#### Understanding/calculating the nucleon self-energy INT 4/16/2013 at positive and negative energy

Arnau Rios (Surrey) Arturo Polls (Barcelona) Carlo Barbieri (Surrey) Dimitri Van Neck (Ghent) Herbert Müther (Tübingen) <u>WashU in St. Louis</u> Hossein Mahzoon Seth Waldecker Helber Dussan Bob Charity Lee Sobotka Wim Dickhoff

- Why do Green's functions?
- Question: "What does a nucleon do in the nucleus?"
- Ab initio minimum for nuclei
   SRC + LRC = FRPA but without momenta beyond mean field
   Fix: Finite nuclei with SRC --> high (modest) momenta
- Dispersive Optical Model (Framework of Green's functions <--> data)
- Conclusions and Outlook

# Why do Green's functions?

Properly executed --> answers an old question from Sir Denys • Wilkinson: "What does a nucleon do in the nucleus?"



- Nucleon self-energy --> elastic nucleon scattering data --> input • for the analysis of many nuclear reactions
- Ab initio: miserable status (see later) needs urgent improvement •
- Nucleon self-energy --> bound-state overlap functions with their • normalization --> also used in the analysis of nuclear reactions
- Nucleon self-energy: density distribution & E/A from  $V_{NN}$ •
- Ab initio: FRPA good but can be further improved •
- Self-energy  $\Sigma$  --> nucleon propagator G--->  $\frac{\delta \Sigma}{\delta G}$  ---> excited states •
- Self-energy <--> data --> dispersive optical model (DOM) •

# 

- Any single-particle basis can be used
- Overlap functions
   --> numerator
- Corresponding eigenvalues --> denominator
- Spectral function  $S_{\ell j}(k; E) = \frac{1}{\pi} \operatorname{Im} G_{\ell j}(k, k; E)$   $E \leq \varepsilon_F^-$

$$= \sum_{n} \left| \langle \Psi_{n}^{A-1} | a_{k\ell j} | \Psi_{0}^{A} \rangle \right|^{2} \delta(E - (E_{0}^{A} - E_{n}^{A-1}))$$

• Spectral strength in the continuum

$$S_{\ell j}(E) = \int_0^\infty dk \ k^2 \ S_{\ell j}(k; E)$$

• Discrete transitions  $\sqrt{S_{\ell j}^n} \phi_{\ell j}^n(k) = \langle \Psi_n^{A-1} | a_{k\ell j} | \Psi_0^A \rangle$ 

# Propagator from Dyson Equation and "experiment"



Equivalent to ...

Schrödinger-like equation with:  $E_n^- = E_0^A - E_n^{A-1}$ 

 $G = G^{(0)} + \Sigma^{*}$   $Schrödinger-Iike equation with <math>D_n - D_0 - n$  Self-energy: non-local, energy-dependent potential With energy dependence: spectroscopic factors < 1 $\Rightarrow$  as observed in (e,e'p)

$$\frac{k^2}{2m}\phi_{\ell j}^n(k) + \int dq \ q^2 \ \Sigma_{\ell j}^*(k,q;E_n^-) \ \phi_{\ell j}^n(q) = E_n^- \ \phi_{\ell j}^n(k)$$

Spectroscopic factor  $S_{\ell j}^{n} = \int dk \ k^{2} \left| \langle \Psi_{n}^{A-1} | a_{k\ell j} | \Psi_{0}^{A} \rangle \right|^{2} < 1$ 

Dyson equation also yields  $\chi_c^{A+1}(\mathbf{r}\sigma; E) = \langle \Psi_E^{c,A+1} | a_{\mathbf{r}\sigma}^{\dagger} | \Psi_0^A \rangle$  for positive energies

Elastic scattering wave function for protons or neutrons Dyson equation provides: Link between scattering and structure data from dispersion relations Understanding/Calculating Self-energy









#### Removal probability for valence protons from NIKHEF data L. Lapikás, Nucl. Phys. A553,297c (1993)

 $S \approx 0.65$  for valence protons Reduction  $\Rightarrow$  both SRC and LRC

Weak probe but propagation in the nucleus of removed proton using standard optical potentials to generate distorted wave --> associated uncertainty ~ 5-10%

Why: details of the interior scattering wave function uncertain since non-locality is not constrained (so far)



# High-momentum protons have been seen in nuclei!

Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.



- Location of high-momentum components
- Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994)

 $\Rightarrow$  ~0.6 protons for  $^{12}C$   $\Rightarrow$  ~10%

M. van Batenburg & L. Lapikás from <sup>208</sup>Pb (e,e´p) <sup>207</sup>Tl NIKHEF 2001 data (one of the last experiments)

Occupation of deeply-bound proton levels from EXPERIMENT



Up to 100 MeV missing energy and 270 MeV/c missing momentum

Covers the **whole** mean-field domain!!





# Full off-shell propagation in infinite matter



self-consistency
=> thermodynamically consistent



 $G^{(0)}$ 

Interaction in the medium properly treating short-range and tensor correlations

Self-energy = complex potential in nuclear matter

 $G = G^{(0)} + \Sigma^{*}$   $G = G^{(0)} + \Sigma^{*}$   $G = G^{(0)} + \Sigma^{*}$   $G = G^{(0)} + C^{*}$   $G = G^{(0)} + C^{*}$ 

#### Arnau Rios Arturo Polls

W.D.

finite T avoids pairing (with in progress) Understanding/Calculating Self-energy

APPLICATIONS TO PHYSICAL SYSTEMS

#### Fetter & Walecka

The Bethe-Goldstone theory described above still differs in principle from the Brueckner theory because the Brueckner theory relies on a self-consistent single-particle potential. In terms of Green's functions, this result can be achieved by replacing  $G^0(p)$  with a G(p) that includes self-energy effects associated with  $\Gamma$ . Furthermore,  $\Gamma$  must itself be determined with G and not  $G^0$ . The equations for this self-consistent theory are shown schematically in Fig. 42.4.



Fig. 42.4 Self-co

As they stand, these equations are quite intractable because the frequency dependence of  $\Sigma^*(\mathbf{p}, p_0)$  complicates the integral equation for  $\Gamma$  immensely. (This difficulty is sometimes known as *propagation off the energy shell.*) The simple Pruckner-Goldstone theory can be obtained from these equations in a series of approximations. This, we serie consistency is treated only on the average, and we use a frequency independent self-energy  $\Sigma^*_{sc}(\mathbf{p}) \equiv \Sigma^*(\mathbf{p}, \epsilon_{\mathbf{p}}/\hbar)$ , obtained by setting  $p_0 = \epsilon_{\mathbf{p}}/\hbar$ , where  $\epsilon_{\mathbf{p}}$  satisfies the self-consistent equation

$$\epsilon_{\mathbf{p}} = \epsilon_{\mathbf{p}}^{0} + \hbar \Sigma^{\star}(\mathbf{p}, \epsilon_{\mathbf{p}}/\hbar) \equiv \epsilon_{\mathbf{p}}^{0} + \hbar \Sigma_{sc}^{\star}(\mathbf{p})$$
(42.13)

In this way, the Green's function is given approximately as

$$G_{sc}(\mathbf{p}, p_0) = \frac{\theta(|\mathbf{p}| - k_F)}{p_0 - \epsilon_{\mathbf{p}}/\hbar + i\eta} + \frac{\theta(k_F - |\mathbf{p}|)}{p_0 - \epsilon_{\mathbf{p}}/\hbar - i\eta}$$
(42.14)

Second, this Green's function is used to evaluate both the proper self-energy [Eq. (42.4)] and the scattering amplitude [Eqs. (42.5) and (42.6)]. We again obtain  $\chi_m$  by omitting the hole-hole scattering, which is presumed small in the low-density limit. The only effect on the self-consistent wave function is to change the denominator in Eq. (42.6) from  $mP_0/\hbar - \frac{1}{2}(\frac{1}{2}\mathbf{P} + \mathbf{q})^2 - \frac{1}{2}(\frac{1}{2}\mathbf{P} - \mathbf{q})^2 + i\eta$ 

#### Understanding/Calculating Self-energy

382



# SRC/high momenta ab initio for heavier nuclei

- In the beginning stages of proper sophistication...
- But in progress!
- One-body scattering --> momentum vector spin basis
- Two-body scattering --> momentum vector spins basis
- Initial step: use nuclear matter detour --> PRC51, 3040 (1995)
- How "bad" is it?

# Ab initio with CDBonn for <sup>40</sup>Ca

• Dussan et al. PRC84, 044319 (2011); spectral functions available





### Non-locality of imaginary part

• Fit non-local imaginary part for  $\ell=0$ 

$$W_{NL}(\boldsymbol{r},\boldsymbol{r}') = W_0 \sqrt{f(r)} \sqrt{f(r')} H\left(\frac{\boldsymbol{r}-\boldsymbol{r}'}{\beta}\right)$$

• Integrate over one radial variable



- Predict volume integrals for higher  $\ell$ 



#### Parameters

| Energy      | $W_0$ | $r_0$ | $a_0$ | β    | $ J_W/A $ | $ J_W/A $               |
|-------------|-------|-------|-------|------|-----------|-------------------------|
| ${\rm MeV}$ |       |       |       |      |           | $\operatorname{CDBonn}$ |
| -76         | 36.30 | 0.90  | 0.90  | 1.33 | 193       | 193                     |
| 49          | 6.51  | 1.25  | 0.91  | 1.43 | 73        | 73                      |
| <b>65</b>   | 13.21 | 1.27  | 0.70  | 1.29 | 135       | 135                     |
| 81          | 23.90 | 1.22  | 0.67  | 1.21 | 215       | 215                     |

#### Ab initio description of elastic scattering Must be done much better • 1000 E<sub>lab</sub>=26 MeV E<sub>lab</sub>=11 MeV Full DOM 100 dσ/Ω [mb/sr] 100 dơ/Ω [mb/sr] 10 10 DOM full 0.1 1 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 20 40 60 80 0 $\theta_{cm}$ [deg] $\theta_{c.m.}$ [deg] 1000 E<sub>lab</sub>=65 MeV 1000 E<sub>lab</sub>=95 MeV 100 100 $d\sigma/\Omega \,[mb/sr]$ dσ/Ω [mb/sr] 10 10 1 1 0.1 0.1 0.01 0.01 Full DOM Full DOM 0.001 0.001 80 20 40 60 80 100 120 140 160 20 40 60 100 120 140 160 180 180 0 0 $\theta_{c.m.}$ [deg] $\theta_{c.m.}$ [deg] Understanding/Calculating Self-energy



# Drip-line nuclear physics

- Many reactions necessarily involve strongly interacting particles
  - (p,2p) perhaps (p,pn)
  - (d,p) or (p,d)
  - HI knock-out reactions
- Interactions of "projectiles" with "target" are not experimentally constrained at this time --> no unambiguous information
- Empirical Green's function project: Dispersive Optical Model (DOM)
  - intends to provide a frame work for such constraints
  - simultaneous treatment of negative (structure) and positive energies (reactions) for nucleons PLUS a reaction description
  - linking information below and above the Fermi energy such as elastic scattering cross sections, level structure, charge densities, knock-out cross sections etc. ---> constrained description of p or n distorted waves Understanding/Calculating Self-energy

#### Optical potential <--> nucleon self-energy

- e.g. Bell and Squires --> elastic T-matrix = reducible self-energy
- Mahaux and Sartor Adv. Nucl. Phys. 20, 1 (1991)
  - relate dynamic (energy-dependent) real part to imaginary part
  - employ subtracted dispersion relation

General dispersion relation for self-energy:

 $\operatorname{Re} \Sigma(E) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E_{T}^{+}}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{E - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E_{T}^{-}} dE' \frac{\operatorname{Im} \Sigma(E')}{E - E'}$   $\operatorname{Calculated at the Fermi energy} \quad \varepsilon_{F} = \frac{1}{2} \left\{ (E_{0}^{A+1} - E_{0}^{A}) + (E_{0}^{A} - E_{0}^{A-1}) \right\}$   $\operatorname{Re} \Sigma(\varepsilon_{F}) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E_{T}^{+}}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{\varepsilon_{F} - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E_{T}^{-}} dE' \frac{\operatorname{Im} \Sigma(E')}{\varepsilon_{F} - E'}$   $\operatorname{Subtract}$   $\operatorname{Re} \Sigma(E) = \operatorname{Re} \Sigma^{\widehat{HF}}(\varepsilon_{F})$   $- \frac{1}{\pi} (\varepsilon_{F} - E) \mathcal{P} \int_{E_{T}^{+}}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{(E - E')(\varepsilon_{F} - E')} + \frac{1}{\pi} (\varepsilon_{F} - E) \mathcal{P} \int_{-\infty}^{E_{T}^{-}} dE' \frac{\operatorname{Im} \Sigma(E')}{(E - E')(\varepsilon_{F} - E')}$ 

Does the nucleon self-energy also have an imaginary part above the Fermi energy?



Loss of flux in the elastic channel

#### Answer: YES!

Potentials assumed to have standard forms: including surface and volume absorption; parameters determined by fit to data. Potentials assumed local or "made" local. Assumptions are made about surface absorption above and below the Fermi energy.



# DOM improvements

 Replace local energy-dependent HF potential by non-local (energy-independent potential) in order to calculate more properties below the Fermi energy like the charge density and spectral functions --> PRC82, 054306 (2010)

DOModel --> DOMethod-->DSelf-energyMethod

#### Below EF



#### Spectral functions and momentum distributions <sup>40</sup>Ca PRC 82, 054306 (2010)

•



#### Charge density



Not a good reproduction of charge density even though mean square radius was fitted.

Related to local representation of the imaginary part of the self-energy --> independent of angular momentum --> must be abandoned to represent particle number correctly as well.

#### DOM extensions linked to ab initio FRPA

 Employ microscopic FRPA calculations of the nucleon self-energy to gain insight into future improvements of the DOM -->

S. J. Waldecker, C. Barbieri and W. H. Dickhoff

Phys. Rev. C84, 034616 (2011), 1-11

- FRPA = Faddeev RPA --> Barbieri for a recent application see e.g. PRL103,202502(2009)
- Most important conclusions
  - Ab initio self-energy has imaginary part with a substantial non-locality
  - Tensor force already operative for low-energy imaginary part
  - Absorption above and below Fermi energy not symmetric





# Comparison with DOM for <sup>40,48</sup>Ca



#### New DOM implementation in progress

- Particle number --> nonlocal imaginary part
- Microscopic FRPA & SRC --> different nonlocal properties above and below the Fermi energy
- Include charge density in fit
- Describe high-momentum nucleons <--> (e,e'p) data from JLab
   Implications
- Changes the description of hadronic reactions because interior nucleon wave functions depend on non-locality
- Consistency test of the interpretation of (e,e'p) possible
- Independent "experimental" statement on size of three-body contribution to the energy of the ground state--> two-body only:  $E/A = \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^{\infty} dk k^2 \frac{k^2}{2m} n_{\ell j}(k) + \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^{\infty} dk k^2 \int_{-\infty}^{\varepsilon_F} dE \ ES_{\ell j}(k; E)$

# Critical experimental data

Charge density <sup>40</sup>Ca



#### High-momentum protons have been seen in nuclei!

Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.



- Location of high-momentum components
- Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994)

 $\Rightarrow$  ~0.6 protons for  $^{12}C$   $\Rightarrow$  ~10%

High-momentum components Rohe, Sick et al. Al and Fe (e,e'p) data per proton





# Conclusions and Outlook

- Sir Denys has been answered
- Given a realistic NN interaction, its implications for the role of short-range and tensor correlations can be calculated reliably for infinite matter of any nucleon asymmetry, density, and temperatures above the critical temperature for pairing
- For finite nuclei this is not yet the case but some insight has been gained
  - Is a difficult challenge but in progress right now...
- Long-range correlations --> FRPA identifies relevant properties of the self-energy near the Fermi energy
- Alternative approach for finite nuclei: correlate a lot of data -->
   DOM --> drip line
  - Will be a tool for FRIB physics as well

