Center for Computational Sciences, the National Institute for Computational Sciences, and the Notur project in Norway.