Similarity Renormalization Group with Chiral Hamiltonians: Techniques & New Directions

Angelo Calci

Institut für Kernphysik

Introduction

Hamilton Matrix pre-diagonalization (SRG) and basis transformations

QCD-based interaction

realistic NN+3N+4N interactions (χ EFT)

many-body problem

ab-initio methods (IT-NCSM, CC, RGM, ...)

nuclear structure

confront predictions with experiment

New Directions

Applications to Nuclear Spectra

spectroscopy and sensitivity on 3N

Probe Next-Generation Chiral Potentials

with ab-initio nuclear structure

Frequency Conversion

extends SRG in HO Base to lower HO frequencies

SRG in 4B Space

treatment of induced & initial 4N contributions

Chiral NN+3N Interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,...

standard Interaction:

- NN N³LO: Entem&Machleidt, 500 MeV cutoff
- 3N N²LO: Navrátil, local, 500 MeV cutoff, fitted to Triton

standard Interaction with modified 3N:

- NN N³LO: Entem&Machleidt, 500 MeV cutoff
- 3N N²LO: Navrátil, local, with modified LECs and cutoffs, fitted to ⁴He

Next Generation Interactions

consistent N²LO Interaction:

- NN N²LO: Epelbaum et al., 450, ..., 600 MeV cutoff
- 3N N²LO: Epelbaum et al., 450, ..., 600 MeV cutoff, nonlocal

consistent N³LO Interaction:

• coming soon...

Similarity Renormalization Group in Three-Body Space

Bogner, Furnstahl, Perry — Phys. Rev. C 75 061001(R) (2007) Jurgenson, Navrátil, Furnstahl — Phys. Rev. Lett. 103, 082501 (2009) Roth, Neff, Feldmeier — Prog. Part. Nucl. Phys. 65, 50 (2010) Roth, Langhammer, AC et al. — Phys. Rev. Lett. 107, 072501 (2011)

Similarity Renormalization Group (SRG)

accelerate convergence by pre-diagonalizing the Hamiltonian with respect to the many-body basis

continuous unitary transformation of the Hamiltonian

 $\widetilde{H}_{\alpha} = U_{\alpha}^{\dagger}HU_{\alpha}$

leads to evolution equation

 $\frac{d}{d\alpha}\widetilde{H}_{\alpha} = [\eta_{\alpha}, \widetilde{H}_{\alpha}] \quad \text{with} \quad \eta_{\alpha} = -U_{\alpha}^{\dagger}\frac{dU_{\alpha}}{d\alpha} = -\eta_{\alpha}^{\dagger}$ initial value problem with $\widetilde{H}_{\alpha=0} = H$ $\frac{dU_{\alpha}}{d\alpha} = -\eta_{\alpha}^{\dagger}$ $\frac{dU_{\alpha}}{d\alpha} = -\eta_{\alpha}^{\dagger}$

choose dynamic generator

$$\eta_{\alpha} = (2\mu)^2 [T_{\text{int}}, \widetilde{H}_{\alpha}]$$

advantages of SRG: simplicity and flexibility

Three-Body Jacobi Basis

"relative coordinates" for 3-body system

$$\vec{\xi}_0 = \sqrt{\frac{1}{3}} \left[\vec{r}_a + \vec{r}_b + \vec{r}_c \right] \qquad \vec{\xi}_1 = \sqrt{\frac{1}{2}} \left[\vec{r}_a - \vec{r}_b \right] \qquad \vec{\xi}_2 = \sqrt{\frac{2}{3}} \left[\frac{1}{2} (\vec{r}_a + \vec{r}_b) - \vec{r}_c \right]$$

- harmonic-oscillator (HO) Jacobi basis
 - antisymmetric under $1 \leftrightarrow 2$:

$$|\alpha\rangle = |[(N_1L_1, S_1)J_1, (N_2L_2, S_2)J_2]JM_J, (T_1, T_2)TM_T\rangle$$

• completely antisymmetric:

$$|EiJM_JTM_T\rangle = \sum_{\alpha} c_{\alpha,i} |\alpha\rangle$$

 $c_{\alpha,i} = \langle EiJM_JTM_T | \alpha \rangle$

coefficients of fractional parentage (CFPs) by P. Navrátil

SRG in HO Jacobi Basis

- no center of mass part
 - sizable reduction of model space dimension
- coupling considers properties of interaction
 - can evolve every TJP-channel separately
- discrete basis enables use of CFPs
 - antisymmetrization **simple**
 - explicit consideration of the antisymmetry decreases memory needs

optimized implementation

• largest channel $(T = \frac{1}{2}, J^{\pi} = \frac{5}{2^+})$ in **4 hours on a single node**

SRG Evolution in Three-Body Space

SRG Evolution in A-Body Space

SRG induces irreducible many-body contributions

$$\mathsf{U}_{\alpha}^{\dagger}\mathsf{H}\mathsf{U}_{\alpha} = \widetilde{\mathsf{H}}_{\alpha}^{[2]} + \widetilde{\mathsf{H}}_{\alpha}^{[3]} + \dots + \widetilde{\mathsf{H}}_{\alpha}^{[A]}$$

- restricted to a SRG evolution in 2B or 3B space
- formal violation of unitarity

SRG-evolved Hamiltonians

- NN only: start with NN initial Hamiltonian and evolve in two-body space
- NN+3N-induced: start with NN initial Hamiltonian and evolve in three-body space
- NN+3N-full: start with NN+3N initial Hamiltonian and evolve in three-body space

 α -variation provides a **diagnostic tool** to assess the contributions of omitted many-body interactions

From Jacobi to \mathcal{J} T-Coupled Scheme

transformed interaction in 3B-Jacobi basis

first problem

many-body calculations (A > 6) in Jacobi coordinates not feasible

 \rightarrow advantageous to use *m*-scheme

second problem

m-scheme matrix elements become intractable for $N_{max} > 8$ (p-shell)

transformation from Jacobi into \mathcal{JT} -coupled scheme

key to efficient NCSM calculations up to $N_{max} = 14$ for p-shell nuclei

decoupling on the fly

ab-initio many-body calculation

$\mathcal{J}T$ -Coupled Scheme vs. *m*-Scheme

■ *m*-scheme

 $|(n_a l_a, s_a) j_a m_a, (n_b l_b, s_b) j_b m_b, (n_c l_c, s_c) j_c m_c; t_a m_{t_a}, t_b m_{t_b}, t_c m_{t_c}\rangle$

• $\mathcal{J}T$ -coupled scheme

 $|\{[(n_a l_a, s_a)j_a, (n_b l_b, s_b)j_b]j_{ab}, (n_c l_c, s_c)j_c\}\mathcal{JM}; [(t_a, t_b)t_{ab}, t_c]TM_T\rangle$

- explicit consideration of interaction properties in *JT*-coupled scheme
 - Hamiltonian connects only equal
 J and T
 - memory needs decreases by two orders of magnitude

No-Core Shell Model (NCSM)

- **solve eigenvalue problem**: $H|\Psi_n\rangle = E_n|\Psi_n\rangle$
- **many-body basis**: Slater determinants $|\Phi_{\nu}\rangle$ composed of harmonic oscillator single-particle states

$$\left|\Psi_{n}\right\rangle = \sum_{\nu} C_{\nu}^{n} \left|\Phi_{\nu}\right\rangle$$

• model space: spanned by *m*-scheme states $|\Phi_{\nu}\rangle$ with unperturbed excitation energy of up to $N_{max}\hbar\Omega$

problem of NCSM

enormous increase of model space with particle number A and N_{max}

Importance-Truncated NCSM

- start with **reference state** $|\Psi_{ref}\rangle$ as approximation of target state $|\Psi_n\rangle$ from limited reference space \mathcal{M}_{ref}
- a priori determination of relevant basis states $|\phi_{\nu}\rangle \notin M_{ref}$ via firstorder perturbation theory

$$\kappa_{\nu} = -\frac{\left\langle \Phi_{\nu} \right| \mathsf{H}_{\mathsf{int}} \left| \Psi_{\mathsf{ref}} \right\rangle}{\epsilon_{\nu} - \epsilon_{\mathsf{ref}}}$$

- **importance truncated space** $\mathcal{M}(\kappa_{\min})$ spanned by basis states with $|\kappa_{\nu}| \ge \kappa_{\min}$
- solving eigenvalue problem in $\mathcal{M}(\kappa_{\min})$ provides improved approximation for target state
- **extrapolation** of $\kappa_{\min} \rightarrow 0$ considers effect of omitted contributions
- provides same results as the full NCSM keeping all its advantages
- expands application range to higher A

⁴He: Ground-State Energies

⁶Li: Ground-State Energies

¹²C: Ground-State Energies

¹⁶O: Ground-State Energies

Spectroscopy of ¹²C

SRG Model Space & Frequency Conversion

Roth, AC, Langhammer et al. — in preparation

SRG: Basis Representation

accelerate convergence by pre-diagonalizing the Hamiltonian with respect to the many-body basis

unitary transformation driven by

$$\begin{aligned} \frac{d}{d\alpha} \langle E'i'JT | \widetilde{H}_{\alpha} | EiJT \rangle \approx \\ (2\mu)^{2} \sum_{E'',E'''}^{E''} \sum_{i'',i'''} \langle E'i'JT | T_{int} | E''i''JT \rangle \langle E''i''JT | \widetilde{H}_{\alpha} | E'''i'''JT \rangle \langle E''i''JT | \widetilde{H}_{\alpha} | EiJT \rangle \\ &- 2 \langle E'i'JT | \widetilde{H}_{\alpha} | E''i''JT \rangle \langle E''i''JT | T_{int} | E'''i'''JT \rangle \langle E'''i''JT | \widetilde{H}_{\alpha} | EiJT \rangle \\ &+ \langle E'i'JT | \widetilde{H}_{\alpha} | E''i''JT \rangle \langle E''i''JT | \widetilde{H}_{\alpha} | E'''i''JT | T_{int} | EiJT \rangle \end{aligned}$$

SRG model space truncated $E \leq E_{max}^{(SRG)}$

SRG Model Space

- Iarge angular momenta less important for low-energy properties
 - J-dependent model space truncation $E_{\max}^{(SRG)}(J)$

- use A-ramp as standard
- use B- and C-ramp to investigate sensitivity to model space truncation

Frequency Conversion: ¹⁶O Ground State

A-ramp

B-ramp

C-ramp

- physical content of SRG model space depends on ħΩ
- SRG model space insufficient for low ħΩ
 - especially for increasing mass number

Idea:

- SRG transformation for adequate ħΩ
- convert to ħΩ needed for the many-body calculations

Frequency Conversion: ¹⁶O Ground State

Frequency Conversion: ¹⁶O Ground State

Sensitivity of Nuclear Spectra on Chiral 3N Interactions

Roth, Langhammer, AC et al. — in preparation

Sensitivity on Chiral 3N Interactions

- analyze the sensitivity of spectra on **low-energy constants** (c_i, c_D, c_E) and **cutoff** (Λ) of the chiral 3N interaction at N²LO
- why this is interesting:
 - **impact of N³LO contributions**: some N³LO diagrams can be absorbed into the N²LO structure by shifting the c_i constants

$$\bar{c}_1 = c_1 - \frac{g_A^2 M_\pi}{64\pi F_\pi^2}$$
, $\bar{c}_3 = c_3 + \frac{g_A^4 M_\pi}{16\pi F_\pi^2}$, $\bar{c}_4 = c_4 - \frac{g_A^4 M_\pi}{16\pi F_\pi^2}$

(Bernard et al., Ishikawa, Robilotta)

- **uncertainty propagation**: sizable variations of the c_i from different extractions (also affects $c_1 = -1.23... - 0.76$, $c_3 = -5.'$ provide **constraints** for the development of chiral Hamiltonians and **quantify**
- cutoff dependence: does the theoretical uncertainties on affect nuclear structure observed

Sensitivity of Spectra on 3N Interactions

■ analyze the sensitivity of spectra on **low-energy constants** (c_i, c_D, c_E) and **cutoff** (Λ) of the chiral 3N interaction at N²LO

	C1 [GeV ⁻¹]	C 3 [GeV ⁻¹]	<i>C</i> 4 [GeV ⁻¹]	CD	CE
standard 3N	-0.81	-3.2	+5.4	-0.2	-0.205
c _i shifted	-0.94	-2.3	+4.5	-0.2	-0.085
c_1 shifted	-0.94	-3.2	+5.4	-0.2	-0.247
c_3 shifted	-0.81	-2.3	+5.4	-0.2	-0.200
c_4 shifted	-0.81	-3.2	+4.5	-0.2	-0.130
$c_D = -1$	-0.81	-3.2	+5.4	-1.0	-0.386
$c_D = +1$	-0.81	-3.2	+5.4	+1.0	-0.038
$\Lambda = 400 \text{ MeV}$	-0.81	-3.2	+5.4	-0.2	+0.098
$\Lambda = 450 \text{ MeV}$	-0.81	-3.2	+5.4	-0.2	-0.016

• refit c_E parameter to reproduce ⁴He ground-state energy

¹²C : Sensitivity on c_i

- many states are rather c_iinsensitive
- first 1⁺ state
 shows strong
 c₃-sensitivity

 $\hbar\Omega = 16 \text{ MeV}$ $N_{\text{max}} = 8$ $\alpha = 0.08 \text{ fm}^4$

¹²C : Sensitivity on c_D & Cutoff

- weak dependence on c_D , stronger dependence on Λ
- again first 1⁺ state is most sensitive

Correlation Analysis

Towards Next-Generation Chiral Hamiltonians

■ starting point: numerical 3N matrix elements in partial-wave Jacobi-momentum basis (antisym. under 1 ↔ 2)

 $\langle p_1' p_2' \beta' | V_3(1+P) | p_1 p_2 \beta \rangle \text{ or } \langle p_1' p_2' \beta' | (1+P) V_3(1+P) | p_1 p_2 \beta \rangle$ $| p_1 p_2 \beta \rangle = | p_1 p_2 \{ (L_1, S_1) J_1, (L_2, S_2) J_2 \} J M_J; (T_1, T_2) T M_T \rangle$

- numerical partial-wave decomposition of Skibinski et al.
- ongoing collaborative effort to produce N²LO/N³LO matrix elements (Cracow, Bochum, Bonn, Ohio SU, Iowa SU, Darmstadt)

need transformation to HO basis for nuclear structure calculations!

- SRG in momentum space then transformation to HO basis (Kai Hebeler)
- direct transformation to HO basis

Machinery 3-Body Momentum Basis

Our Strategy:

- transform initial interaction to antisym. HO Jacobi basis
- use HO machinery afterwards (SRG; \mathcal{J} , T-coupled scheme;...)
 - SRG in HO basis very efficient (discrete, consider antisymmetry)
 - new developments in HO basis applicable for all chiral interactions

■ **first application**: consistent NN+3N Hamiltonian at N²LO

- NN at N²LO: Epelbaum et al., cutoffs 450,...,600 MeV, phase-shift fit χ^2 /dat ~ 10 (~ 1) up to 300 MeV (100 MeV)
- 3N at N²LO: Epelbaum et al., cutoffs 450,...,600 MeV, nonlocal, fit to $\alpha(nd)$ and $E(^{3}H)$, included up to J=7/2

¹²C : Consistent N²LO Hamiltonians

¹²C : Consistent N²LO Hamiltonians

¹⁰B : Consistent N²LO Hamiltonians

¹⁰B : Consistent N²LO Hamiltonians

Correlation Analysis: ${}^{12}C(1^+)$ vs. ${}^{10}B(1^+)$

Correlation Analysis: ${}^{12}C(1^+)$ vs. ${}^{10}B(1^+)$

SRG in Four-Body Space

Induced Four-Body Contributions

Four-Body Jacobi Basis

Navrátil, Barrett, Glöckle Phys. Rev. C 59 611 (1999)

■ Jacobi coordinate:
$$\vec{\xi}_3 = \sqrt{\frac{3}{4}} [\frac{1}{2}(\vec{r}_a + \vec{r}_b + \vec{r}_c) - \vec{r}_d]$$

■ Jacobi state antisym. under $1 \leftrightarrow 2 \leftrightarrow 3$ (extension of antisym. three-body Jacobi state)

 $|E_{12}E_{3}i_{12};\alpha\rangle = |E_{12}E_{3}i_{12}[J_{12}, (L_{3}, S_{3})J_{3}]JM_{J}; (T_{12}T_{3})TM_{T}\rangle$

antisym. Jacobi state

$$EiJM_{J}TM_{T} \rangle = \sum_{i_{12},\beta} \tilde{c}_{E_{12},E_{3},i_{12}}^{\alpha,i} | E_{12}E_{3}i_{12};\alpha\rangle \quad \text{with} \quad E = E_{12} + E_{3}$$

introduce **four-body CFPs**: $\tilde{c}_{E_{12},E_3,i_{12}}^{\alpha,i}$

SRG Evolution in Four-Body Space

First Shot: Sum over Fourth Particle

- transformation to four-body m-scheme basis and additional normal-ordering approximation in progress
- meanwhile: create effective three-body interaction in Jacobi basis
 - sum over fourth particle (unperturbed m-scheme state)
 - only consider equal J_{12} , T_{12} in Bra and Ket and average over projections
 - set three-body center of mass motion to ground-state

First Shot: ¹⁶O Ground State

First Shot: ¹⁶O Ground State

correction by induced 4N in right direction, but too small

improvements:

- consider further 4N channels
- increase $E_{\text{max}}^{(SRG)}$
- use normal-ordering approximation

Conclusions

Conclusions

- **SRG** evolution in **HO basis** efficient and **improvable**
 - frequency conversion & model space increase
- consistent four-body SRG evolution (for induced and initial contributions)
 - inclusion via effective three-body interaction
 - next step: use normal-ordering approximation
- **p-shell spectra** provide powerful testbed for chiral potentials
- machinery ready to use 3N @ N³LO in momentum Jacobi basis
 - directly applicable in IT-NCSM, CC, IM-SRG, RGM ...

Epilogue

thanks to my group & my collaborators

- S. Binder, E. Gebrerufael, P. Isserstedt, H. Krutsch, J. Langhammer, S. Reinhardt, R. Roth, S. Schulz, C. Stumpf, A. Tichai, R. Trippel, R. Wirth Institut für Kemphysik, TU Darmstadt
- P. Navrátil TRIUMF Vancouver, Canada
- J. Vary, P. Maris Iowa State Universit
- S. Quaglion[;] LLNL Livermor
- P. Piecuch Collab Michigan State University, USA

• H. Hergert, K. Hebeler Ohio State University, USA

iversity, Sweden

- P. Papakonstantinou LENPIC ¬ay, F
- Low-Energy Nuclear Physics International
 - Collaboration ameier, T. Neff

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung