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Quantum chemistry

I Molecules are difficult but well understood many-body systems:

“The underlying physical laws necessary for

the mathematical theory of a large part of

physics and the whole of chemistry are thus

completely known, and the difficulty is only

that the exact application of these laws leads

to equations much too complicated to be

soluble.” P. A. M. Dirac

I Today, quantum-chemical calculations are routinely carried out by nonspecialists:

About 40% of all articles in the Journal of
Americal Chemical Society are supported by
computation, many of electronic structure:

I molecular structure

I spectroscopic constants

I interaction with electromagnetic fields

I reactivity, reaction rates, and dynamics
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History of quantum chemistry
I Ab initio molecular electronic-structure theory has developed since the 1960s:

I Hartree–Fock (HF) self-consistent field (SCF) theory (1960s)
I configuration-interaction (CI) theory (1970s)
I multiconfigurational SCF (MCSCF) theory (early 1980s)
I many-body perturbation theory (1980s)
I coupled-cluster theory (late 1980s)
I density-functional theory (1990s)

I Coupled-cluster theory is the most successful wave-function theory
I introduced from nuclear physics (Bartlett)
I size extensive treatment of dynamical correlation, unlike truncated CI theory
I high cost, near-degeneracy (strong correlation) problems
I the exact solution can be approached in systematic manner (AE errors, kJ/mol)
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Energy contributions to atomization energies (kJ/mol)

I Contributions of each CC excitation level (left) and AO basis-set shell (right)
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I color code: HF , N2 , F2 , and CO

I The excitation-level convergence is approximately linear (log–linear plot)

I each new excitation level reduces the error by about an order of magnitude
I the contributions from quintuples are negligible (about 0.1 kJ/mol)

I The basis-set convergence is much slower (log–log plot)

I each shell contributes an energy proportional to X−4 where X is the cardinal number
I a similarly small error (0.1 kJ/mol) requires X > 10
I clearly, we must choose our orbitals in the best possible manner
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Coupled-cluster convergence

Bond distances (pm)

RHF SD T Q 5 rel. theory exp. err.
HF 89.70 1.67 0.29 0.02 0.00 0.01 91.69 91.69 0.00
N2 106.54 2.40 0.67 0.14 0.03 0.00 109.78 109.77 0.01
F2 132.64 6.04 2.02 0.44 0.03 0.05 141.22 141.27 −0.05
CO 110.18 1.87 0.75 0.04 0.00 0.00 112.84 112.84 0.00

Harmonic vibrational constants ωe (cm−1)

RHF SD T Q 5 rel. theory exp. err.
HF 4473.8 −277.4 −50.2 −4.1 −0.1 −3.5 4138.5 4138.3 0.2
N2 2730.3 −275.8 −72.4 −18.8 −3.9 −1.4 2358.0 2358.6 −0.6
F2 1266.9 −236.1 −95.3 −15.3 −0.8 −0.5 918.9 916.6 2.3
CO 2426.7 −177.4 −71.7 −7.2 0.0 −1.3 2169.1 2169.8 0.7
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Convergence to ωe in N2
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Advertisement: Molecular Electronic-Structure Theory
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The emergence of density-functional theory (DFT)

I The traditional methods of quantum chemistry are capable of high accuracy
I nevertheless, most calculations are performed using density-functional theory (DFT)

I What is the reason for the poularity of DFT?
I the standard methods are (at least for high accuracy) very expensive
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Density-functional theory (DFT)
I The ground-state electronic energy E [v ] is a functional of the external potential:

v(r) = −
∑

K
ZK
rK

Coulomb potential

I The ground-state energy with external potential v :

E [v ] = inf
Ψ→N

〈
Ψ
∣∣H[v ]

∣∣Ψ〉
H[v ] = T + W +

∑
i v(ri ), W =

∑
i>j r

−1
ij

I It is possible to perform the Rayleigh–Ritz minimization in two nested steps:

E [v ] = inf
ρ 7→N

inf
Ψ 7→ρ

〈
Ψ
∣∣T + W +

∑
i v(ri )

∣∣Ψ
〉

= inf
ρ 7→N

[
inf

Ψ 7→ρ
〈Ψ |T + W |Ψ〉+ (ρ|v)

]
I In the Hohenberg–Kohn variation principle, we minimize over all densities ρ:

E [v ] = inf
ρ→N

(
F [ρ] + (v |ρ)

)
Hohenberg–Kohn variation principle

F [ρ] = inf
Ψ→ρ

〈
Ψ
∣∣T + W

∣∣Ψ〉 Levy constrained-search functional

I The universal density functional F [ρ] depends only on the density

I the density depends only on three spatial coordinates
I it contains all information needed to calculated the ground-state energy
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The Hohenberg–Kohn and Lieb variation principles

I Lieb showed that the energy and density functional are symmetrically related:

E [v ] = inf
ρ

(
F [ρ] + (v |ρ)

)
the Hohenberg–Kohn variation principle (1964)

F [ρ] = sup
v

(
E [v ]− (v |ρ)

)
the Lieb variation principle (1983)

I These are alternative attempts at sharpening the same inequality into an equality

F [ρ] ≥ E [v ]− (v |ρ) ⇔ E [v ] ≤ F [ρ] + (v |ρ) Fenchel’s inequality

I E and F are conjugate functions: E(concave)↔ F (convex)

I convex/concave conjugates, Fenchel conjugates, Legendre–Fenchel transforms. . .
I they contain same information, expressed as functions of v and ρ, respectively
I the extrinsic and intrinsic energies, respectively

I The possibility of expressing E in terms of F follows from the convexity of −E [v ] in v :
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What characterizes a convex function?

I A function f : R 7→ R is convex if and only if it can be written in the form

f (x) = sup
y

[xy − g(y)] ← pointwise supremum of all supporting lines

I The plots below illustrate this construction for x2, x + x4, |x |+ x2 and exp(x)
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Conjugate functions E ↔ F

I The ground-state energy E [v ] is concave in v by the Rayleigh–Ritz variation principle

I it can therefore be exactly represented by its convex conjugate F [ρ]: E [v ] ↔ F [ρ]

E@vD

HvÈΡL

F@ΡD

vmax

F@ΡD=supvHE@vD-HvÈΡLL
¥

F@ΡD

HvÈΡL

E@vD

Ρmin

E@vD = infΡHF@ΡD+HvÈΡLL

I Mathematical characterization of E and F :

I E is continuous and concave (not everywhere differentiable) on L3/2 + L∞

I F is lower semicontinuous and convex (nowhere continuous and nowhere differentiable) on L3 ∩ L1
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Stationary conditions and subgradients

I Concavity of E and convexity of F imply great simplicity

I all minima and maxima in the Hohenberg–Kohn and Lieb variation principles are global
I methods of convex optimization theory can be used

I However, convex functions are not necessarily differentiable

I minima are not characterized by derivatives but by subgradients

I The subgradients y0 of f at x0 are the slopes of the supporting lines to f at x0:

f (x) ≥ f (x0) + y0(x − x0), ∀x

1�2 1�2

1�2

f1HxL = ÈxÈ-1

1�2 1�2

1�2

fxHxL = x2
-1

I The set of all subgradients of f at x0 is the subdifferential ∂f (x0) of f at x0

∂f1(0) = [−1, 1], ∂f2(0) = {0}
I a minimum occurs if and only if the subdifferential contains zero (horizontal supporting line)
I differentiability follows when ∂f is a singleton and f is continuous
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DFT stationary conditions: the Hohenberg–Kohn theorem

I The DFT variation principles are convex optimization problems:

E [v ] = inf
ρ

(
F [ρ] + (v |ρ)

)
F [ρ] = sup

v

(
E [v ]− (v |ρ)

)
I The condition of zero subgradient gives the following reciprocal stationary relations:

E [v ] = F [ρ] + (v |ρ) ⇔ −v ∈ ∂F [ρ] ⇔ ρ ∈ ∂E [v ]

I ρ and v are conjugate variables and ∂F [ρ] and ∂E [v ] are inverse functions
I note: F and E are not differentiable

I The subdifferential ∂F [ρ] contains the associated potentials:

∂F [ρ] = {−vρ − c}, ρ is a ground-state density of some potential vρ

∂F [ρ] = ∅, ρ is not a ground-state density of any potential

I Hohenberg–Kohn theorem: the ground-state density determines the potential to within a constant
I not all densities are ground-state densities of any potential
I the set of ground-state densities is dense in the set of all N-electron densities

I The subdifferential ∂E [v ] contains the associated (degenerate) ground-state densities:

∂E [v ] = co{ρ1, ρ2, . . . ρn}, v supports a ground state

∂E [v ] = ∅, v does not support a ground state

I not all potentials support a ground state
I the set of potentials with a ground state is dense in the set of all potentials
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v -representability densities and ρ-representable potentials

I E [v ] and F [ρ] are functions whose subdifferentials are inverse functions

E [v ] = F [ρ] + (v |ρ) ⇔ −v ∈ ∂F [ρ] ⇔ ρ ∈ ∂E [v ]

I ∂E [v ] gives the ground-state densities (if any) associated with v
I ∂F [ρ] gives the ground-state potential (if any) associated with ρ (uniquely)

v1 + c

v2 + c

Ρ1
1 , Ρ1

2

Ρ2
1
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Kohn–Sham theory

I We may set up DFT at arbitrary interaction strenghts λ:

Eλ[v ] = inf
ρ→N

(
Fλ[ρ] + (v |ρ)

)
Hohenberg–Kohn variation principle

Fλ[ρ] = inf
Ψ→ρ

〈
Ψ
∣∣T + λW

∣∣Ψ〉 universal density functional

I In Kohn–Sham theory, we relate the complicated F1[ρ] to the much simpler F0[ρ]:

F1[ρ] = Ts[ρ] + J[ρ] + Exc[ρ]

where

Ts[ρ] = F0[ρ] = infΨ→ρ
〈
Ψ
∣∣T ∣∣Ψ〉 noninteracting kinetic energy

J[ρ] =

∫∫
ρ(r1)ρ(r2)r−1

12 dr1dr2 Coulomb energy

Exc[ρ] = F [ρ]− F0[ρ]− J[ρ] exchange–correlation energy

I The noninteracting kinetic energy Ts[ρ] can be calculated exactly by introducing orbitals

ρ(r) =
∑

i φi (r)∗φi (r)

I the Kohn–Sham orbitals are eigenfunctions of an effective Kohn–Sham potential:[
− 1

2
∇2 + veff(r)

]
φi (r) = εiφi (r), veff(r) = v(r) + vJ(r) + δExc[ρ]

δρ(r)
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The exchange–correlation functional

I The exact exchange–correlation functional is unknown

I we must rely on approximations

I Local-density approximation (LDA)

I XC functional modeled after the uniform electron gas (which is known exactly)

ELDA
xc [ρ] =

∫
f (ρ(r))dr local dependence on density

I widely applied in condensed-matter physics
I not sufficiently accurate to compete with traditional methods of quantum chemistry

I Generalized-gradient approximation (GGA)

I introduce a dependence also on the density gradient

EGGA
xc [ρ] =

∫
f (ρ(r,∇ρ(r)) dr local dependence on density and its gradient

I Becke’s gradient correction to exchange (1988) changed the situation
I the accuracy became sufficient to compete in chemistry
I indeed, surprisingly high accuracy for energetics

I A bewildering variety of functionals has been developed

I sometimes chosen to satisfy exact conditions, other times fitted to data
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A plethora of exchange–correlation functionals

exchange, Slater local exchange, and the nonlocal gradient
correction of Becke88. Thus,

Exc
B3LYP ! a0Ex

exact " !1 # a0"Ex
Slater " ax#Ex

B88 " acEc
VWN

" !1 # ac"Ec
LYP. [11]

Becke obtained the hybrid parameters {a0, ax, ac} $ {0.20, 0.72,
0.19} (3) from a least-squares fit to 56 atomization energies, 42
IPs, and 8 proton affinities (PAs) of the G2-1 set of atoms and
molecules (4). B3LYP leads to excellent thermochemistry (0.13
eV MAD) and structures for covalently systems but does not
account for London dispersion (all noble gas dimers are pre-
dicted unstable).

Following B3LYP, we introduce the extended hybrid func-
tional, denoted as X3LYP:

Exc
X3LYP ! a0Ex

exact " !1 # a0"Ex
Slater " ax#Ex

X " acEc
VWN

" !1 # ac"Ec
LYP. [12]

We determined the hybrid parameters {a0, ax, ac} $ {0.218,
0.709, 0.129} in X3LYP just as for XLYP. Thus, we normalized
the mixing parameters of Eq. 10 and redetermined {ax1, ax2} $
{0.765, 0.235} for X3LYP. The FX(s) function of X3LYP (Fig.
1) agrees with FGauss(s) for larger s.

Results and Discussion
We tested the accuracy of XLYP and X3LYP for a broad range
of systems and properties not used in fitting the parameters.
Table 1 compares the overall performance of 17 different flavors
of DFT methods, showing that X3LYP is the best or nearly best

Table 1. MADs (all energies in eV) for various level of theory for the extended G2 set

Method

G2(MAD)

H-Ne, Etot TM #E He2, #E(Re) Ne2, #E(Re) (H2O)2, De(RO . . . O)#Hf IP EA PA

HF 6.47 1.036 1.158 0.15 4.49 1.09 Unbound Unbound 0.161 (3.048)
G2 or best ab initio 0.07a 0.053b 0.057b 0.05b 1.59c 0.19d 0.0011 (2.993)e 0.0043 (3.125)e 0.218 (2.912)f

LDA (SVWN) 3.94a 0.665 0.749 0.27 6.67 0.54g 0.0109 (2.377) 0.0231 (2.595) 0.391 (2.710)
GGA

BP86 0.88a 0.175 0.212 0.05 0.19 0.46 Unbound Unbound 0.194 (2.889)
BLYP 0.31a 0.187 0.106 0.08 0.19 0.37g Unbound Unbound 0.181 (2.952)
BPW91 0.34a 0.163 0.094 0.05 0.16 0.60 Unbound Unbound 0.156 (2.946)
PW91PW91 0.77 0.164 0.141 0.06 0.35 0.52 0.0100 (2.645) 0.0137 (3.016) 0.235 (2.886)
mPWPWh 0.65 0.161 0.122 0.05 0.16 0.38 0.0052 (2.823) 0.0076 (3.178) 0.194 (2.911)
PBEPBEi 0.74i 0.156 0.101 0.06 1.25 0.34 0.0032 (2.752) 0.0048 (3.097) 0.222 (2.899)
XLYPj 0.33 0.186 0.117 0.09 0.95 0.24 0.0010 (2.805) 0.0030 (3.126) 0.192 (2.953)

Hybrid methods
BH & HLYPk 0.94 0.207 0.247 0.07 0.08 0.72 Unbound Unbound 0.214 (2.905)
B3P86l 0.78a 0.636 0.593 0.03 2.80 0.34 Unbound Unbound 0.206 (2.878)
B3LYPm 0.13a 0.168 0.103 0.06 0.38 0.25g Unbound Unbound 0.198 (2.926)
B3PW91n 0.15a 0.161 0.100 0.03 0.24 0.38 Unbound Unbound 0.175 (2.923)
PW1PWo 0.23 0.160 0.114 0.04 0.30 0.30 0.0066 (2.660) 0.0095 (3.003) 0.227 (2.884)
mPW1PWp 0.17 0.160 0.118 0.04 0.16 0.31 0.0020 (3.052) 0.0023 (3.254) 0.199 (2.898)
PBE1PBEq 0.21i 0.162 0.126 0.04 1.09 0.30 0.0018 (2.818) 0.0026 (3.118) 0.216 (2.896)
O3LYPr 0.18 0.139 0.107 0.05 0.06 0.49 0.0031 (2.860) 0.0047 (3.225) 0.139 (3.095)
X3LYPs 0.12 0.154 0.087 0.07 0.11 0.22 0.0010 (2.726) 0.0028 (2.904) 0.216 (2.908)
Experimental — — — — — — 0.0010 (2.970)t 0.0036 (3.091)t 0.236u (2.948)v

#Hf, heat of formation at 298 K; PA, proton affinity; Etot, total energies (H-Ne); TM #E, s to d excitation energy of nine first-row transition metal atoms and
nine positive ions. Bonding properties [#E or De in eV and (Re) in Å] are given for He2, Ne2, and (H2O)2. The best DFT results are in boldface, as are the most accurate
answers [experiment except for (H2O)2].
aRef. 5.
bRef. 19.
cRef. 4.
dRef. 35.
eRef. 38.
fRef. 34.
gRef. 37.
hRef. 7.
iRef. 10.
j1.0 Ex (Slater) % 0.722 #Ex (B88) % 0.347 #Ex (PW91) % 1.0 Ec (LYP).
k0.5 Ex (HF) % 0.5 Ex (Slater) % 0.5 #Ex (B88) % 1.0 Ec (LYP).
l0.20 Ex (HF) % 0.80 Ex (Slater) % 0.72 #Ex (B88) % 1.0 Ec (VWN) % 0.81 #Ec (P86).
m0.20 Ex (HF) % 0.80 Ex (Slater) % 0.72 #Ex (B88) % 0.19 Ec (VWN) % 0.81 Ec (LYP).
n0.20 Ex (HF) % 0.80 Ex (Slater) % 0.72 #Ex (B88) % 1.0 Ec (PW91, local) % 0.81 #Ec (PW91, nonlocal).
o0.25 Ex (HF) % 0.75 Ex (Slater) % 0.75 #Ex (PW91) % 1.0 Ec (PW91).
p0.25 Ex (HF) % 0.75 Ex (Slater) % 0.75 #Ex (mPW) % 1.0 Ec (PW91).
q0.25 Ex (HF) % 0.75 Ex (Slater) % 0.75 #Ex (PBE) % 1.0 Ec (PW91, local) % 1.0 #Ec (PBE, nonlocal).
r0.1161 Ex (HF) % 0.9262 Ex (Slater) % 0.8133 #Ex (OPTX) % 0.19 Ec (VWN5) % 0.81 Ec (LYP).
s0.218 Ex (HF) % 0.782 Ex (Slater) % 0.542 #Ex (B88) % 0.167 #Ex (PW91) % 0.129 Ec (VWN) % 0.871 Ec (LYP).
tRef. 27.
uRef. 33.
vRef. 32.

Xu and Goddard PNAS ! March 2, 2004 ! vol. 101 ! no. 9 ! 2675
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Reaction Enthalpies (kJ/mol)

B3LYP CCSD(T) exp.
CH2 + H2 → CH4 −543 1 −543 1 −544(2)
C2H2 + H2 → C2H4 −208 −5 −206 −3 −203(2)
C2H2 + 3H2 → 2CH4 −450 −4 −447 −1 −446(2)
CO + H2 → CH2O −34 −13 −23 −2 −21(1)
N2 + 3H2 → 2NH2 −166 −2 −165 −1 −164(1)
F2 + H2 → 2HF −540 23 −564 −1 −563(1)
O3 + 3H2 → 3H2O −909 24 −946 −13 −933(2)
CH2O + 2H2 → CH4 + H2O −234 17 −250 1 −251(1)
H2O2 + H2 → 2H2O −346 19 −362 3 −365(2)
CO + 3H2 → CH4 + H2O −268 4 −273 −1 −272(1)
HCN + 3H2 → CH4 + NH2 −320 0 −321 −1 −320(3)
HNO + 2H2 → H2O + NH2 −429 15 −446 −2 −444(1)
CO2 + 4H2 → CH4 + 2H2O −211 33 −244 0 −244(1)
2CH2 → C2H4 −845 −1 −845 −1 −844(3)
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The Kohn–Sham adiabatic connection

I Consider again the Levy constrained-search formula

Fλ[ρ] = min
Ψ→ρ

〈Ψ|T + λW |Ψ〉 =
〈

Ψλρ |T + λW |Ψλρ
〉

I λ is the coupling-strength parameter

I We may now connect the interacting and noninteracting systems

Fλ[ρ] = F0[ρ] +

∫ λ

0
F ′µ[ρ]dµ, F ′λ[ρ] =

〈
Ψλρ |W |Ψλρ

〉
← Hellmann–Feynman theorem

I at λ = 0, we have the noninteracting system
I at λ = 1, we have the fully interacting system

I We next perform the Kohn–Sham decomposition by introducing F0[ρ] and F ′0[ρ]:

F0[ρ] =
〈
Ψ0
ρ|T |Ψ0

ρ

〉
= Ts[ρ] ← noninteracting kinetic energy

F ′0[ρ] =
〈
Ψ0
ρ|W |Ψ0

ρ

〉
= J[ρ] + Ex[ρ] ← Coulomb and exchange energies

Fλ[ρ] = Ts[ρ] + λJ[ρ] + λEx[ρ] + Ec,λ[ρ] ← correlation energy

I We can thus extract the correlation energy by coupling-strength integration

Ec,λ[ρ] =

∫ λ

0

〈
Ψµρ |W |Ψµρ

〉
dµ− λJ[ρ]− λEx[ρ]

I in the adiabatic approximation, the integrand is assumed to change smoothly with λ
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The adiabatic connection: the correlation energy

I In KS theory, the correlation energy is the only term that depends nontrivially on λ:

Ec,λ[ρ] =

∫ λ

0

(〈
Ψµρ |W |Ψµρ

〉
−
〈
Ψ0
ρ|W |Ψ0

ρ

〉)
dµ

I as λ increases, the wave function relaxes under the constraint of a fixed density

I Adiabatic-connection curve for the CCSD(T) correlation energy of the neon atom

I calculated by the Lieb variation principle
I Teale et al. JCP 130, 104111 (2009); ibid 132, 164115 (2010)
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H2 dissociation: from dynamical to static correlation
I Near equilibrium, correlation is predominantly dynamic

I nearly linear curve since correlation is dominated by doubles (λ2 in PT)

I Towards dissociation, static correlation becomes important
I increased curvature form higher-order contributions in PT

I At dissociation, correlation is fully static
I wave function adjusts immediately for λ 6= 0 (degenerate PT)
I first-order degenerate PT yields constant curve for λ > 0

0.0 0.2 0.4 0.6 0.8 1.0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

1.4 bohr

5 bohr

10 bohr

T. Helgaker (CTCC, University of Oslo) The adiabatic connection DFT 22 / 38



The adiabatic connection: the dissociation of H2

I To study static and dynamic correlation, we consider H2 dissociation
I RHF, BLYP, and FCI levels of theory in the aug-cc-pVQZ basis
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Adiabatic connection: XC curves for H2
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Molecular magnetism
I A magnetic field B modifies the kinetic-energy operator:

H(B) = T (B) + W +
∑

i
v(ri ), T (B) = 1

2

∑
i
(σ · πi )

2

where σ are the Pauli spin matrices and πi the kinetic-momentum operator:

πi = −i∇i + A(ri ), A = 1
2

B× r

I We have recently developed the London code for molecular calculations in strong fields

I complex wave functions and London atomic orbitals
I Hartree–Fock, CASSCF, CCSD, FCI and Kohn–Sham models

I Molecules in magnetic fields exhibit many interesting features:

I molecular bonding of triplet H2 and singlet He2 in strong fields
I Lange et al. Science 337, 327 (2012)
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Helium clusters in strong magnetic fields
I RHF/u-aug-cc-pVTZ level of theory

I all structures are planar and consist of equilateral triangles
I suggestive of hexagonal 2D crystal lattice
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Ground-state energy in a magnetic field

I The Hamiltonian in a magnetic field (without the Zeeman term):

H[v ,A] = 1
2

∑
i

π2
i +

∑
i

v(ri ) + W , πi = −i∇i + A(ri ), A = 1
2

B× r

I The Hamiltonian has a linear and quadratic dependence on the vector potential:

H[v ,A] = 1
2

∑
i

p2
i +

∑
i

A(ri ) · pi + 1
2

∑
i

A(ri )
2 +

∑
i

v(ri ) + W

I The ground-state energy in a magnetic field from Rayleigh–Ritz variation principle:

E [v ,A] = inf
Ψ
〈Ψ|H[v ,A]|Ψ〉

I The energy is not necessarily concave in the vector potential:
I diamagetic benzene (convex) to the left and paramagnetic BH (concave) to the right

linear magnetizability are in fact positive and large enough to
make even the average magnetizability positive !paramag-
netic". It is therefore interesting to verify via our finite-field
London-orbital approach whether this very small system is
indeed characterized by a particularly large nonlinear mag-
netic response. The geometry used for the calculations is that
optimized at the multiconfigurational SCF level in Ref. 51,
corresponding to a bond length of rBH=1.2352 Å.

For the parallel components of the magnetizability and
hypermagnetizability, we are able to obtain robust estimates
using the fitting described above, leading to the values !# =
−2.51 a.u. and X# =35.25 a.u., respectively, from aug-cc-
pVTZ calculations. The same values are obtained both with
London orbitals and any common-origin calculation that em-
ploys a gauge origin on the line passing through the B and H
atoms since in this case, due to the cylindrical symmetry, the
London orbitals make no difference.

For the perpendicular components, the estimates of the
hypermagnetizability we obtain using the above mentioned
fitting procedure are not robust, varying with the number of
data points included in the least-squares fitting and the de-
gree of the polynomial. Using 41 uniformly spaced field val-
ues in the range −0.1–0.1 a.u. and a fitting polynomial of
order 16, we arrive at reasonably converged values of !!

=7.1 a.u. and X!=−8"103 a.u. for the magnetizability and
hypermagnetizability, respectively, at the aug-cc-pVTZ level.
In Fig. 1!c", we report a plot of the aug-cc-pVTZ energy as
function of field !triangles". For comparison, we report in
Fig. 1!a" the corresponding benzene plot. As the linear re-
sponse for BH is paramagnetic, the curvature of the magnetic
field energy dependence is clearly reversed. More impor-
tantly, whereas it is evident from Fig. 1!a" that the curve for
benzene is to a very good approximation parabolic so that
the nonlinearities arise from small corrections that are not
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FIG. 1. Energy as a function of the magnetic field for different systems. Triangles represent results from finite-field calculations and solid lines are quartic
fitting polynomials. !a" Benzene !with the aug-cc-pVDZ basis" illustrates the typical case of diamagnetic quadratic dependence in response to an out-of-plane
field. !b" Cyclobutadiene !aug-cc-pVDZ" deviates from the typical case by exhibiting a nonquadratic dependence on an out-of-plane field. !c" Boron
monohydride !aug-cc-pVTZ" is an interesting case of positive magnetizability for a perpendicular field, exhibiting nonquadratic behavior. !d" Boronmono-
hydride !aug-cc-pVTZ" in a larger range of perpendicular fields, exhibiting a clearly nonperturbative behavior.
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linear magnetizability are in fact positive and large enough to
make even the average magnetizability positive !paramag-
netic". It is therefore interesting to verify via our finite-field
London-orbital approach whether this very small system is
indeed characterized by a particularly large nonlinear mag-
netic response. The geometry used for the calculations is that
optimized at the multiconfigurational SCF level in Ref. 51,
corresponding to a bond length of rBH=1.2352 Å.

For the parallel components of the magnetizability and
hypermagnetizability, we are able to obtain robust estimates
using the fitting described above, leading to the values !# =
−2.51 a.u. and X# =35.25 a.u., respectively, from aug-cc-
pVTZ calculations. The same values are obtained both with
London orbitals and any common-origin calculation that em-
ploys a gauge origin on the line passing through the B and H
atoms since in this case, due to the cylindrical symmetry, the
London orbitals make no difference.

For the perpendicular components, the estimates of the
hypermagnetizability we obtain using the above mentioned
fitting procedure are not robust, varying with the number of
data points included in the least-squares fitting and the de-
gree of the polynomial. Using 41 uniformly spaced field val-
ues in the range −0.1–0.1 a.u. and a fitting polynomial of
order 16, we arrive at reasonably converged values of !!

=7.1 a.u. and X!=−8"103 a.u. for the magnetizability and
hypermagnetizability, respectively, at the aug-cc-pVTZ level.
In Fig. 1!c", we report a plot of the aug-cc-pVTZ energy as
function of field !triangles". For comparison, we report in
Fig. 1!a" the corresponding benzene plot. As the linear re-
sponse for BH is paramagnetic, the curvature of the magnetic
field energy dependence is clearly reversed. More impor-
tantly, whereas it is evident from Fig. 1!a" that the curve for
benzene is to a very good approximation parabolic so that
the nonlinearities arise from small corrections that are not
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fitting polynomials. !a" Benzene !with the aug-cc-pVDZ basis" illustrates the typical case of diamagnetic quadratic dependence in response to an out-of-plane
field. !b" Cyclobutadiene !aug-cc-pVDZ" deviates from the typical case by exhibiting a nonquadratic dependence on an out-of-plane field. !c" Boron
monohydride !aug-cc-pVTZ" is an interesting case of positive magnetizability for a perpendicular field, exhibiting nonquadratic behavior. !d" Boronmono-
hydride !aug-cc-pVTZ" in a larger range of perpendicular fields, exhibiting a clearly nonperturbative behavior.
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Diamagnetism and paramagnetism
I The complicated field dependence results from an interplay of linear and quadratic terms

I C20 in a perpendicular magnetic field:
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I All molecules become diamagnetic at a critical field strength Bc

I Tellgren et al. PCCP 11, 5489 (2009)
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Current densities in magnetic fields

I In an external magnetic field, currents are induced in the electronic system

I Below, we have plotted induced currents in benzene in a perpendicular field

I current density in the π system (above the molecular plane) to the left
I current density in the σ system (in the molecular plane) to the right
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Nuclear magnetic shielding constants
I The most important use of magnetism in chemistry is NMR spectroscopy

I nuclear spin transitions in an externally applied field shielded by the electrons
I the shielding is determined by the response of the electronic system to the external field
I shielding constants give important information about molecular structure

I Kohn–Sham calculations of shielding constants are of uneven quality
I these calculations neglect the field/current dependence of the exchange–correlation functional
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I Mean absolute errors (in ppm) for NMR shielding constants relative to experimental (blue) and
empirical equilibrium values (red). Teale et al. JCP 138, 024111 (2013)
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DFT in magnetic fields
I The electronic energy and Hamiltonian now depends on the scalar and vector potentials’:

E [v ,A] = inf
Ψ
〈Ψ|H[v ,A]|Ψ〉

I how can DFT be adapted to magnetic fields?

CDFT: current-density-functional theory

I We perform convex conjugation with respect to both v and A:

E [v ,A] ↔ FCDFT[ρ,κ]

I FCDFT depends on ρ and the (nonobservable) paramagnetic current density κ

I note: only the total current j = κ + ρA is gauge invariant and observable

I Vignale and Rasolt (1987,1988)

BDFT: magnetic-field density-functional theory

I We perform convex conjugation with respect to v only

E [v ,A] ↔ FBDFT[ρ,A]

I FBDFT depends on ρ and the vector potential (magnetic field) A

I Grayce and Harris (1994)
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CDFT: the basic variables
I The ground-state energy E [v ,A] is not concave in (v ,A):

linear magnetizability are in fact positive and large enough to
make even the average magnetizability positive !paramag-
netic". It is therefore interesting to verify via our finite-field
London-orbital approach whether this very small system is
indeed characterized by a particularly large nonlinear mag-
netic response. The geometry used for the calculations is that
optimized at the multiconfigurational SCF level in Ref. 51,
corresponding to a bond length of rBH=1.2352 Å.

For the parallel components of the magnetizability and
hypermagnetizability, we are able to obtain robust estimates
using the fitting described above, leading to the values !# =
−2.51 a.u. and X# =35.25 a.u., respectively, from aug-cc-
pVTZ calculations. The same values are obtained both with
London orbitals and any common-origin calculation that em-
ploys a gauge origin on the line passing through the B and H
atoms since in this case, due to the cylindrical symmetry, the
London orbitals make no difference.

For the perpendicular components, the estimates of the
hypermagnetizability we obtain using the above mentioned
fitting procedure are not robust, varying with the number of
data points included in the least-squares fitting and the de-
gree of the polynomial. Using 41 uniformly spaced field val-
ues in the range −0.1–0.1 a.u. and a fitting polynomial of
order 16, we arrive at reasonably converged values of !!

=7.1 a.u. and X!=−8"103 a.u. for the magnetizability and
hypermagnetizability, respectively, at the aug-cc-pVTZ level.
In Fig. 1!c", we report a plot of the aug-cc-pVTZ energy as
function of field !triangles". For comparison, we report in
Fig. 1!a" the corresponding benzene plot. As the linear re-
sponse for BH is paramagnetic, the curvature of the magnetic
field energy dependence is clearly reversed. More impor-
tantly, whereas it is evident from Fig. 1!a" that the curve for
benzene is to a very good approximation parabolic so that
the nonlinearities arise from small corrections that are not
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FIG. 1. Energy as a function of the magnetic field for different systems. Triangles represent results from finite-field calculations and solid lines are quartic
fitting polynomials. !a" Benzene !with the aug-cc-pVDZ basis" illustrates the typical case of diamagnetic quadratic dependence in response to an out-of-plane
field. !b" Cyclobutadiene !aug-cc-pVDZ" deviates from the typical case by exhibiting a nonquadratic dependence on an out-of-plane field. !c" Boron
monohydride !aug-cc-pVTZ" is an interesting case of positive magnetizability for a perpendicular field, exhibiting nonquadratic behavior. !d" Boronmono-
hydride !aug-cc-pVTZ" in a larger range of perpendicular fields, exhibiting a clearly nonperturbative behavior.
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linear magnetizability are in fact positive and large enough to
make even the average magnetizability positive !paramag-
netic". It is therefore interesting to verify via our finite-field
London-orbital approach whether this very small system is
indeed characterized by a particularly large nonlinear mag-
netic response. The geometry used for the calculations is that
optimized at the multiconfigurational SCF level in Ref. 51,
corresponding to a bond length of rBH=1.2352 Å.

For the parallel components of the magnetizability and
hypermagnetizability, we are able to obtain robust estimates
using the fitting described above, leading to the values !# =
−2.51 a.u. and X# =35.25 a.u., respectively, from aug-cc-
pVTZ calculations. The same values are obtained both with
London orbitals and any common-origin calculation that em-
ploys a gauge origin on the line passing through the B and H
atoms since in this case, due to the cylindrical symmetry, the
London orbitals make no difference.

For the perpendicular components, the estimates of the
hypermagnetizability we obtain using the above mentioned
fitting procedure are not robust, varying with the number of
data points included in the least-squares fitting and the de-
gree of the polynomial. Using 41 uniformly spaced field val-
ues in the range −0.1–0.1 a.u. and a fitting polynomial of
order 16, we arrive at reasonably converged values of !!

=7.1 a.u. and X!=−8"103 a.u. for the magnetizability and
hypermagnetizability, respectively, at the aug-cc-pVTZ level.
In Fig. 1!c", we report a plot of the aug-cc-pVTZ energy as
function of field !triangles". For comparison, we report in
Fig. 1!a" the corresponding benzene plot. As the linear re-
sponse for BH is paramagnetic, the curvature of the magnetic
field energy dependence is clearly reversed. More impor-
tantly, whereas it is evident from Fig. 1!a" that the curve for
benzene is to a very good approximation parabolic so that
the nonlinearities arise from small corrections that are not

a)

−0.1 −0.05 0 0.05 0.1
0

0.02

0.04

0.06

0.08

0.1

b)

−0.1 −0.05 0 0.05 0.1
0

2

4

6

8

10

12

14
x 10

−3

c)

−0.1 −0.05 0 0.05 0.1

−0.02

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

d)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−0.03

−0.02

−0.01

0

0.01

0.02

FIG. 1. Energy as a function of the magnetic field for different systems. Triangles represent results from finite-field calculations and solid lines are quartic
fitting polynomials. !a" Benzene !with the aug-cc-pVDZ basis" illustrates the typical case of diamagnetic quadratic dependence in response to an out-of-plane
field. !b" Cyclobutadiene !aug-cc-pVDZ" deviates from the typical case by exhibiting a nonquadratic dependence on an out-of-plane field. !c" Boron
monohydride !aug-cc-pVTZ" is an interesting case of positive magnetizability for a perpendicular field, exhibiting nonquadratic behavior. !d" Boronmono-
hydride !aug-cc-pVTZ" in a larger range of perpendicular fields, exhibiting a clearly nonperturbative behavior.
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I A simple reparametrization yields a Hamiltonian that is linear in the potentials:

H̄[u,A] = 1
2

∑
i
p2
i + W +

∑
i
u(ri ) +

∑
i
A(ri ) · pi , u = v + 1

2
A2

I From the variation principle and this linearity, concavity of the ground-state energy follows:

Ē [u,A] = infΨ〈Ψ|H̄[u,A]|Ψ〉 = E [u − 1
2
A2,A]

I Convex conjugation gives the associated convex CDFT universal density functional:

F [ρ,κ] = sup
u,A

(
Ē [u,A]− (u|ρ)− (A|κ)

)
Ē [u,A] = inf

ρ,κ

(
F [ρ,κ] + (u|ρ) + (A|κ)

)
I Tellgren et al. PRA 86, 062506 (2012)

I The variables conjugate to (u,A) are the density and paramagnetic current density (ρ,κ):

ρ(r) = Ψ∗(r)Ψ(r)

κ(r) = ReΨ∗(r)pΨ(r) 6= ReΨ∗(r)(p + A)Ψ(r) = j(r)

I unlike the physical current, the paramagnetic current is uniquely determined by the wave function
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CDFT: the Hohenberg–Kohn theorem
I Consider the field-free system with Hamiltonian H̄[u, 0]

I Adding a uniform magnetic field along the z axis with vector potential

A = 1
2
Bez × r

we obtain the new Hamiltonian

H̄[u,A] = H̄[u, 0] + 1
2
BLz + BSz

I If u is spherical, then the two Hamiltonians commute and have the same eigenstates:[
H̄[u, 0], H̄[u,A]

]
= 0

I Since (ρ,κ) are determined by the eigenstates, they are the same in the two cases:

(u, 0) → (ρ,κ) ← (u,A)

I there can be no Hohenberg–Kohn theorem for the paramagnetic current density
I Eschrig (2001), Capelle and Vignale (2001,2002)
I observe also:

u = v + c ⇔ [H[u],H[v ]] = 0

I On the other hand, the physical current densities j = κ + ρA of the two systems differ:

(u, 0) → (ρ,κ + 0) 6= (ρ,κ + ρA) ← (u,A)

I a Hohenberg–Kohn theorem for j is not excluded but the purported proofs are wrong
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CDFT: Kohn–Sham theory
I A Kohn–Sham decomposition of the CDFT functional yields (Vignale and Rasolt):

F [ρ,κ] = Ts[ρ,κ] + J[ρ] + Exc[ρ,ν], ν(r) = ∇×
κ(r)

ρ(r)
← vorticity

I the exchange–correlation functional depends on the density and vorticity

log10(l)
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I The Vignale–Rasolt–Geldart (VRG) local vorticity exchange–correlation functional

EVRG[ν] =

∫
kF(rs)

24π2
[g(rs)− 1] |ν(r)|2 dr,

I local approximation expressed in terms of the gauge-invariant vorticity
I based on the response of a uniform electron gas to a uniform magnetic field
I the parametrization is numerically difficult, with arbitrary cutoffs
I it gives too negative contributions to the molecular electronic energy
I shielding errors typically increase by 20%–30% . . .

I CDFT Kohn–Sham representability problem

I a noninteracting Slater determinant may not be able to represent simultaneously ρ and ν
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CDFT: noninteracting representability
I Closed-shell two-electron systems are not representable by a single determinant in a field

I consider the H2 molecule in a strong magnetic field (normal to image plane)
I density ρ (top), physical current j2 (middle), and vorticity ν (bottom) of H2

Hartree–Fock Full CI
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BDFT: the adiabatic connection
I We may describe magnetic phenomena by setting up a separate DFT for each B:

E0[v ,B] = infρ (F [ρ,B] + (v |ρ))

I The density functional now depends on the density and on the field strength

F [ρ,B] = min
Ψ7→ρ

〈Ψ|Tπ(B) + W |Ψ〉 = Ts[ρ,B] + J[ρ] + Exc[ρ,B]

I the noninteracting magnetic response is exactly taken care of by Ts[ρ,B]

I AC correlation curves of H2 in a perpendicular magnetic field
I Exc[ρ,B] differs strongly from Exc[ρ] only at stretched geometries
I an earlier onset of static correlation in strong magnetic fields
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BDFT: AC curve for LiH
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I Increased magnetic field has a definite effect on the AC curve.

I less dynamical correlation energy, slightly more “static” correlation at fixed bond length
I consistent with shortening of bond lengths in the field
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Dynamical correlation in magnetic fields

I The FCI occupation numbers of He approach 2 and 0 strong fields
I diminishing importance of dynamical correlation in magnetic fields
I the two electrons rotate in the same direction about the field direction
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