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Discrete Variable 
Representation ()

• Quasi-local (projected delta functions)
• Fn(xm) ∝ δmn,    ⟨Fm|V|Fn⟩ ≈ δmnV(xn)

• Analytic form for Kinetic Energy

• Exponential convergence
• for appropriate potentials, boundary conditions etc.
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Standard  Basis
Δn(x) ∝ Fn(x) ∝ Ln(x)

• Projected delta-functions: Δn(x)
•  Let ⟨x|xn⟩ = δ(x-xn), then |Δn⟩ = P|xn⟩

• Interpolating functions: Ln(x)
•  |f⟩ = ∑n f(xn) |Ln⟩

• Orthonormal basis functions: Fn(x)
• ⟨Fm|Fn⟩ = δmn
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Projected Delta 
Functions
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Non-trivial
Consistency of Abscissa
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Abscissa must be 
nodes of Δm(x)

Δm(xn) = δmn/wn

Associated with 
orthogonal 
polynomials
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Interpolating Functions
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Just evaluate f(xn) 
at the abscissa:

|f⟩ = ∑n fn |Fn⟩
    = ∑n f(xn) |Ln⟩
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Integration Weights

• wn = 1/⟨Δn|Δn⟩ = 1/Δn(xn)

• Ln(x) = wn1/2 Fn(x) = wn Δn(x)

• Gaussian quadrature wights for functions in basis:
• ⟨f|g⟩ = ∑n wn f*(xn)g(xn)

• But... make sure to integrate functions in basis (or add 
more abscissa)
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Diagonal
Potential Energy

• Not exact, but eigenvalues and eigenvectors
still have exponential convergence

• No overlap integrals needed

• Trivial  and -body operators

�Fm|V |Fn� � �mnV(xm)
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Analytic Kinetic Energy

• Include singularities here
• They can spoil convergence
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DVR Examples

• Fourier basis (rearrangement): use FFTW
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DVR Examples

• Sinc function basis

• Kmn dense (but only in each dimension)
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DVR Examples

• Bessel Function Basis: Spherical/Cylindrical symmetry
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To obtain the matrix elements of the projection operator

P , we change notation in the integral "5.2#, swapping r and
k and replacing R by K , to obtain

&r"P"r!'!!
0

K

dk&r"k!'&k!"r!'

!!rr!!
0

K

k dk J!"kr #J!"kr!#

!
K!rr!
r
2#r!2

$r!J!"Kr #J!!"Kr!##rJ!"Kr!#J!!"Kr #% .

"5.4#

This is evidently a continuum version of the Darboux–

Christoffel formula,45,46 which in its usual, discrete version is

necessary for the proof that orthogonal polynomials can be

used to construct DVR sets.19,21 Now setting r!!r!n , we

obtain the projected ( functions,

)!n"r #!&r"P"r!n'!
!rz!n

3
K
3

K
2
r
2#z!n

2 J!!"z!n#J!"Kr #, "5.5#

which obviously vanish at all grid points r!r!n! except n
!n!. Thus, these are orthogonal DVR functions. The nor-
malized versions of these functions are obtained by taking

r→r!n in Eq. "5.5# to obtain

N!n!&)!n")!n'!)!n"r!n#!
Kz!nJ!!"z!n#

2

2
, "5.6#

a manifestly positive result, which implies

F!n"r #!"#1 #n"1
Kz!n!2r
K
2
r
2#z!n

2 J!"Kr #. "5.7#

The phase (#1)n"1 is the sign of J!!(z!n).

Some of these DVR functions are plotted in Fig. 2 for

the value K!1. Curves at other values of K differ only by

scaling. The plot with !!3, n!10 illustrates the fact that
when n is large, the Bessel DVR functions resemble sinc

functions, while the other three plots "for n!0, !!0,3,10#
show that the Bessel DVR functions differ substantially from

sinc functions at small n .

The plots also illustrate some points regarding boundary

conditions at r!0. Radial eigenfunctions in a potential V(r)
that is analytic near r!0 have a Taylor series expansion at
r!0 that begins with r

! and subsequently contains every

other power, r!"2, r!"4, etc. This is proved in Ref. 47 in

two and three dimensions. Naturally, Bessel functions, which

are eigenfunctions in the potential V(r)!0, also have these
boundary conditions, and therefore so also do the DVR func-

tions F!n(r). Moreover, like exact eigenfunctions in an ana-

lytic potential, the Bessel DVR functions decay exponen-

tially as one moves to the left of the first oscillation, that is,

they have an effective radial turning point. The turning point

of the DVR functions, however, need not be the same as the

turning point of the functions one wishes to expand. In fact,

for good convergence, the Bessel DVR turning point should

be to the left of the turning point of the function being ex-

panded. This is achieved in practice by raising the value of

the cutoff K , which moves the classical turning point to the

left, as illustrated in part "a# of Fig. 1. Part "b# of that figure
shows a Bessel DVR function superimposed on a phase

space plot, illustrating the phase space region covered by the

DVR function, the decay beyond the classical turning point,

and the boundary conditions at r!0. Note that Bessel DVR
functions do not have the same boundary conditions as

eigenfunctions in a potential "like the Coulomb potential#
that is singular at r!0. Bessel DVR functions are not suit-
able for such potentials. Note also that sinc functions are not

suitable for any potential on the radial half-line,48 since they

never have the right boundary conditions at r!0.

VI. COMPLETENESS AND BOUNDARY CONDITIONS
IN MOMENTUM SPACE

As in the case of sinc functions, we can prove complete-

ness of the Bessel DVR functions on the subspace defined by

Eq. "5.1# by going to k space. On analogy with sinc func-
tions, we guess that the Bessel DVR functions are the Fou-

rier transforms of the eigenfunctions of a particle in a spheri-

cal box in k space, that is, eigenfunction of r2 which cut off

at radius k!K , where K is the momentum cutoff in Eq.

"5.1#. Once this is proved completeness follows, since free
particle eigenfunctions in a circular box are complete on the

space of wave functions confined to the box.

Since it is more physical to think of boxes in r space,

we shall examine that problem first, then switch to k space

with a change of notation. The free particle eigenfunctions

in the spherical box of radius R in d-dimensional r space

are specified by the radial wave function *!n(r)

FIG. 2. Plots of the Bessel DVR functions F!n(r) for K!1 and for selected
values of ! and n .
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DVR Examples

• Bessel Function Basis: Spherical/Cylindrical symmetry

• In principle: one basis for each l

• In practice (3D): 
• use l=0, for even l
• use l=1, for odd l

• (may need extra point to represent
densities etc.)
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Simple Implementation
• MATLAB • Python

N     = ;
n     = (:N);
[k,l] = meshgrid(n,n);
a     = ;    %  lattice constant
x     = a*(-N/::N/-)';
V     = x.^/;   %potential
p     = *pi/L*(-N/::N/-);

Tk  = *(-).^(k-l)./((sin(pi*(k-l)/N)).^ + eps)/N^;
Tk  = Tk - diag(diag(Tk));
Tk  = (Tk + eye(N)*(+/N^)/)*pi^/a^/;
H   = Tk +diag(V);
energy  = eig(H);

class DVRD(object):
    r"""Sinc function basis for non-periodic functions over
     an interval`x +- L/` with `N` points."""
    def __init__(self, N, L, x=.):
        L = float(L)
        self.N = N
        self.L = L
        self.x = x
        self.a = L/N
        self.n = np.arange(N)
        self.x = self.x + self.n*self.a - self.L/. + self.a/.
        self.k_max = np.pi/self.a

    def H(self, V):
        """Return the Hamiltonian with the give potential."""
        _m = self.n[:, None]
        _n = self.n[None, :]
        K = .*(-)**(_m-_n)/(_m-_n)**/self.a**
        K[self.n, self.n] = np.pi**//self.a**
        K *= .   # p^//m
        V = np.diag(V(self.x))
        return K + V
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Phase-Space Coverage

For convergence:
•Must cover same 

semi-classical phase 
space

•Consider modeling 
the Morse (left) 
potential with HO 
basis (right)

erators have a geometrical interpretation in phase space
which is very suggestive, not only for understanding the ef-
ficiency and rate of convergence of known DVR basis sets,
but also for designing new ones. In favorable circumstances
DVR basis sets lead to exponential convergence in the cal-
culation of eigenvalues and eigenfunctions. In this section
we discuss the conditions under which exponential conver-
gence holds and the factors which can destroy it.

We begin with projection operators. Let H be a Hilbert
space of wave functions, and let !!n" ,n!0,.. . ,N"1# be a
truncated, orthonormal basis. Let

P! $
n!0

N"1

!n"%n! &2.1'

be the projection operator onto the subspace S spanned by
the truncated basis set, so that S!PH. In practice P is
specified by the truncated basis !!n"#. The stationary phase
logic of this paper requires that at least part of the basis be a
truncated spectral basis, but it may contain additional states
that do not fit this description.20 We prefer to emphasize P
itself as the primary object because the basis which spans S
is not unique and because in multidimensional problems it is
often much less obvious what is to be regarded as a privi-
leged choice of the basis !!n"#. Moreover, P may be inter-
preted in terms of a region of phase space, which is indepen-
dent of the choice of basis spanning S. The phase space
interpretation of P plays an important role in this paper, and
also in the problem of basis set optimization, that is, the
problem of choosing a P which is efficient for a particular
class of wave functions one wishes to find. This problem has
been considered by several authors.4,16,17,21–28 The phase
space interpretation of P is a natural outcome of the
Wigner–Weyl formalism,29–31 which has recently been spe-
cifically elaborated upon by Poirier.15 Here we shall merely
use a simple model problem to present the intuitive idea.

Suppose we are trying to solve the Morse oscillator in a
harmonic oscillator basis. Figure 1&a' illustrates the Morse
potential &above' and the phase space of the Morse oscillator
&below'. In the phase space diagram, a set of nested classical
orbits is drawn, having actions In!(1/2()"p dx!n) , n
!1,2,.. . &the circle in the figure will be explained momen-
tarily'. Thus, the area of the nth orbit is nh!n(2()) &the
orbit contains n Planck cells of phase space area'. These are
not the quantized orbits of WKB theory, which satisfy In
!(n#1/2)) , n!0,1,.. .; the quantized orbits are half way
between the orbits drawn in the figure. We have drawn the
figure this way because we wish to imagine the quantized
orbits at the centers of annular strips, each of which contains
one Planck cell (h!2()) of phase space area.

Figure 1&b' illustrates a harmonic oscillator potential
&above' and phase space &below'. The potential is the har-
monic approximation to the Morse potential at the bottom of
the well. The phase space picture of the harmonic oscillator
also contains a set of nested orbits, in this case circles, hav-
ing actions In!(1/2()"p dx!n) . The number of harmonic
oscillator orbits and Morse oscillator orbits drawn &10' is the
same.

The circle in the Morse oscillator phase space is the last
&tenth' harmonic oscillator orbit. This circle completely en-

closes the first three of the Morse oscillator orbits, but the
fourth extends beyond it a small amount near the x-axis. This
means that if we solve the Morse oscillator in a harmonic
oscillator basis truncated at the tenth basis state (n!9 in the
usual numbering n!0,1,.. .), then the first three Morse os-
cillator states (n!0,1,2) will be reasonably well converged,
but the fourth (n!3) will have some qualitative error in
the eigenfunction *3(x) near the right turning point, and
the qualitative disagreement will get worse for higher states
n!4,5,.. . .

To be more precise, consider the error in the mth Morse
oscillator eigenstate *m(x)!%x!m" when computed in a
truncated basis of N harmonic oscillator eigenstates !!n" ,n
!0,.. . ,N"1# as N increases. This error can be estimated by
the matrix element %N!m", the coefficient of the first ne-
glected term in the expansion of the exact Morse oscillator
eigenstate in the harmonic oscillator basis. This matrix ele-
ment in turn can be approximated by using semiclassical
&WKB' wave functions and the stationary phase approxima-
tion. The matrix element %N!m" then becomes a sum of in-
tegrals of the form,

# dx!¯ exp$ i) +$SN
HO&x '$Sm

MO&x ',% , &2.2'

where S!-p dx , where the ellipsis indicates the usual WKB
amplitude factors and where the superscripts HO and MO
refer to the harmonic and Morse oscillators, respectively. The
integrals are summed over the choices of sign to get the
matrix element %N!m". The stationary phase condition can
be satisfied only when the two signs are opposite, so that
the stationary phase points are the roots of (d/dx)+SN

HO

"Sm
MO(x),!0, or pN

HO(x)!pm
MO(x), where p!p(x) is the

momentum function defined by the classical orbits. Thus, the
stationary phase points are represented geometrically by the

FIG. 1. In &a', the potential &above' and orbits in phase space &below' for the
Morse oscillator. The orbits have actions In!n) . The circle in the phase
space diagram is the outer harmonic oscillator orbit in &b'. In &b', potential
and phase space orbits for a harmonic oscillator. The potential is the har-
monic approximation to the Morse potential.
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Littlejohn et al. J. Chem. Phys.  () 

Phase-Space Coverage

DVR basis slices phase 
space into strips

Efficient coverage of 
typical rectangular 
“model spaces” with 
simple IR and UV 
cutoffs

exactly as predicted by the theory. The final result is some
rectangle in phase space, bounded in the x-direction by the
truncation of the basis and in the p-direction by the momen-
tum cutoff p0 . This rectangle completely encloses the region
containing the unknown eigenstates, and the ratio of basis
states to the number of eigenstates found is the ratio of the
area of the rectangle to the area of the classical orbit bound-
ing the eigenstate region.

There remain some worries about the long-range tails of
the sinc functions. The argument given above explains why
the expansion coefficients of a wave function ! in a sinc
function basis associated with grid points well into the clas-
sically forbidden region must be exponentially small. This
was based on the interpolation property for computing ex-
pansion coefficients "the final expression in Eq. #3.8$%. But
we should also be able to use orthonormality to compute
these expansion coefficients "the center expression in Eq.
#3.8$%. How can this integral be exponentially small, when
the long range tail of the sinc function, centered out in the
classically forbidden region, overlaps substantially with the
wave function ! in the classically allowed region? To under-
stand this, we express the overlap integral in terms of the
complex integrals,

! dx
e!i&x/a

x"na !#x $, #4.4$

where the grid point xn#na is in the classically forbidden
region for !(x). Under these circumstances, the fraction
1/(x"na) can be regarded as slowly varying on the scale of
the exponential throughout the classically allowed region,
where ! is large. Thus the function f (x)#!(x)/(x"na) has
approximately the same momentum content as !(x) itself,
and the integral can be estimated by the Fourier transform of
! evaluated at p#!p0 . But by construction, '(p) is expo-
nentially small at these #momentum cutoff$ values, so the
apparently dominant contribution to the integral #coming
from the classically allowed region for !) is, in fact, expo-
nentially small.

We now use Fig. 4 to make some points regarding the
phase space perspective on the sinc functions. This is a hy-
brid figure, with a sinc function centered on a certain grid
point superimposed on a phase space diagram. The band

"p0(p(p0 in phase space covered by the sinc functions is
shown, and the grid points x#na are shown as dots on the
x-axis. In a diagram like this, it is natural to associate each
basis state with a vertical strip of width a , centered on the
grid points. Since the height of each strip is 2p0#2&)/a ,
the area per strip is 2&) , a single Planck cell. In this way,
the infinite area of the band is divided into Planck cells, one
for each basis state. This association is not merely a matter of
making the area come out right, for the Lagrangian
manifold33 associated with the delta function *(x"xn) cen-
tered on grid point xn is the vertical line in phase space given
by x#xn . When the projection operator P is applied to the
*-function to create +n(x), the Lagrangian manifold is ef-
fectively truncated at p#!p0 , giving a finite line segment
such as the vertical dotted line in the figure. The vertical strip
is centered on this line much as the annular strips in Fig. 1
are centered on the quantizing orbits. This picture can be
made more quantitative by computing the Wigner function of
the sinc function, which turns out to be approximately the
characteristic function of the vertical strip. The approxima-
tion is rather crude, however, because of the large amount of
ringing due to the discontinuous cutoffs. Nevertheless, a pic-
ture like this captures some important semiclassical features
of the sinc function basis.

Now we make some remarks about orthogonal polyno-
mial DVR functions. Let ,qn(x),n#0,1,.. .- be a set of real,
one-dimensional polynomials, where qn is of degree n , that
is orthonormal on an interval "a ,b% with respect to a weight-
ing function .(x)$0, /a

b.(x)qn(x)qm(x)#*nm . Let 'n(x)
#!.(x)qn(x) be the weighted polynomial functions that are
orthonormal in the usual sense, and let PN#0"'n12'n".
Then, as is well known2,13 a DVR set results if the grid
points are chosen to be the roots of qN(x) #the first polyno-
mial omitted from the projection operator$. These facts fol-
low from the Darboux-Christoffel formula, a standard result
in the theory of one-dimensional, orthogonal
polynomials.48,49

Unlike sinc DVR functions, the grid points of orthogonal
polynomial DVR functions are spaced nonuniformly. This
has a simple semiclassical interpretation. Consider the WKB
approximation to 'N(x),

'N#x $## 2& 32S
3I3x $ 1/2 cos"S#x ,I $/)"&/4% , #4.5$

where I#(N%1/2)) is the action of the quantizing orbit for
the state 'N and where S#/p dx is measured from the left
turning point. In the WKB approximation, the zeros of 'N
occur when the argument of the cosine is (4%1/2)& , so the
spacing +x between the roots is given by +S/)#(1/))
&(3S/3x)+x#& , or +x#&)/p(x ,I), where p(x ,I)
#3S/3x is the local momentum of the first neglected state.
This is identical to the spacing rule for sinc functions except
that the constant spacing (a above$ has been replaced by the
variable +x , and the constant momentum cutoff (p0 above$
has been replaced by the local momentum p(x ,I). Obviously
the result is open to the same interpretation, that the DVR
state occupies a vertical strip in phase space containing one
Planck cell (2&)) of area.

FIG. 4. Phase space diagram for the sinc DVR basis, illustrating the Planck
cells #vertical strips$ associated with each basis function.
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This idea is illustrated in Fig. 5, which exhibits the phase
space area occupied by the first 20 harmonic oscillator eigen-
states in two different ways. On the left are plotted the first
20 annular strips, each of area 2!" . The Bohr–Sommerfeld
quantizing orbits #not shown$ lie half way between the
circles in the figure, the latter of which have actions In
!(1/2!)!p dx!n" , n!1,.. . ,20. The wave function plotted
is %13(x), which occupies the annular strip bounded by the
heavy lines. On the right, the same area is divided into 20
vertical strips of equal area 2!" . Plotted on the x-axis are
the grid points for N!20, which are the roots of %20(x). The
wave function plotted is the DVR state F13(x) #roots are
labeled from &!0 at the left$, which is proportional to
%20(x)/(x"x13). It clearly vanishes at all grid points except
one. The phase space area occupied by this state is the ver-
tical strip bounded by the heavy lines.

In this way we obtain a geometrical interpretation of the
unitary transformation which takes us from the orthogonal
polynomial basis '%n(x)( to the DVR basis 'F&(x)(. That
is, it consists of dividing the phase space area occupied by
the first N states into Planck cells in two different ways.

V. THE ACCURACY OF THE DVR APPROXIMATION
FOR THE POTENTIAL ENERGY

We have shown that the error in the expansion of a #pre-
sumably$ unknown eigenfunction in a spectral basis trun-
cated at size N goes as e"cN, when N is large enough and
under appropriate conditions of analyticity and boundary
conditions. Normally this implies the exponential conver-
gence of the eigenvalues of the truncated matrix of the
Hamiltonian in the spectral basis to the exact eigenvalues. If
the exact energy spectrum is nondegenerate, this also implies
the exponential convergence of the eigenfunctions of the
truncated problem to the exact eigenfunctions, although if
there are near degeneracies the basis must be large enough to
resolve these #the exponentially small error must be smaller
than the small energy splittings$. Thus we may say, exponen-
tial convergence of the orthonormal expansion implies expo-
nential convergence of the VBR method, to use the terminol-

ogy of Ref. 12. We will not prove these statements here since
their proof would take us too far astray and the issue is
unrelated to the accuracy of the DVR method.

In the DVR method, however, there is an additional error
due to the usual diagonal approximation for the matrix ele-
ments of the potential energy,

)F&"V"F*+,V#x&$ -&* . #5.1$

We will show below that this error is O(1/N), which is much
larger than the error due to the truncation of the basis alone.
Nevertheless, the final error in the eigenvalues and eigen-
functions in the DVR method is still exponentially small.
The discrepancy in the magnitudes of these two errors has
been noted by several authors in the past, including Wei50
and Baye et al.11 In this section we shall explain this para-
doxical behavior.

The diagonal approximation #5.1$ applies when working
in the DVR basis '"F&+( #in this section we follow the nota-
tion of Sec. III$. One can also work in the basis '"%n+(, in
practice often a spectral basis, in which case the approxima-
tion #5.1$ is equivalent to a Gaussian quadrature approxima-
tion for the matrix elements of the potential energy. The
computed eigenvalues are the same #thus they have the same
error$ since the two bases are unitarily equivalent, so for the
purposes of studying the final error, either basis may be used.
We have preferred to use the DVR basis because the argu-
ments can be extended to the nonorthogonal case studied in
Sec. VI.

We begin by making some comments on the analysis of
Wei50 of the accuracy of the DVR approximation. This is the
most careful treatment of this question that we are aware of
in the existing literature. Wei notes that the error in the di-
agonal approximation for the matrix elements of the poten-
tial energy in the DVR basis is actually rather large, but he
makes the observation that if one transforms the DVR matrix
to the spectral basis '"%n+( #again in the notation of Sec. III$,
the #quadrature$ error is concentrated at the lower right cor-
ner of the matrix, that is, it only affects matrix elements
connecting states "%n+ with n near the cutoff value N . These
are the states that in phase space live near the edges of the
region covered by the projection operator. The analysis is
particularly simple in the case of polynomial potentials, in
which case #for orthogonal polynomial bases$ the matrix for
V is band-diagonal and one can make statements about the
order of perturbation theory at which various corrections oc-
cur. Wei does not make assertions about the behavior of the
error as a function of N , but he does give explicit error
estimates for common cases of DVR functions and it is pos-
sible to extract from these the exponential convergence
which we shall argue for below. We believe it should also be
possible to use perturbation theory to derive the law of ex-
ponential convergence, at least in the case of polynomial
potentials.

Consider now the matrix element )F&"V"F*+ , in which
F*(x) certainly belongs to S. If it were true that V(x)F*(x)
also belonged to S, then Eq. #5.1$ would be exact. But in
fact, V(x)F*(x) contains components outside of S, typically
of order 1/N . We argue this first on semiclassical grounds.

FIG. 5. Illustrations of the phase space area occupied by the first 20 states of
the harmonic oscillator. On the left, the annular strips of equal area are
occupied by the harmonic oscillator eigenstates %n(x), n!0,.. . ,19. The
wave function plotted is %13(x), which corresponds to the annular strip
bounded by heavy lines. On the right, the same area is divided into 20
vertical strips of equal area, occupied by the DVR states. The dots on the
x-axis are the zeroes of %20(x), and the wave function plotted is the DVR
state corresponding to root &!13. The vertical phase space strip occupied
by this state is marked with heavy lines.
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Difficulties with HO Basis

For convergence:
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semi-classical phase 
space

•Consider modeling 
the Morse (left) 
potential with HO 
basis (right)

erators have a geometrical interpretation in phase space
which is very suggestive, not only for understanding the ef-
ficiency and rate of convergence of known DVR basis sets,
but also for designing new ones. In favorable circumstances
DVR basis sets lead to exponential convergence in the cal-
culation of eigenvalues and eigenfunctions. In this section
we discuss the conditions under which exponential conver-
gence holds and the factors which can destroy it.

We begin with projection operators. Let H be a Hilbert
space of wave functions, and let !!n" ,n!0,.. . ,N"1# be a
truncated, orthonormal basis. Let

P! $
n!0

N"1

!n"%n! &2.1'

be the projection operator onto the subspace S spanned by
the truncated basis set, so that S!PH. In practice P is
specified by the truncated basis !!n"#. The stationary phase
logic of this paper requires that at least part of the basis be a
truncated spectral basis, but it may contain additional states
that do not fit this description.20 We prefer to emphasize P
itself as the primary object because the basis which spans S
is not unique and because in multidimensional problems it is
often much less obvious what is to be regarded as a privi-
leged choice of the basis !!n"#. Moreover, P may be inter-
preted in terms of a region of phase space, which is indepen-
dent of the choice of basis spanning S. The phase space
interpretation of P plays an important role in this paper, and
also in the problem of basis set optimization, that is, the
problem of choosing a P which is efficient for a particular
class of wave functions one wishes to find. This problem has
been considered by several authors.4,16,17,21–28 The phase
space interpretation of P is a natural outcome of the
Wigner–Weyl formalism,29–31 which has recently been spe-
cifically elaborated upon by Poirier.15 Here we shall merely
use a simple model problem to present the intuitive idea.

Suppose we are trying to solve the Morse oscillator in a
harmonic oscillator basis. Figure 1&a' illustrates the Morse
potential &above' and the phase space of the Morse oscillator
&below'. In the phase space diagram, a set of nested classical
orbits is drawn, having actions In!(1/2()"p dx!n) , n
!1,2,.. . &the circle in the figure will be explained momen-
tarily'. Thus, the area of the nth orbit is nh!n(2()) &the
orbit contains n Planck cells of phase space area'. These are
not the quantized orbits of WKB theory, which satisfy In
!(n#1/2)) , n!0,1,.. .; the quantized orbits are half way
between the orbits drawn in the figure. We have drawn the
figure this way because we wish to imagine the quantized
orbits at the centers of annular strips, each of which contains
one Planck cell (h!2()) of phase space area.

Figure 1&b' illustrates a harmonic oscillator potential
&above' and phase space &below'. The potential is the har-
monic approximation to the Morse potential at the bottom of
the well. The phase space picture of the harmonic oscillator
also contains a set of nested orbits, in this case circles, hav-
ing actions In!(1/2()"p dx!n) . The number of harmonic
oscillator orbits and Morse oscillator orbits drawn &10' is the
same.

The circle in the Morse oscillator phase space is the last
&tenth' harmonic oscillator orbit. This circle completely en-

closes the first three of the Morse oscillator orbits, but the
fourth extends beyond it a small amount near the x-axis. This
means that if we solve the Morse oscillator in a harmonic
oscillator basis truncated at the tenth basis state (n!9 in the
usual numbering n!0,1,.. .), then the first three Morse os-
cillator states (n!0,1,2) will be reasonably well converged,
but the fourth (n!3) will have some qualitative error in
the eigenfunction *3(x) near the right turning point, and
the qualitative disagreement will get worse for higher states
n!4,5,.. . .

To be more precise, consider the error in the mth Morse
oscillator eigenstate *m(x)!%x!m" when computed in a
truncated basis of N harmonic oscillator eigenstates !!n" ,n
!0,.. . ,N"1# as N increases. This error can be estimated by
the matrix element %N!m", the coefficient of the first ne-
glected term in the expansion of the exact Morse oscillator
eigenstate in the harmonic oscillator basis. This matrix ele-
ment in turn can be approximated by using semiclassical
&WKB' wave functions and the stationary phase approxima-
tion. The matrix element %N!m" then becomes a sum of in-
tegrals of the form,

# dx!¯ exp$ i) +$SN
HO&x '$Sm

MO&x ',% , &2.2'

where S!-p dx , where the ellipsis indicates the usual WKB
amplitude factors and where the superscripts HO and MO
refer to the harmonic and Morse oscillators, respectively. The
integrals are summed over the choices of sign to get the
matrix element %N!m". The stationary phase condition can
be satisfied only when the two signs are opposite, so that
the stationary phase points are the roots of (d/dx)+SN

HO

"Sm
MO(x),!0, or pN

HO(x)!pm
MO(x), where p!p(x) is the

momentum function defined by the classical orbits. Thus, the
stationary phase points are represented geometrically by the

FIG. 1. In &a', the potential &above' and orbits in phase space &below' for the
Morse oscillator. The orbits have actions In!n) . The circle in the phase
space diagram is the outer harmonic oscillator orbit in &b'. In &b', potential
and phase space orbits for a harmonic oscillator. The potential is the har-
monic approximation to the Morse potential.
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Difficulties with HO Basis
• Large Radius of HO wavefunctions introduce artifacts
• Need large number of states to correct
• (Requires HO wavefunction to high precision!)
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Difficulties with HO Basis
• Tails (turning points) spoil large r behaviour
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DVR Solves the Problem
• Tails spoil large r behaviour
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Difficulties with HO Basis
Complex Convergence

• Subtle convergence issues:
• IR needs subtle properties of HO wavefunctions
Furnstahl, Hagen, & Papenbrock PRC  () (R)
More, Ekstrom, Furnstahl, Hagen, & Papenbrock arXiv:.

• UV convergence?
• Emperical: E(ΛUV)=E∞+A0 exp(-2Λ2UV/λ2)

Furnstahl, Hagen, & Papenbrock PRC  () (R)

• Where does this Gaussian behaviour come from?
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Bulgac & Forbes arXiv:.

Simple Convergence

IR convergence:
•Periodic Box (images)
•Lowest many-body 

threshold
•Band theory

UV convergence:
•Fourier analysis

Both are simple 
exponentials
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IR Convergence

• Band theory

• Exponential (think “tunneling”) with scale set by
lowest many-body dissociation threshold
• e.g. s-wave two-body threshold

E(L) = E� +
A (�2

�
2MQ(L))L/�h

L2
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UV Convergence

• Follows from Fourier analysis

• Exponential (not Gaussian)
• Recall “emperical” formula for HO basis:

E(�UV) = E� + A (�2�2
UV/�2)

E(kc) = E� + A (�2kcr0)
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IR convergence:
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DFT predicts (FF)LO
at Unitarity: Supersolid!

Large density contrast 
(factor of )

Similar to contrast of 
vortex core
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FIG. 2: The dimensionless convex function h(y) [18]
that defines the average pressure density P(µa, µb) =
2

5

`

2m
!2

´3/2
[µah(y)]5/2/(6π2), where y = µb/µa. In addition

to the constraints discussed in [18] (with the updated value
ξ = 0.40 [15, 16]), we have included the constraint imposed
by the parametrization of the normal state energy defining
the aslda functional and shown in Fig. 1 (thin solid blue
line). The pressure of the lo states are shown by the thick
red curve. The y dependence of the amplitude of the pairing
field ∆ = max{|∆(z)|} and the period L are shown as in-
sets, with normalizations that are described in Fig. 3. In the
absence of any other phases, our calculations suggest a sec-
ond order transition at yLO−N , and a first order transition at
yLO−SF , with the amplitude ∆ rising smoothly from ∆ = 0
to just below ∆0 at yLO−SF . The period also rises from a
minimum value LLO−N at yLO−N , to a finite maximum value
LLO−SF at yLO−SF . Were the transition at yLO−SF smooth,
LLO−SF → ∞ would diverge. Sample profiles for the states
marked × are shown in Fig. 3. (Colour online.)

lack of scales at unitarity – between L and the average
energy and pressure densities: L ∂P/∂L = 2E−3P . This
ensures that the unitary relationship P = 2

3
E is satisfied

by the physical state.
At unitarity, one may fully characterize all stable

phases by the single parameter y = µb/µa as de-
scribed in [18]. We start by describing the homogeneous
and isotropic states supported in the aslda functional:
For y < y0 [18], the system is a fully-polarized non-
interacting Fermi gas (Na); between y0 < y < yLO the
highest pressure corresponds to a partially polarized two-
component Fermi gas; and above yLO < y < 1, the fully-
paired superfluid has the highest pressure. The point
yLO is where the pressures of the partially polarized nor-
mal and fully-paired superfluid states are equal. This is
where the energetic competition of the normal and su-
perfluid states is minimized, and thus where the lo state

∆
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FIG. 3: A single period exhibiting the spatial dependence
of the pairing field ∆(z) (top) and the number densities
of the majority (dotted) and minority (solid) species (bot-
tom). Profiles are shown for the values of y = µb/µa ∈
(yLO−N , yLO−SF ) indicated by × on the curves in Fig. 2.
The pairing field is expressed in terms of the gap ∆0 of the
competing superfluid state of the same average chemical po-
tential µ+. The amplitude increases smoothly from zero at
yLO−N , where the profile is almost sinusoidal, to a critical
value slightly less than ∆0 at yLO−SF , where the profile as-
sumes a domain wall structure. The units of the densities
and periods are chosen by fixing the chemical potential differ-
ence µ− to facilitate comparison with trap experiments: In a
trap, µ− is globally fixed while the average chemical potential
µ+(r) = µ0 − V (r) varies with the trapping potential V (r).
The densities and length scales are normalized to the density
n0 and interparticle spacing l0 of a single species in the fully-
paired superfluid at yLO−SF . Thus, the changes in magnitude
demonstrate how the parameters decrease with y as one moves
towards the edge of the trap (see [13, 18] for details). Large
oscillations of the minority component break translation in-
variance, giving the lo state the crystalline properties of a
quantum solid. These induce large oscillation in the mean-
field potentials (not shown), and have a significant impact on
the normal correlation energy. For this reason, all the terms
in the energy density functional are critical for a proper de-
scription of the lo phase. The majority component exhibits
much smaller oscillations because the larger local kinetic en-
ergy density suppresses gradients. (Colour online.)

is most likely to occur. For y > 1, the picture is re-
versed with the species a ↔ b exchanged. Our aslda

parametrization does not admit any stable homogeneous
gapless superfluid (breached pair) states [10].

As shown in Fig. 2, we find competitive lo solutions
for a large range of the parameter y ∈ (yLO−N , yLO−SF )
with finite periods in the range LLO−N ≤ L ≤ LLO−SF .
At yLO−N , the transition appears to be second order, with
max{|∆(z)|} → 0 vanishing smoothly from the lo phase
to the normal phase, while at yLO−SF , the transition ap-
pears to be first order, with the order parameter abruptly
loosing its spatial oscillations at a finite period LLO−SF .
The remaining normal states between y0 < y < yLO−N

would be susceptible to the Kohn-Luttinger instability,

Phase Structure of Cold Asymmetric Fermionic Matter M. M. Forbes

MIT Vortex Data

M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, (2006)

NTG Seminar 18 October 2006 Page 8
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MIT Experimental data from Shin et. al ()
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to the constraints discussed in [18] (with the updated value
ξ = 0.40 [15, 16]), we have included the constraint imposed
by the parametrization of the normal state energy defining
the aslda functional and shown in Fig. 1 (thin solid blue
line). The pressure of the lo states are shown by the thick
red curve. The y dependence of the amplitude of the pairing
field ∆ = max{|∆(z)|} and the period L are shown as in-
sets, with normalizations that are described in Fig. 3. In the
absence of any other phases, our calculations suggest a sec-
ond order transition at yLO−N , and a first order transition at
yLO−SF , with the amplitude ∆ rising smoothly from ∆ = 0
to just below ∆0 at yLO−SF . The period also rises from a
minimum value LLO−N at yLO−N , to a finite maximum value
LLO−SF at yLO−SF . Were the transition at yLO−SF smooth,
LLO−SF → ∞ would diverge. Sample profiles for the states
marked × are shown in Fig. 3. (Colour online.)

lack of scales at unitarity – between L and the average
energy and pressure densities: L ∂P/∂L = 2E−3P . This
ensures that the unitary relationship P = 2

3
E is satisfied

by the physical state.
At unitarity, one may fully characterize all stable

phases by the single parameter y = µb/µa as de-
scribed in [18]. We start by describing the homogeneous
and isotropic states supported in the aslda functional:
For y < y0 [18], the system is a fully-polarized non-
interacting Fermi gas (Na); between y0 < y < yLO the
highest pressure corresponds to a partially polarized two-
component Fermi gas; and above yLO < y < 1, the fully-
paired superfluid has the highest pressure. The point
yLO is where the pressures of the partially polarized nor-
mal and fully-paired superfluid states are equal. This is
where the energetic competition of the normal and su-
perfluid states is minimized, and thus where the lo state
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FIG. 3: A single period exhibiting the spatial dependence
of the pairing field ∆(z) (top) and the number densities
of the majority (dotted) and minority (solid) species (bot-
tom). Profiles are shown for the values of y = µb/µa ∈
(yLO−N , yLO−SF ) indicated by × on the curves in Fig. 2.
The pairing field is expressed in terms of the gap ∆0 of the
competing superfluid state of the same average chemical po-
tential µ+. The amplitude increases smoothly from zero at
yLO−N , where the profile is almost sinusoidal, to a critical
value slightly less than ∆0 at yLO−SF , where the profile as-
sumes a domain wall structure. The units of the densities
and periods are chosen by fixing the chemical potential differ-
ence µ− to facilitate comparison with trap experiments: In a
trap, µ− is globally fixed while the average chemical potential
µ+(r) = µ0 − V (r) varies with the trapping potential V (r).
The densities and length scales are normalized to the density
n0 and interparticle spacing l0 of a single species in the fully-
paired superfluid at yLO−SF . Thus, the changes in magnitude
demonstrate how the parameters decrease with y as one moves
towards the edge of the trap (see [13, 18] for details). Large
oscillations of the minority component break translation in-
variance, giving the lo state the crystalline properties of a
quantum solid. These induce large oscillation in the mean-
field potentials (not shown), and have a significant impact on
the normal correlation energy. For this reason, all the terms
in the energy density functional are critical for a proper de-
scription of the lo phase. The majority component exhibits
much smaller oscillations because the larger local kinetic en-
ergy density suppresses gradients. (Colour online.)

is most likely to occur. For y > 1, the picture is re-
versed with the species a ↔ b exchanged. Our aslda

parametrization does not admit any stable homogeneous
gapless superfluid (breached pair) states [10].

As shown in Fig. 2, we find competitive lo solutions
for a large range of the parameter y ∈ (yLO−N , yLO−SF )
with finite periods in the range LLO−N ≤ L ≤ LLO−SF .
At yLO−N , the transition appears to be second order, with
max{|∆(z)|} → 0 vanishing smoothly from the lo phase
to the normal phase, while at yLO−SF , the transition ap-
pears to be first order, with the order parameter abruptly
loosing its spatial oscillations at a finite period LLO−SF .
The remaining normal states between y0 < y < yLO−N

would be susceptible to the Kohn-Luttinger instability,

Phase Structure of Cold Asymmetric Fermionic Matter M. M. Forbes

MIT Vortex Data

M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, (2006)
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MIT Experimental data from Shin et. al ()

Observations: Inconclusive
• Need detailed structure or novel signature
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Why FFLO not seen?
• It is not there:

• Other homogenous phases might be better.
• T might be too high (fluctuations kill D FFLO).
• Trap frustrates formation (traps are not flat enough).

• It is not seen:
• Noise washes out signature.
• Small physical volume for FFLO.

• Need a nice flat trap: Large physical volume of FFLO
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Bulgac and Yoon PRL ,  () 

TDDFT: Higgs Mode

similar to the behavior of the Higgs-like modes in homo-
geneous systems. The detailed dynamics is rather compli-
cated and one can identify rather easily running waves, the
interference of which leads to ‘‘Landau’’ damping, with
!H / vF=X (X is the system Thomas-Fermi radius). This
is similar to waves on a surface of a water pool, when
multiple reflections from walls lead to a very choppy
surface, before the wave energy is converted into heat.
This damping mechanism is different from that discussed
in Ref. [17] (partially already included in the present
approach) and likely a more efficient one as well in traps.
We estimated the speed of these running waves vH=vF to
be within 10% of the ground state value of the speed of

sound c=fF ¼
ffiffiffiffiffiffiffiffi
"=3

p
" 0:37, where " is the Bertsch pa-

rameter [2]. These waves propagate with essentially con-
stant speed, even though the local density or Fermi velocity
changes quite dramatically across the cloud. Upon crossing
two waves propagating in opposite directions seem to
retain their original form (a solitonlike property), in spite
of significant nonlinearities. A remarkable feature of this
new type of excitation mode of Fermi systems is the
intrinsic nonsphericity of the Fermi surface (resembling
Landau’s zero-sound for normal systems), a feature absent
for the hydrodynamic modes or the collective modes in
homogeneous systems described above within TD-SLDA.
Note that in finite systems the equilibrium local momen-
tum distribution is elongated along the density gradient
[18], thus hk2y þ k2z $ 2k2xi< 0 initially.

In summary, we have discussed the large amplitude
pairing field dynamics in both homogeneous and inhomo-
geneous unitary Fermi systems and have demonstrated the
existence collective modes with frequencies lower than the
hydrodynamic ones, and which in traps have a nonspher-
ical oscillating momentum distribution.

The financial support through the U.S. Department of
Energy Grants No. DE-FG02-97ER41014 and No. DE-
FC02-07ER41457 is gratefully acknowledged. We thank
G. F. Bertsch and M.M. Forbes for their critical reading of
the manuscript and discussions, and K. J. Roche for help
with implementing the parallel version of the code. Some
calculations were performed using the UWAthena cluster.
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FIG. 3 (color online). The color bar shows the correspondence
between various values of the ratio nðx; tÞ=nð0; 0Þ and the colors
used to represent them. Here nð0; 0Þ ¼ k3F=ð3#2Þ and "F ¼
k2F=2. The solid black line shows the corresponding rms cloud
radius, see Eq. (5). The dashed black line shows the quadrupole
moment of the momentum distribution P20 ¼ 20hk2y þ k2z $
2k2xi=ðNk2FÞ (scaled to fit in figure).
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SLDA TDDFT

Bulgac, Luo, Magierski, Roche, Yu ()

483 and 196×322 grids
5×105 independent wavefunctions
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SLDA TDDFT

Bulgac, Luo, Magierski, Roche, Yu ()

TDDFT for triaxial GDR with nuclear functionals
Stetcu, Bulgac, Magierski, & Roche, PRC , () (R) (),
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Drut, Lähde, Wlazłowski, & Magierski, PRA  ()  
Wlazłowski, Magierski, Drut, Bulgac, & Roche, PRL  () 

AFQMC
• Unitary Fermi Gas

• Full D from 63=216 to 163=4096 grids
• -  particles
• steps of imaginary time
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Bulgac & Forbes arXiv:.

Exact Diagonalization
(“Triton” and “Alpha”)

Use DVR for relative coords.
Directly solve D and D 
Schrödinger Eq.
Lanczos iterations

• No matrices O(N ln N)
Several minutes on laptop
Hilbert space to 89=108

•a=0.5 to . fm
•Λ=300 to 930 MeV/c
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Bulgac & Forbes arXiv:.

Exact Diagonalization
(“Triton” and “Alpha”)

Fourier basis
“lower bound”

Band structure lowers 
energy

• (Tunneling to 
neighboring cells)
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Bulgac & Forbes arXiv:.

Exact Diagonalization
(“Triton” and “Alpha”)

Dirichlet basis
“upper bound”

Boundary conditions 
raises energy
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DVR: an Efficient basis
• Quasi-local

• ⟨Fm|V|Fn⟩ ≈ δmnV(xn)
• fn = f(xn)/wn

• Good phase-space coverage

• Easy to implement

• Straightforward convergence properties

• An efficient alternative to HO basis?
This idea is illustrated in Fig. 5, which exhibits the phase

space area occupied by the first 20 harmonic oscillator eigen-
states in two different ways. On the left are plotted the first
20 annular strips, each of area 2!" . The Bohr–Sommerfeld
quantizing orbits #not shown$ lie half way between the
circles in the figure, the latter of which have actions In
!(1/2!)!p dx!n" , n!1,.. . ,20. The wave function plotted
is %13(x), which occupies the annular strip bounded by the
heavy lines. On the right, the same area is divided into 20
vertical strips of equal area 2!" . Plotted on the x-axis are
the grid points for N!20, which are the roots of %20(x). The
wave function plotted is the DVR state F13(x) #roots are
labeled from &!0 at the left$, which is proportional to
%20(x)/(x"x13). It clearly vanishes at all grid points except
one. The phase space area occupied by this state is the ver-
tical strip bounded by the heavy lines.

In this way we obtain a geometrical interpretation of the
unitary transformation which takes us from the orthogonal
polynomial basis '%n(x)( to the DVR basis 'F&(x)(. That
is, it consists of dividing the phase space area occupied by
the first N states into Planck cells in two different ways.

V. THE ACCURACY OF THE DVR APPROXIMATION
FOR THE POTENTIAL ENERGY

We have shown that the error in the expansion of a #pre-
sumably$ unknown eigenfunction in a spectral basis trun-
cated at size N goes as e"cN, when N is large enough and
under appropriate conditions of analyticity and boundary
conditions. Normally this implies the exponential conver-
gence of the eigenvalues of the truncated matrix of the
Hamiltonian in the spectral basis to the exact eigenvalues. If
the exact energy spectrum is nondegenerate, this also implies
the exponential convergence of the eigenfunctions of the
truncated problem to the exact eigenfunctions, although if
there are near degeneracies the basis must be large enough to
resolve these #the exponentially small error must be smaller
than the small energy splittings$. Thus we may say, exponen-
tial convergence of the orthonormal expansion implies expo-
nential convergence of the VBR method, to use the terminol-

ogy of Ref. 12. We will not prove these statements here since
their proof would take us too far astray and the issue is
unrelated to the accuracy of the DVR method.

In the DVR method, however, there is an additional error
due to the usual diagonal approximation for the matrix ele-
ments of the potential energy,

)F&"V"F*+,V#x&$ -&* . #5.1$

We will show below that this error is O(1/N), which is much
larger than the error due to the truncation of the basis alone.
Nevertheless, the final error in the eigenvalues and eigen-
functions in the DVR method is still exponentially small.
The discrepancy in the magnitudes of these two errors has
been noted by several authors in the past, including Wei50
and Baye et al.11 In this section we shall explain this para-
doxical behavior.

The diagonal approximation #5.1$ applies when working
in the DVR basis '"F&+( #in this section we follow the nota-
tion of Sec. III$. One can also work in the basis '"%n+(, in
practice often a spectral basis, in which case the approxima-
tion #5.1$ is equivalent to a Gaussian quadrature approxima-
tion for the matrix elements of the potential energy. The
computed eigenvalues are the same #thus they have the same
error$ since the two bases are unitarily equivalent, so for the
purposes of studying the final error, either basis may be used.
We have preferred to use the DVR basis because the argu-
ments can be extended to the nonorthogonal case studied in
Sec. VI.

We begin by making some comments on the analysis of
Wei50 of the accuracy of the DVR approximation. This is the
most careful treatment of this question that we are aware of
in the existing literature. Wei notes that the error in the di-
agonal approximation for the matrix elements of the poten-
tial energy in the DVR basis is actually rather large, but he
makes the observation that if one transforms the DVR matrix
to the spectral basis '"%n+( #again in the notation of Sec. III$,
the #quadrature$ error is concentrated at the lower right cor-
ner of the matrix, that is, it only affects matrix elements
connecting states "%n+ with n near the cutoff value N . These
are the states that in phase space live near the edges of the
region covered by the projection operator. The analysis is
particularly simple in the case of polynomial potentials, in
which case #for orthogonal polynomial bases$ the matrix for
V is band-diagonal and one can make statements about the
order of perturbation theory at which various corrections oc-
cur. Wei does not make assertions about the behavior of the
error as a function of N , but he does give explicit error
estimates for common cases of DVR functions and it is pos-
sible to extract from these the exponential convergence
which we shall argue for below. We believe it should also be
possible to use perturbation theory to derive the law of ex-
ponential convergence, at least in the case of polynomial
potentials.

Consider now the matrix element )F&"V"F*+ , in which
F*(x) certainly belongs to S. If it were true that V(x)F*(x)
also belonged to S, then Eq. #5.1$ would be exact. But in
fact, V(x)F*(x) contains components outside of S, typically
of order 1/N . We argue this first on semiclassical grounds.

FIG. 5. Illustrations of the phase space area occupied by the first 20 states of
the harmonic oscillator. On the left, the annular strips of equal area are
occupied by the harmonic oscillator eigenstates %n(x), n!0,.. . ,19. The
wave function plotted is %13(x), which corresponds to the annular strip
bounded by heavy lines. On the right, the same area is divided into 20
vertical strips of equal area, occupied by the DVR states. The dots on the
x-axis are the zeroes of %20(x), and the wave function plotted is the DVR
state corresponding to root &!13. The vertical phase space strip occupied
by this state is marked with heavy lines.
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