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Understanding/calculating the nucleon self-energy 
at positive and negative energy

• Why do Green’s functions?
• Question: “What does a nucleon do in the nucleus?”
• Ab initio minimum for nuclei

SRC + LRC = FRPA but without momenta beyond mean field
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• Dispersive Optical Model (Framework of Green’s functions <--> data)
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Understanding/Calculating Self-energy 

Why do Green’s functions?
• Properly executed --> answers an old question from Sir Denys 

Wilkinson: “What does a nucleon do in the nucleus?”
• Nucleon self-energy --> elastic nucleon scattering data --> input 

for the analysis of many nuclear reactions

• Ab initio: miserable status (see later) needs urgent improvement 

• Nucleon self-energy --> bound-state overlap functions with their 
normalization --> also used in the analysis of nuclear reactions

• Nucleon self-energy: density distribution & E/A from VNN

• Ab initio: FRPA good but can be further improved
• Self-energy    --> nucleon propagator   --->        ---> excited states

• Self-energy <--> data --> dispersive optical model (DOM)              

�⌃

�G
G⌃



Understanding/Calculating Self-energy 

Propagator / Green’s function
• Lehmann representation

• Any single-particle basis can be used

• Overlap functions                    --> numerator 

• Corresponding eigenvalues       --> denominator

• Spectral function

• Spectral strength in the continuum

• Discrete transitions
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Propagator from Dyson Equation and “experiment”
Equivalent to …

Self-energy: non-local, energy-dependent potential
With energy dependence: spectroscopic factors < 1 
⇒ as observed in (e,e’p)

Schrödinger-like equation with:

Dyson equation also yields                                                    for positive energies

Elastic scattering wave function for protons or neutrons
Dyson equation provides:
Link between scattering and structure data from dispersion relations

Spectroscopic factor
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Elastic scattering data for protons and neutrons
• Abundant for stable targets
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Recent DOM 
analysis --> 

towards global0 50 100 150
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Mougey et al., Nucl. Phys. A335, 35 (1980) 16O(e,e’p)

Energy

Mom
ent

um

∝ Cross section
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Nuclei (e,e’p) reaction
NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Wave functions as expected, except ….
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Removal probability for 
valence protons

from
NIKHEF data

L. Lapikás, Nucl. Phys. A553,297c (1993)

Weak probe but propagation in the 
nucleus of removed proton 

using standard optical 
potentials to generate 

distorted wave --> associated 
uncertainty ~ 5-10%

Why: details of the interior 
scattering wave function 

uncertain since non-locality is 
not constrained (so far)

S ≈ 0.65 for valence protons
Reduction ⇒ both SRC and LRC

(e,e’p)
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High-momentum protons have been seen in nuclei!
Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

12C

• Location of high-momentum components
• Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994)

 ⇒ ~0.6 protons for 12C ⇒ ~10%
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M. van Batenburg & L. Lapikás from 208Pb (e,e´p) 207Tl  
NIKHEF 2001 data (one of the last experiments)

Up to 100 MeV missing energy and
270 MeV/c missing momentum

Covers the whole mean-field domain!!

Occupation of deeply-bound proton levels from EXPERIMENT

Confirms predictions for depletion

SRC LRC

n(0) ⇒  0.85 Reid
 0.87 Argonne V18
 0.89 CDBonn/N3LO

Nuclear matter
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Location of 
single-particle
 strength in 
closed-shell  

(stable) nuclei

SRC

SRC theory

For example:
protons in 208Pb

N
IKH

EF (e,e’p) data
L. Lapikás

N
ucl. Phys. A

553,297c (1993)JLab E97-006 

Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

Elastic nucleon 
scattering

Reviewed in Prog. Part. Nucl. Phys. 52 (2004) 377-496
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SCGF:
self-consistent
Green’s functions
for SRC and tensor 
effects

Interaction in the 
medium properly 
treating short-range 
and tensor 
correlations

Self-energy = 
complex potential in 
nuclear matter

Dyson equation ⇒
Schrödinger equation 
for dressed nucleons

Arnau Rios
Arturo Polls
W.D.
finite T avoids pairing (with in progress)

self-consistency
=> thermodynamically consistent

Full off-shell propagation in infinite matter
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Fetter & Walecka
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Three different interactions (Rios, Polls recently)
                soft              somewhat hard         quite soft

• Normalization of n(k) --> 1 (not density) 
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SRC/high momenta ab initio for heavier nuclei

• In the beginning stages of proper sophistication…

• But in progress!

• One-body scattering --> momentum vector - spin basis

• Two-body scattering --> momentum vector - spins basis

• Initial step: use nuclear matter detour --> PRC51, 3040 (1995)

• How “bad” is it?
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Ab initio with CDBonn for 40Ca

• Dussan et al. PRC84, 044319 (2011); spectral functions available
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CDBonn
• Density ….
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Non-locality of imaginary part
• Fit non-local imaginary part for   =0

• Integrate over one radial variable

• Predict volume integrals for higher

                                                         Parameters 
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p
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Ab initio description of elastic scattering
• Must be done much better
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Ab initio calculation of elastic scattering n+40Ca

• ONLY treatment of short-range and tensor correlations

DOM & data

DOM l≤4

CDBonn l≤4
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Drip-line nuclear physics
• Many reactions necessarily involve strongly interacting particles

– (p,2p) perhaps (p,pn)

– (d,p) or (p,d)

– HI knock-out reactions

• Interactions of “projectiles” with “target” are not experimentally 
constrained at this time --> no unambiguous information

• Empirical Green’s function project: Dispersive Optical Model (DOM)
– intends to provide a frame work for such constraints

– simultaneous treatment of negative (structure) and positive energies 
(reactions) for nucleons PLUS a reaction description

– linking information below and above the Fermi energy such as elastic 
scattering cross sections, level structure, charge densities, knock-out cross 
sections etc. --->  constrained description of p or n distorted waves
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Optical potential <--> nucleon self-energy
• e.g. Bell and Squires --> elastic T-matrix = reducible self-energy
• Mahaux and Sartor 

– relate dynamic (energy-dependent) real part to imaginary part

– employ subtracted dispersion relation

General dispersion relation for self-energy:

Calculated at the Fermi energy

Subtract 
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Adv. Nucl. Phys. 20, 1 (1991)
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Does the nucleon self-energy also have an
imaginary part above the Fermi energy?

Loss of flux in the elastic channel

Answer: YES!

Potentials assumed to have standard forms: including surface and volume 
absorption; parameters determined by fit to data. Potentials assumed local or 
“made” local. Assumptions are made about surface absorption above and below 
the Fermi energy.
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DOM = Dispersive Optical Model

Vehicle for data-driven extrapolations / predictions to the drip lines
 Goal: extract “propagator”/”self-energy” from data

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)

Combined analysis of protons/neutrons in 40Ca and 48Ca
Charity, Sobotka, & WD, PRL 97, 162503 (2006)
Charity, Mueller, Sobotka, & WD, PRC76, 044314 (2007)

Predict
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DOM improvements

• Replace local energy-dependent HF potential by non-local 
(energy-independent potential) in order to calculate more 
properties below the Fermi energy like the charge density and 
spectral functions --> PRC82, 054306 (2010)

DOModel --> DOMethod-->DSelf-energyMethod
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40Ca spectral function
Recent theoretical development: 
nonlocal “HF” self-energy --> below the 
Fermi energy
WD, Van Neck, Charity, Sobotka, 
Waldecker, PRC82, 054306 (2010)

Old (p,2p) data from Liverpool

Below εF



Understanding/Calculating Self-energy 

Spectral functions and momentum distributions
• 40Ca
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Nucleon correlations

Charge density

Not a good reproduction of charge density 
even though mean square radius was fitted.

Related to local representation of the 
imaginary part of the self-energy --> 
independent of angular momentum --> must be 
abandoned to represent particle number 
correctly as well.
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DOM extensions linked to ab initio FRPA

• Employ microscopic FRPA calculations of the nucleon self-energy 
to gain insight into future improvements of the DOM --> 

• FRPA =  Faddeev RPA --> Barbieri for a recent application see e.g. 
PRL103,202502(2009)

• Most important conclusions
– Ab initio self-energy has imaginary part with a substantial non-locality

– Tensor force already operative for low-energy imaginary part

– Absorption above and below Fermi energy not symmetric

Phys. Rev. C84, 034616 (2011), 1-11
S. J. Waldecker, C. Barbieri and W. H. Dickhoff
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Volume integrals from microscopic FRPA
relevant up to ~ 75 MeV
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Tensor force
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Comparison with DOM for 40,48Ca
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New DOM implementation in progress

• Particle number --> nonlocal imaginary part

• Microscopic FRPA & SRC --> different nonlocal properties above and 
below the Fermi energy

• Include charge density in fit

• Describe high-momentum nucleons <--> (e,e’p) data from JLab

Implications

• Changes the description of hadronic reactions because interior nucleon 
wave functions depend on non-locality

• Consistency test of the interpretation of (e,e’p) possible

• Independent “experimental” statement on size of three-body 
contribution to the energy of the ground state--> two-body only: 
E/A =

1

2A

X

`j

(2j + 1)

Z 1

0
dkk2

k2

2m
n`j(k) +

1

2A

X

`j

(2j + 1)

Z 1

0
dkk2

Z "F

�1
dE ES`j(k;E)



Understanding/Calculating Self-energy 

Critical experimental data

                     Charge density 40Ca
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High-momentum protons have been seen in nuclei!
Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

12C

• Location of high-momentum components
• Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994)

 ⇒ ~0.6 protons for 12C ⇒ ~10%
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High-momentum components
Rohe, Sick et al. Al and Fe (e,e’p) data per proton
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• Mahzoon, Waldecker, Charity, Dussan, WD (2013)

Preliminary results
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Note: their location in energy yields an important 
contribution to the energy of the ground state
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Conclusions and Outlook
• Sir Denys has been answered
• Given a realistic NN interaction, its implications for the role of 

short-range and tensor correlations can be calculated reliably for 
infinite matter of any nucleon asymmetry, density, and 
temperatures above the critical temperature for pairing 

• For finite nuclei this is not yet the case but some insight has 
been gained
– Is a difficult challenge but in progress right now...

• Long-range correlations --> FRPA  identifies relevant properties 
of the self-energy near the Fermi energy

• Alternative approach for finite nuclei: correlate a lot of data --> 
DOM --> drip line
– Will be a tool for FRIB physics as well 
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Giant Resonances
only correct when
sp fragmentation 

is included!

Giant Quadrupole

Giant DipoleIn turn:
Excited states 
determine sp fragmentation

M. G. E. Brand, K. Allaart, and W. D. 
Phys. Lett. 214B , 483 (1988);
Nucl. Phys. A509 , 1 (1990). 
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