INTRODUCTION

Here I present some summary tables for various discrete variable rep-
resentation (DVR) bases using the following notations and terminology
(mostly following [ ] with the exception that we use w,, = 1/K,, for the
integration weights).

Ke : (momentum cutoff (UV))

Xn ' Zn = KeXn (abscissa and dimensionless abscissa)

P: P=P =P?= > |Kk)(K (projector)
|k|<ke

Xn): (X|xn)=08(x—xn) (delta-function)

IAn): |An) =Plxn) (projected delta-functions)

Wn o owy =1/ (An]An) = 1/An (xn) (quadrature weights)

ILn): [f) =) f(xn)|Ln), (Lm|An) =8mn (interpolating functions)
[Fr) i (Fm|Fn) = &mn (orthonormal basis functions)

The conventional DVR bases satisfy |L,,) = \/Wn |Fn) = wn [An): i.e. the
projected delta-functions form an orthogonal basis:

(Am|An) = Am(xn) = W;J dmn. (1)

In other words, the basis functions F,,(x) have nodes at all abscissa
X = Xmsn. Lhis is a non-trivial requirement and generally requires these
bases to be built from orthogonal polynomials. The key to the utility
of these DVR bases is that they are quasi-local: to express a function
f(x) in the basis, one simply evaluates it at the abscissa. Likewise, the
potential energy matrix can be approximated by a diagonal matrix.
Coupled with the kinetic operator, this can yield exponential accuracy
for the eigenvalues and eigenfunctions (for appropriate potentials and
boundary conditions)

If) = Z fnlFn), fn=f(xn)v/Wn (quasi-locality)
Kmn = (Fn|R|Fm> (kinetic energy)
Vinn = (Fn‘V|Fm) ~ dmnV(xn) (potential energy)
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FoUuRIER Basis The simple Fourier basis over an interval of length
L = Na is just a quasi-local rearrangement of the usual Fourier basis
et*n* with wave-vectors k,, = 2mmn/L in terms of the “periodic sinc
functions” psinc(z) (see [ ]):

: ;o (N-2
psinc(z) = s1.nzz = — > e, (2a)
Nsing N, X1y

(N-1)/2 b
Xn = X0 + an‘n:_(N_])/z, ke =m/a, wn =7/ke = q, (2b)
La(x) = psinc(kc (x - xn)), (2¢)

22 (=1)™™ cos —kC(Xﬁ_X“) ? 1
Kmsn = 2 i kc(Xr]r\L]—Xn) , Kan = 3? (1 - W) . (2d)

SiNnc FuncrioN Basis For N abscissa, one can represent functions
over an interval of length aN (non-periodic) with sinc(x) = sin(x)/x
tunctions. This follows from the Fourier basis in the limit N — oo

(see [ ]):

Xn =Xo +an, ke =m/a, wn=7/ke = q, (3a)
Lo(x) = simc(kC (x- xn)), (3b)

2(_] )m—n 7_(2
Kmsn = m/ nn = 3? (3C)

BeEsseL FuncrioN Basis For central problems one expands the
radial wavefunction u(r) = r(4=1)/2y(r) for each angular momentum
v =1+d/2-1. In practice, one can often use just a few basis: in d =3
for example, one can use the 1 = 0 basis for all even 1 and the 1 = 1 basis
for all odd 1. The abscissa and basis functions are defined in terms of
the Bessel functions J(z) (see [ ]):

d? 2-1/4 2
- VOO -0 )
2
S v [ )
n+ KezZyn V2T
Fr(r) = (-1) 1m]v(kcr), (4¢)

Kimsn = — ; Kan = [T+ —=—5— (4d)
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