Nuclear matter with chiral three-nucleon forces

A. Carbone, A. Rios and A. Polls In collaboration with A. Cipollone and C. Barbieri

 2nd April 2013 - INT Program "Computational And Theoretical Advances For Exotic Isotopes In The Medium Mass Region"

Universitat de Barcelona

Outline:

- ✤ Nuclear matter & the importance of adding three-nucleon forces (3NF)
- ✤ Our approach to nuclear matter:
	- ✤ the self-consistent Green's functions (SCGF) approach with 3NF
	- ✤ include 3NF as a density dependent 2NF
- **Results**
- ✤ Conclusions & Outlooks

Outline:

- Nuclear matter & the importance of adding three-nucleon forces (3NF)
- ✤ Our approach to nuclear matter:
	- ✤ the self-consistent Green's functions (SCGF) approach with 3NF
	- ✤ include 3NF as a density dependent 2NF
- **Results**
- ✤ Conclusions & Outlooks

Nuclear Matter

What do we know about it?

Empirical saturation properties $E_0 = -16$ MeV, $\rho_0 = 0.16$ fm⁻³

Symmetry Energy $S \approx 30 \text{ MeV}$

Compressibility $K \approx 200/250$ MeV

2solar mass neutron star observed (Demorest *et al.* Nature 467, 1081, 2010)

The importance of adding 3NF

- During the past decades several realistic nucleon-nucleon (NN) interactions have been developed:
	- Paris potentials, *Lacombe et al.* 1980
	- ✤ Nijmegen potentials, *Stocks et al.* 1994
	- ✤ Argonne potentials, *Wiringa et al.* 1995
	- ✤ Bonn potentials, *Machleidt et al.* 1996

Baldo *et al.*, PRC 86, 064001 (2012)

Good thing: reproduce data from Nijmegen database

Bad thing: don't reproduce nuclei binding energies nor **saturation properties of nuclear matter**

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT 5

The importance of adding 3NF

Going back in time:

2-pion exchange attractive term

Other 3NF potentials came afterwards:

- ✤ Tucson-Melbourn potentials, *Coon et al.* 1979
- ✤ TNI potentials, *Lagaris et al.* 1981
- ✤ Urbana and Illinois potentials, *Carlson et al.* 1983

Progress of Theoretical Physics, Vol. 17, No. 3, March 1957

Pion Theory of Three-Body Forces

Jun-ichi FUJITA and Hironari MIYAZAWA

Department of Physics, University of Tokyo, Tokyo

(Received October 27, 1956)

helps overcome underbinding of nuclei, worsens overbinding of SNM

> 2-pion exchange attractive term + repulsive phenomenological term

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT 6

The importance of adding 3NF.... in nuclei

✤ SCGF theory for finite nuclei using SRG evolved chiral NN + 3NF forces:

Cipollone *et al.* arxiv:1303.4900v1

See also H. Hergert *et al.* arxiv:1302.7294

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

The importance of adding 3NF... a chiral approach

- ✤ Chiral EFT generates consistently the NN force and many-body forces
- ✤ State-of-the-art of 2NF chiral force:
	- ✤ N3LO (EM 2003, EGM 2005)
	- ✤ optimized version of N2LO recently published (Ekström *et al.* arXiv: 1303.4674v1)
- ✤ State-of-the-art of 3NF chiral force:
	- ✤ N2LO (ENGKMW 2004)
	- ✤ N3LO (IR 2007, BEKM 2008,2011)
	- N4LO (KGE 2012)

Machleidt, Phys. Rep. 503, 1 (2011)

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

The importance of adding 3NF... a chiral approach

- In the present work we use:
	- ✤ 2NF N3LO (Entem and Machleidt, PRC 68, 041001, 2003)
	- ✤ 3NF N2LO (Epelbaum *et al.* PRC 70, 061002, 2004) in a density dependent form developed by Holt *et al.* PRC 81, 024002 (2010)
	- ✤ Low-energy constants are fit to NN and pi-N data;
	- ✤ Two constants appearing in the onepion and contact term of the 3NF remain free

The importance of adding 3NF.... in nuclear matter

✤ SCGF theory for nucler matter using chiral NN + 3NF forces:

Outline:

- ✤ Nuclear matter & the importance of adding three-nucleon forces (3NF)
- ✤ Our approach to nuclear matter:
	- ✤ the self-consistent Green's functions (SCGF) approach with 3NF
	- ✤ include 3NF as a density dependent 2NF
- **Results**
- ✤ Conclusions & Outlooks

Outline:

- ✤ Nuclear matter & the importance of adding three-nucleon forces (3NF)
- ✤ Our approach to nuclear matter:
	- ✤ the self-consistent Green's functions (SCGF) approach with 3NF
	- ✤ include 3NF as a density dependent 2NF
- **Results**
- ✤ Conclusions & Outlooks

The SCGF approach in very few words

- ✤ A non-relativistic quantum many-body theory originally developed in the 1950's
- ✤ Applyed to atomic, condensed matter, electron gas, **nuclei and nuclear matter** physics (reviews: Dickhoff & Barbieri, PPNP 52, 377, 2004; Müether & Polls, PPNP 45, 243, 2000)
- ✤ It is based on the use of the Green's function or single-particle (SP) propagator :

The SCGF approach in very few words

- ✤ A non-relativistic quantum many-body theory originally developed in the 1950's
- ✤ Applyed to atomic, condensed matter, electron gas, **nuclei and nuclear matter** physics (reviews: Dickhoff & Barbieri, PPNP 52, 377, 2004; Müether & Polls, PPNP 45, 243, 2000)
- ✤ It is based on the use of the Green's function or single-particle (SP) propagator :

$$
G_{\alpha\alpha'}(E) = \sum_{m} \frac{\langle \Psi_0^N | a_{\alpha} | \Psi_m^{N+1} \rangle \langle \Psi_m^{N+1} | a_{\alpha'}^\dagger | \Psi_0^N \rangle}{E - (E_m^{N+1} - E_0^N) + i\eta} + \sum_{n} \frac{\langle \Psi_0^N | a_{\alpha'}^\dagger | \Psi_n^{N-1} \rangle \langle \Psi_n^{N-1} | a_{\alpha} | \Psi_0^N \rangle}{E - (E_0 - E_n^{N-1}) + i\eta}
$$

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

The SCGF approach in very few words

- ✤ The SP propagator is directly connected to the spectral function:
	- ✤ defines the nucleon distribution in momentum/energy space

The SCGF approach for SNM

- ✤ Start with a given spectral function, hence a SP propagator, and an NN interaction
- ✤ Construct an effective interaction in the medium, the T matrix, summing up</u> iteratively the so called *ladder diagrams*
- ✤ Calculate the SP self-energy and other microscopic properties
- ✤ Calculate once again the SP propagator through Dyson's equation

✤ Procedure is repetead until self-consistency is achieved

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

The SCGF approach for SNM with 3NF

- Start with a given spectral function, hence a SP propagator, and effective interactions
- ✤ Construct an effective interaction in the medium, the \underline{T} matrix, summing up iteratively the so called *ladder diagrams*
- ✤ Calculate the SP self-energy and other microscopic properties
- ✤ Calculate once again the SP propagator through Dyson's equation

$$
W = \frac{1}{2} - \frac{1}{
$$

✤ Procedure is repetead until self-consistency is achieved

The main message: you can't define an effective two-body interaction and include it right away in your many-body theory! (Bogner *et al.* PPNP 65, 94, 2010; Hebeler *et al.* PRC 82, 014314, 2010)

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

All 3-body interaction irreducible diagrams are omitted in this approach, i.e. those coming from a $T³$ matrix

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT 19

The Koltun sumrule for the energy

✤ We need to calculate the total energy of the system:

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \langle \Psi^N | \hat{T} | \Psi^N \rangle + \langle \Psi^N | \hat{V} | \Psi^N \rangle
$$

✤ We have the Koltun sumrule to calculate the total energy of the system: first developed by Galitskii and Migdal (1958), later applied to finite system by Koltun ('70s)

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \langle \Psi^{N} | \hat{T} | \Psi^{N} \rangle + 2 \langle \Psi^{N} | \hat{V} | \Psi^{N} \rangle
$$

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \sum_{\alpha} \int_{-\infty}^{E^{N} - E^{N-1}} dE E \frac{1}{\pi} \text{Im} \, G(\alpha, \alpha'; E)
$$

The Koltun sumrule for the energy

✤ We need to calculate the total energy of the system:

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \langle \Psi^N | \hat{T} | \Psi^N \rangle + \langle \Psi^N | \hat{V} | \Psi^N \rangle
$$

✤ We have the Koltun sumrule to calculate the total energy of the system: first developed by Galitskii and Migdal (1958), later applied to finite system by Koltun ('70s)

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \left\langle \Psi^{N} | \hat{T} | \Psi^{N} \rangle + 2 \langle \Psi^{N} | \hat{V} | \Psi^{N} \rangle \right.
$$
\n
$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \left\langle \sum_{\alpha} \int_{-\infty}^{E^{N} - E^{N-1}} dE E \frac{1}{\pi} \text{Im} G(\alpha, \alpha'; E) \right\rangle
$$
\nThe spectral function\n
$$
\frac{E}{A} = \frac{\nu}{\rho} \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d\omega}{2\pi} \frac{1}{2} \left\{ \frac{k^{2}}{2m} + \omega \right\} \mathcal{A}(k, \omega) f(\omega)
$$

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

The Koltun sumrule for the energy

✤ We need to calculate the total energy of the system:

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \langle \Psi^N | \hat{T} | \Psi^N \rangle + \langle \Psi^N | \hat{V} | \Psi^N \rangle
$$

✤ We have the Koltun sumrule to calculate the total energy of the system: first developed by Galitskii and Migdal (1958), later applied to finite system by Koltun ('70s)

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \left\{ \frac{\langle \Psi^{N} | \hat{T} | \Psi^{N} \rangle + 2 \langle \Psi^{N} | \hat{V} | \Psi^{N} \rangle}{\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle} \right\}
$$
\n
$$
\sum_{\alpha} \frac{\langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle}{\sum_{\alpha} \sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle} \frac{\partial \Psi^{N}}{\partial \chi^{N}} \frac{\partial \Psi^{N}}{\partial \chi^{N}}}{\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle}
$$
\nThe spectral function
\nThe spectral function

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

✤ We need to calculate the total energy of the system:

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \langle \Psi^N | \hat{T} | \Psi^N \rangle + \langle \Psi^N | \hat{V} | \Psi^N \rangle + \langle \Psi^N | \hat{W} | \Psi^N \rangle
$$

✤ How does the Koltun sumrule change with 3NF?

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \langle \Psi^{N} | \hat{T} | \Psi^{N} \rangle + 2 \langle \Psi^{N} | \hat{V} | \Psi^{N} \rangle + 3 \langle \Psi^{N} | \hat{W} | \Psi^{N} \rangle
$$

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \sum_{\alpha} \int_{-\infty}^{E^{N} - E^{N-1}} dE E \frac{1}{\pi} \text{Im} G(\alpha, \alpha'; E)
$$

✤ We need to calculate the total energy of the system:

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \langle \Psi^N | \hat{T} | \Psi^N \rangle + \langle \Psi^N | \hat{V} | \Psi^N \rangle + \langle \Psi^N | \hat{W} | \Psi^N \rangle
$$

✤ How does the Koltun sumrule change with 3NF?

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \left| \langle \Psi^{N} | \hat{T} | \Psi^{N} \rangle + 2 \langle \Psi^{N} | \hat{V} | \Psi^{N} \rangle + 3 \langle \Psi^{N} | \hat{W} | \Psi^{N} \rangle \right|
$$

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \sum_{\alpha} \int_{-\infty}^{E^{N} - E^{N-1}} dE E \frac{1}{\pi} \text{Im} G(\alpha, \alpha'; E)
$$

The spectral function

$$
\frac{E}{A} = \frac{\nu}{\rho} \int \frac{d^3k}{(2\pi)^3} \int \frac{d\omega}{2\pi} \frac{1}{2} \left\{ \frac{k^2}{2m} + \omega - \frac{1}{3} \Sigma_{HF}^{3NF}(k) \right\} \mathcal{A}(k,\omega) f(\omega)
$$

✤ We need to calculate the total energy of the system:

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \langle \Psi^N | \hat{T} | \Psi^N \rangle + \langle \Psi^N | \hat{V} | \Psi^N \rangle + \langle \Psi^N | \hat{W} | \Psi^N \rangle
$$

✤ How does the Koltun sumrule change with 3NF?

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \left| \langle \Psi^{N} | \hat{T} | \Psi^{N} \rangle \right| \mathbf{Q} \mathbf{W} | \hat{V} | \Psi^{N} \rangle + \mathbf{Q} \mathbf{W} | \hat{W} | \Psi^{N} \rangle
$$

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \sum_{\alpha} \sum_{\alpha} \sum_{\alpha}^{E_{N} - E_{N-1}} \mathbf{d} E E_{\alpha}^{\dagger} \mathbf{I} \mathbf{m} G(\alpha, \alpha'; E)
$$

The spectral function

$$
\frac{E}{A} = \frac{\nu}{\rho} \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d\omega}{2\pi} \frac{1}{2} \left| \frac{k^{2}}{2m} + \omega \right| \mathbf{Q} \mathbf{B}_{HF}^{3NF}(k) \right\} \mathcal{A}(k, \omega) f(\omega)
$$

✤ We need to calculate the total energy of the system:

$$
E^N = \langle \Psi^N | \hat{H} | \Psi^N \rangle = \langle \Psi^N | \hat{T} | \Psi^N \rangle + \langle \Psi^N | \hat{V} | \Psi^N \rangle + \langle \Psi^N | \hat{W} | \Psi^N \rangle
$$

✤ How does the Koltun sumrule change with 3NF?

$$
\sum_{\alpha} \langle \Psi^{N} | a_{\alpha}^{\dagger} [a_{\alpha}, \hat{H}] | \Psi^{N} \rangle = \left\langle \Psi^{N} | \hat{T} | \Psi^{N} \rangle \frac{\mathbf{Q} \Psi^{N} | \hat{V} | \Psi^{N} \rangle}{\mathbf{Q} \mathbf{E} \mathbf{E}
$$

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

Thermodynamic consistency:

Outline:

- ✤ Nuclear matter & the importance of adding three-nucleon forces (3NF)
- ✤ Our approach to nuclear matter:
	- ✤ the self-consistent Green's functions (SCGF) approach with 3NF
	- ✤ include 3NF as a density dependent 2NF
- **Results**
- ✤ Conclusions & Outlooks

- ✤ Density dependent potentials obtained from:
	- ✤ Two-meson exchange potential (Grangé *et al.* PRC 40, 1040 (1989)):

✤ UIX potential (Pudliner *et al.* PRL 74, 4396 (1995)):

3NF as a density dependent 2NF....in SCGF

- ✤ Density dependent potentials obtained from:
	- ✤ UIX potential (Pudliner *et al.* PRL 74, 4396 (1995):
		- ✤ used in SCGF calculations, Somá and Bozek, PRC 78, 054003 (2008)

✤ average is performed with a dressed SP propagator; not correctly included in many-body theory

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT 26

- ✤ Density dependent potentials obtained from:
	- ✤ chiral N2LO 3NF potential:
		- ✤ Holt *et al.* PRC 81, 024002, (2010);
		- ✤ Hebeler *et al.* PRC 82, 014314 (2010);

✤ average is performed over the filled Fermi sea; correctly included in the many-body theory

- ✤ Our approach to include a 3NF as a density dependent 2NF:
	- ✤ Holt's definition of the density dependent 2NF, as detailed in Holt *et al.* PRC 81, 024002, 2010
	- ✤ Values of the low-energy constants c1,c3,c4 fitted to NN and pi-N data (Entem & Machleidt PRC 68, 041001, 2003)
	- ✤ Values of low-energy constants which remain free, c_D and c_E , fitted to 3H and 4He g.s. (Navratil FBS 41, 117, 2007)

- ✤ Our approach to include a 3NF as a density dependent 2NF:
	- ✤ Holt's definition of the density dependent 2NF, as detailed in Holt *et al.* PRC 81, 024002, 2010
	- ✤ Values of the low-energy constants c1,c3,c4 fitted to NN and pi-N data (Entem & Machleidt PRC 68, 041001, 2003)
	- ✤ Values of low-energy constants which remain free, c_D and c_E , fitted to 3H and 4He g.s. (Navratil FBS 41, 117, 2007)

- ✤ Our approach to include a 3NF as a density dependent 2NF:
	- Holt's definition of the density dependent 2NF, as detailed in Holt *et al.* PRC 81, 024002, 2010
	- ✤ Values of the low-energy constants c1,c3,c4 fitted to NN and pi-N data (Entem & Machleidt PRC 68, 041001, 2003)
	- ✤ Values of low-energy constants which remain free, c_D and c_E , fitted to 3H and 4He g.s. (Navratil FBS 41, 117, 2007)

- ✤ Our approach to include a 3NF as a density dependent 2NF:
	- Holt's definition of the density dependent 2NF, as detailed in Holt *et al.* PRC 81, 024002, 2010
	- Values of the low-energy constants c1,c3,c4 fitted to NN and pi-N data (Entem & Machleidt PRC 68, 041001, 2003)
	- ✤ Values of low-energy constants which remain free, c_D and c_E , fitted to 3H and 4He g.s. (Navratil FBS 41, 117, 2007)

Outline:

- ✤ Nuclear matter & the importance of adding three-nucleon forces (3NF)
- ✤ Our approach to nuclear matter:
	- ✤ the self-consistent Green's functions (SCGF) approach with 3NF
	- ✤ include 3NF as a density dependent 2NF
- **Results**
- ✤ Conclusions & Outlooks

✤ Nuclear matter energy per nucleon with the SCGF and BHF approach:

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

✤ Nuclear matter energy per nucleon with the BHF approach:

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT

✤ Pin down thermal effects using the BHF approach:

Main effect at low density; T dependency is predictable and extrapolation to T=0 is under control

> Saturation values: density = 0.16 fm⁻³ $energy = -11.25 MeV$

Saturation values: density = 0.16 fm⁻³ $energy = -12.30$ MeV

• Nuclear matter energy per nucleon, comparison with curve obtained using SRG evolved N3LO 2B, with λ =2.0 fm⁻¹/ Λ _{3B}=2.5 fm⁻¹:

✤ Nuclear matter energy per nucleon, comparison with curve obtained using SRG evolved 2B N3LO with λ =2.0 fm⁻¹/ Λ _{3B}=2.0 fm⁻¹ by Hebeler *et al.* PRC 83, 031301 (2011):

Saturation values: density $= 1.44$ fm⁻¹ energy $= -15.43$ MeV

Saturation values: density = 1.35 fm⁻¹ energy $= -16.36$ MeV

✤ Momentum distribution at finite temperature:

✤ Spectral function at finite temperature:

Arianna Carbone -- Nuclear matter with chiral three-nucleon forces -- 2nd April 2013, INT 36

Results: neutron matter

✤ Neutron matter energy per nucleon with the SCGF approach:

Outline:

- ✤ Nuclear matter & the importance of adding three-nucleon forces (3NF)
- ✤ Our approach to nuclear matter:
	- ✤ the self-consistent Green's functions (SCGF) approach with 3NF
	- ✤ include 3NF as a density dependent 2NF
- **Results**
- ✤ Conclusions & Outlooks

Conclusions & Outlooks

- We used the SCGF approach to calculate microscopic and macroscopic properties of symmetric nuclear matter
- ✤ We included 2B force up to N3LO and 3B up to N2LO in the density dependent prescription by J.W. Holt
- ✤ We obtained consistent results for the saturation energy of nuclear matter, comparing also with the SRG evolved case
- ✤ We also used the BHF approach and obtained realistic results with respect to other cases presented in the literature

Conclusions & Outlooks

- ✤ Perform average of N2LO 3NF with a dressed propagator; work is in progress at the moment
- ✤ Include missing 3NF diagrams
- ✤ Improve correction of Koltun sumrule
- ✤ Evaluate neutron and asymmetric matter cases
- ✤ Encounter a way to avoid pairing instability and perform calculations at T=0 MeV

Thank you for your attention!