
introduction

Here I present some summary tables for various discrete variable rep-
resentation (dvr) bases using the following notations and terminology
(mostly following [1] with the exception that we use w

n

≡ 1�K
n

for the
integration weights).
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The conventional dvr bases satisfy �L
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�: i.e. the
projected delta-functions form an orthogonal basis:
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In other words, the basis functions F

n

(x) have nodes at all abscissa
x = x

m≠n. This is a non-trivial requirement and generally requires these
bases to be built from orthogonal polynomials. The key to the utility
of these dvr bases is that they are quasi-local: to express a function
f(x) in the basis, one simply evaluates it at the abscissa. Likewise, the
potential energy matrix can be approximated by a diagonal matrix.
Coupled with the kinetic operator, this can yield exponential accuracy
for the eigenvalues and eigenfunctions (for appropriate potentials and
boundary conditions)
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Bessel Function Basis For central problems one expands the
radial wavefunction u(r) = r(d−1)�2 (r) for each angular momentum
⌫ = l+d�2− 1. In practice, one can often use just a few basis: in d = 3
for example, one can use the l = 0 basis for all even l and the l = 1 basis
for all odd l. The abscissa and basis functions are defined in terms of
the Bessel functions J

⌫

(z) (see [4]):
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Fourier Basis The simple Fourier basis over an interval of length
L = Na is just a quasi-local rearrangement of the usual Fourier basis
e
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x with wave-vectors k
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= 2⇡n�L in terms of the “periodic sinc
functions” psinc(z) (see [2]):

psinc(z) = sin z

N sin z

N

= 1

N

(N−1)�2�
m=−(N−1)�2

e

imz, (2a)

x

n

= x
0

+an�(N−1)�2
n=−(N−1)�2, k

c

= ⇡�a, w

n

= ⇡�k
c

= a, (2b)

L

n

(x) = psinc�k
c

(x− x
n

)�, (2c)

K

m≠n = 2⇡

2(−1)m−n
L

2

cos k

c

(x
m

−x
n

)
N

sin2

k

c

(x
m

−x
n

)
N

, K

nn

= ⇡

2

3a

2

�1− 1

N

2

� . (2d)

S inc Function Basis For N abscissa, one can represent functions
over an interval of length aN (non-periodic) with sinc(x) ≡ sin(x)�x
functions. This follows from the Fourier basis in the limit N → ∞
(see [2]):
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