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Overview

Long-term goal:

◮ universal microscopic model for characteristic low-lying states of nuclei . . .

◮ . . . and large-amplitude dynamics of nuclei . . .

◮ . . . irrespective of their mass and N − Z . . .

◮ . . . their having even or odd N or Z . . .

◮ . . . using a universal effective interaction / energy density functional.

Methodology:

◮ Single-reference: (almost) symmetry-unrestricted self-consistent
mean-fields
(”static” deformation and pairing correlations through symmetry breaking)

◮ Multi-reference: symmetry restoration

◮ Multi-reference: configuration mixing by the Generator Coordinate Method
(GCM)
(”dynamical” deformation and pairing correlations)

M. Bender, CEN de Bordeaux Gradignan MREDF



Who are we?

The collaboration:

◮ B. Avez, B. Bally, M. Bender, J. Sadoudi
CEN Bordeaux Gradignan, France
formalism; beyond-mean-field models; construction of effective
interactions; large-scale applications

◮ K. Bennaceur, D. Davesne, R. Jodon, J. Meyer
IPN Lyon, France
construction of effective interactions; parameter fit; nuclear matter

◮ T. Duguet
SPhN / Irfu / CEA Saclay, France
formalism; construction of effective interactions

◮ P.-H. Heenen, V. Hellemans, W. Ryssen
Université Libre de Bruxelles, Belgium
beyond-mean-field models, large-scale applications
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Single-reference EDF: Some keywords

◮ 3d box

◮ at time being: triaxial symmetry

◮ single-reference calculations treating pairing in a Bogoliubov-type
approach (”HFB”)

◮ constraints on quadrupole deformations and/or one component of angular
momentum

◮ configuration constraints (”blocking”)

◮ Skyrme-type contact interactions + Coulomb
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The standard Skyrme Energy Density Functional
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◮ historic link to effective Skyrme force (broken for various reasons)
◮ The Skyrme part of the functional is constructed such that it is invariant

under time and space inversion, translation, rotation in real and isospin
space, Galilei transformations etc. (otherwise projection to restore these
symmetries would make no sense)

◮ all possible terms of 2nd order in derivatives
◮ density dependence (usually of velocity-independent terms only)
◮ blue: spherical static mean field
◮ blue + green: deformed static mean field
◮ blue + green + red: linear response / time-dependent mean field /

rotating mean field / mean field of quasiparticle states / projection / GCM
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Local (transition) densities and currents
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For completeness: Other terms in the energy density functional

E = Ekinetic + ESkyrme + ECoulomb + Epair
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Symmetry restoration

particle-number projector

P̂N0 =
1
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angular-momentum restoration operator
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K is the z component of angular momentum in the body-fixed frame.
Projected states are given by
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Z
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N |q〉 =
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fJ (K) is the weight of the component K and determined variationally

Axial symmetry (with the z axis as symmetry axis) allows to perform the α and
γ integrations analytically, while the sum over K collapses, fJ (K) ∼ δK0
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Symmetry restoration
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Symmetry restoration schemes

◮ projection after variation (PAV): project mean-field minimum.
◮ Advantage: simple
◮ Problem: not variational. Unreliable in case of absent/weak static

correlations

◮ variation after projection (VAP): vary projected state to determine the
Slater determinant/HFB state that gives optimum projected state

◮ Advantage: variational
◮ Problem: expensive. existing codes for particle number and parity projection

◮ minimization after projection (MAP): generate set of mean-field states
that differ in a collective coordinate that measures the amount of
symmetry breaking, project them and search for the minimum of this
energy curve/surface

◮ Advantage: simple
◮ Problem: not fully variational. Might fail if (projected) energy surface is

soft in degrees of freedom that are not explicitely treated

◮ . . . or combine projection with a mixing of states that differ in a collective
coordinate that measures the amount of symmetry breaking. This
automatically includes the minimum of the projected energy curve/surface
and additionally correlations not related to symmetry restoration
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Configuration mixing by the symmetry-restored Generator Coordinate
Method

Superposition of projected self-consistent mean-field states |MF(q)〉 differing in some
collective coordinate(s) q
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∑
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IJ(qK , q′K ′) = 〈NZ JM qK |NZ JM q′K ′〉 norm kernel

Angular-momentum projected GCM gives the

◮ correlated ground state for each value of J

◮ spectrum of excited states for each J
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Symmetry breaking and restoration

◮ Benefit: symmetries are broken on purpose: describes np-nh and p-p
shell-model correlations (”Jahn-Teller effect”, pairing, . . . ) with a single
product state at very modest computational cost

◮ Difficulty: scheme works only in the limits of neglible symmetry breaking
and strong symmetry breaking, not in between.

◮ Price to pay: missing correlations related to symmetry restoration; difficult
connection to the laboratory frame for spectroscopic observables; absence
of selection rules for transitions

◮ Examples of broken symetries:

symmetry quantum number

translational momentum finite nuclei
rotational angular momentum deformed nuclei
space inversion parity octupole-deformed nuclei
gauge particle number paired systems

◮ symmetry restoration correponds to fluctuations within a set of degenerate
product states differing by a ”rotation”
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Multi-reference energy density functional methods

Multi-reference (MR) EDF is the extension of single-reference (SR) EDF
analogous to GCM being an extension of HFB

◮ HF/HFB: Slater determinant/HFB state as basic building block

E
HFB
q = 〈SRq |Ĥ|SRq〉

◮ SR EDF: density matrices of a Slater determinant/HFB state as building
blocks

ESR
q = ESR

q [ρqq, κqq , κ
∗
qq ] , where ρqq = 〈SRq |ρ̂|SRq〉 etc

◮ GCM: coherent superposition of Slater determinants/HFB states
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◮ MR EDF: transition density matrices between a Slater determinant/HFB
states as building blocks
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A few words on numerics: The Lagrange-mesh method

cf. the talk by Michael McNeil Forbes on monday, 8th april.
Nuclear structure codes that I am aware of using such techniques

◮ V. Blum, G. Lauritsch, J. A. Maruhn, P.-G. Reinhard, J. Comp. Phys. 100
(1992) 364.

◮ 2d Skyrme relativistic mean-field code by V. Blum using FFT techniques
(V. Blum, Doctoral Dissertation, J. W. Goethe-Universität Frankfurt am
Main, 1992)

◮ 2d Skyrme HF+BCS code by P.-G. Reinhard using FFT techniques
(< 1994)

◮ spherical 1d, axial 2d, 3d relativistic mean-field codes by K. Rutz using
FFT techniques (K. Rutz, Doctoral Dissertation, J. W. Goethe-Universität
Frankfurt am Main, 1998)

◮ spherical 1d, axial 2d, 3d Skyrme HF+BCS codes based on Rutz’s RMF
codes (M. Bender, Doctoral Dissertation, J. W. Goethe-Universität
Frankfurt am Main, 1998)

◮ Lagrange-mesh method (D. Baye & P.-H. Heenen, JPA 19 (1986) 2041)
◮ 3d cranked HF and angular-momentum projection using Lagrange-mesh

methods (D. Baye & P.-H. Heenen, PRC 29 (1984) 1056)
◮ GCM kernels of symmetry-restored 3d HF+BCS states (A. Valor, P.-H.

Heenen, P. Bonche, NPA 671 (2000) 145; M. Bender, P.-H. Heenen, PRC
78 (2008) 024309)
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Configuration mixing via the projected Generator Coordinate Method

M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.
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Milestones: Spectroscopy of heavy nuclei from MR EDF

M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.
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Milestones: Spectroscopy of heavy nuclei from MR EDF

M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.

M. Bender, CEN de Bordeaux Gradignan MREDF



Milestones: Spectroscopy of heavy nuclei from MR EDF

. ..
..

M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.

Attention: g2
i (q) is not the probability to find a mean-field state with intrinsic

deformation q in the collective state
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Milestones: Spectroscopy of heavy nuclei from MR EDF

M. B., P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69 (2004) 064303.

Experiment: T. Grahn et al, Phys. Rev. Lett. 97 (2006) 062501 ◮ in-band and out-of-band E2 transition
moments directly in the laboratory
frame with correct selection rules

◮ full model space of occupied particles

◮ only occupied single-particle states
contribute to the kernels (”horizontal
expansion”)

◮ ⇒ no effective charges necessary

◮ no adjustable parameters
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√
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with R = 1.2A1/3
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Static and Dynamic Quadrupole Correlation Energies

M. B., G. F. Bertsch, P.-H. Heenen, Phys. Rev. C 73 (2006) 034322
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Intrinsic Deformation and Quadrupole Correlation Energy

M. B., G. F. Bertsch, P.-H. Heenen, Phys. Rev. C 73 (2006) 034322
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Eigenvalues of the single-particle Hamiltonian vs. S2q

lower panel: −S2p(Z =50,N)/2
The global linear trend is taken out subtracting
N−82

2
[S2p(Z=50,N=50)−S2p(Z=50,N=82)]

using the spherical mean-field S2p

lower panel: −S2n(Z ,N=50)/2
The global linear trend is taken out subtracting
N−50

2
[S2n(Z=28,N=50)−S2n(Z=50,N=50)]

using the spherical mean-field S2n
M. B., G. F. Bertsch, P.-H. Heenen, PRC 78 (2008) 054312
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Milestones: Angular momentum projection of triaxial states

J = 0 projected deformation energy
surface

excitation spectrum

M. B. and P.-H. Heenen, Phys. Rev. C 78 (2008) 024309
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Solving the sign problem in MR EDF

Overlap from Pfaffian formula, Benôıt Avez & M. B., PRC 85 (2012) 034255
α, β held fixed at some values, γ varied

lowest blocked one-quasiparticle state in 25Mg

Im
(〈
φ
a
|φ

b
〉)

Re (〈φa|φb〉)

Im
(〈
φ
a
|φ

b
〉)

Re (〈φa|φb〉)

24Mg cranked to I = 8~

Im
(〈
φ
a
|φ

b
〉)

Re (〈φa|φb〉)

Starting point was work by Robledo, PRC 79 (2009) 021302; Robledo, PRC 84
(2011) 014307. Similar expressions derived in Bertsch & Robledo, PRL108
(2012) 042505.
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New developments: use angular-momentum optimized states

Limitations of the existing implementations of the method

◮ limited to even-even nuclei

◮ collective states only

◮ excitation spectra too spread out

What is the missing physics?

◮ explicit coupling to single-particle degrees of freedom

How to introduce the missing physics?

◮ Use HFB states breaking intrinsic time-reversal invariance as basis states
for the projected GCM

◮ cranked HFB states describe the alignment of single-particle states with
the rotation axis and the weakening of pairing with increasing J

◮ blocked HFB states describe single-particle excitations
(K isomers in even-even nuclei, odd-A nuclei, odd-odd nuclei)

+ adjustment of improved energy functionals
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Problems . . .

◮ pure particle-number projection
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Problems . . .

◮ pure particle-number projection

◮ first hints: Dönau, PRC 58 (1998) 872;
Almehed, Frauendorf, Dönau, PRC 63
(2001) 044311;
Anguiano, Egido, Robledo NPA696
(2001) 467

◮ First analysis in a strict energy density
functional framework and of
EDF-specific consequences by
Dobaczewski, Stoitsov, Nazarewicz,
Reinhard, PRC 76 (2007) 054315

◮ Lacroix, Duguet, Bender, PRC 79
(2009) 044318; Bender, Duguet,
Lacroix, PRC 79 (2009) 044319;
Duguet, Bender, Bennaceur, Lacroix,
Lesinski, PRC 79 (2009) 044320;
Bender, Avez, Duguet, Heenen,
Lacroix, in preparation
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The origin of the problem in a nutshell

◮ All standard energy density functionals (EDF) used for mean-field models
and beyond do not correspond to the expectation value of a Hamiltonian
for at least one of the following reasons:

◮ density dependences
◮ the use of different effective interactions in the particle-hole and pairing

parts of the energy functional
◮ the omission, approximation or modification of specific exchange terms

that are all introduced for phenomenological reasons and/or the sake of
numerical efficiency.

◮ consequence: breaking of the exchange symmetry under particle exchange
when calculating the energy, leading to non-physical interactions of a given
nucleon or pair of nucleons with itself

◮ these self-interactions remain (usually) hidden in the mean field
◮ in the extension to symmetry-restored GCM, these terms cause

◮ discontinuities and divergences in symmetry-restored energy surfaces
◮ breaking of sum rules in symmetry restoration
◮ potentially multi-valued EDF in case of standard density-dependencies
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What to do?

1. constructing the EDF as expectation value of a strict Hamiltonian. New
problem: numerically very costly due to Coulomb exchange & pairing; no
available parameterizations of high quality (the difficulties to construct
such parametrizations was the main motivation to use EDFs in the 1970s).

2. construct the EDF from a density-dependent Hamiltonians with special
treatment of the density entering density dependent terms for which
numerically efficient high-quality parameterizations can be easily
constructed. Problem: numerically very costly due to Coulomb exchange
& pairing; cannot be defined for all possible confifuration mixing [Robledo,
J. Phys. G 37 (2010) 064020].

3. introducing a regularization scheme of the EDF that allows for the use of
(almost) standard functionals [Lacroix, Duguet, & Bender, PRC 79 (2009)
044318] for which numerically efficient high-quality parameterizations can
be easily constructed [Washiyama, Bennaceur, Avez, Bender, Heenen, &
Hellemans, PRC 86 (2012) 054309]. Problem: complicated formalism.

We tried the last option first.
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The regularisation: it almost works

Usual number of Euler and gauge angles:

M. B., B. Avez, T. Duguet, P.-H. Heenen, D. Lacroix, unpublished
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The regularisation: it almost works

Usual number of Euler and ridiculously large number of gauge angles:

M. B., B. Avez, T. Duguet, P.-H. Heenen, D. Lacroix, unpublished

⇒ dependence on the discretization that becomes visible only when using
unreasonably fine discretizations
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Projecting cranked HFB states

◮ spectra projected from cranked states are (almost) realistic only when
regularising

◮ improved moment of inertia at low spin

◮ reproduction of backbending requires scanning the whole energy surface

B. Avez, B. Bally, M. B., P.-H. Heenen, unpublished
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Particle-number restoration of 31Mg

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

<jz>π
≈

B. Bally, B. Avez, M. B., P.-H. Heenen (unpublished)

All states are constructed as blocked one-quasiparticle HFB states
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The regularization can become large

J K weight Enonreg regul Ereg

1 1 0.001006 −234.071 10.037 −244.108
3 1 0.001809 −259.183 −15.481 −243.702
5 1 0.001820 −234.818 7.531 −242.349
7 1 0.001797 −244.332 −2.848 −241.484
9 1 0.001271 −267.849 −28.332 −239.517

11 1 0.000902 −201.965 35.172 −237.137
13 1 0.000544 −336.901 −100.352 −236.549

3 3 0.039376 −247.137 −0.032 −247.105
5 3 0.030730 −243.247 0.467 −243.714
7 3 0.023390 −240.805 1.395 −242.199
9 3 0.013372 −238.060 1.948 −240.007

11 3 0.007914 −234.473 3.548 −238.021
13 3 0.004087 −232.805 4.150 −236.956

5 5 0.000015 −582.874 −371.932 −210.942
7 5 0.000014 −103.953 94.559 −198.512
9 5 0.000010 −127.945 95.658 −223.603

11 5 0.000007 860.956 1075.711 −214.755
13 5 0.000004 −530.816 −334.758 −196.058

7 7 0.000005 790.818 977.088 −186.270
9 7 0.000004 −2215.259 −1916.331 −298.928

11 7 0.000003 −3657.395 −3321.042 −336.353
13 7 0.000002 −4077.760 −3715.879 −361.881 B. Bally, B. Avez, M. B., P.-H. Heenen, unpublished
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There are remaining problems

◮ Non-convergence of combined N and J

projection (on a very small scale, though)

◮ non-diagonal regularized MR EDF kernels can
be decomposed on unphysical particle numbers
(i.e. components that have strictly zero norm),
including negative particle numbers

◮ small components (still) take unphysical
values when regularising which can be
demonstrated using a cranking constraint to
control the size of K = 1 components

◮ impossibility to perform K mixing in a
controlled manner

M. Bender, CEN de Bordeaux Gradignan MREDF



Again: What to do?

1. constructing the EDF as expectation value of a strict Hamiltonian. New
problem: numerically very costly due to Coulomb exchange & pairing; no
available parameterizations of high quality (the difficulties to construct
such parametrizations was the main motivation to use EDFs in the 1970s).

2. construct the EDF from a density-dependent Hamiltonians with special
treatment of the density entering density dependent terms for which
numerically efficient high-quality parameterizations can be easily
constructed. Problem: numerically very costly due to Coulomb exchange
& pairing; cannot be defined for all possible confifuration mixing [Robledo,
J. Phys. G 37 (2010) 064020].

3. introducing a regularization scheme of the EDF that allows for the use of
(almost) standard functionals [Lacroix, Duguet, & Bender, PRC 79 (2009)
044318] for which numerically efficient high-quality parameterizations can
be easily constructed [Washiyama, Bennaceur, Avez, Bender, Heenen, &
Hellemans, PRC 86 (2012) 054309]. Problem: complicated formalism.

At last, we try the first option.

M. Bender, CEN de Bordeaux Gradignan MREDF



How to construct a suitable Hamiltonian?

◮ We need a Skyrme Hamiltonian (without density dependence)
◮ there no existing parametrization that gives simultaneously

◮ realistic ”standard” nuclear matter properties
◮ repulsive spin-spin interaction
◮ attractive pairing

which was the reason to introduce density dependences etc. in the 1970s.

First try: SLyMR0

v̂ = t0

(

1 + x0P̂σ

)

δ̂r1r2

+
t1

2

(

1 + x1P̂σ

)(

k̂
′ 2

12 δ̂r1r2 + δ̂r1r2 k̂
2

12

)

+ t2

(

1 + x2P̂σ

)

k̂
′

12 · δ̂r1r2 k̂12

+ iW0 (σ̂1 + σ̂2) · k̂
′

12 × δ̂r1r2 k̂12

+ u0

(

δ̂r1r3 δ̂r2r3 + δ̂r3r2 δ̂r1r2 + δ̂r2r1 δ̂r3r1

)

+ v0

(

δ̂r1r3 δ̂r2r3 δ̂r3r4 + δ̂r1r2 δ̂r3r2 δ̂r2r4 + · · ·
)

J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, and T. Duguet, Physica Scripta T, in press
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First try: standard two-body + contact 3-body + contact 4-body

◮ it is impossible to fullfil the usual nuclear
matter constraints , to have stable
interactions and attractive pairing

◮ no ”best fit” possible

◮ very bad performance compared to stanrad
functionals
J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, and T. Duguet, Physica Scripta, in press
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MR EDF based on cranked HFB states: The example of 24Mg

SR EDF (cranked HF & HFB+LN) using
SLy4

SR EDF (cranked HF & HFB+LN) using
SLyMR0

⇒ SLyMR0 is not completely desastrous for the description of this phenomenon
⇒ deformation of HF and HFB+LN is very different for SLyMR0

M. Bender, CEN de Bordeaux Gradignan MREDF



Decomposition of states

cranked HF ground state

HF K = 8 state

cranked HFB+LN ground state

M. Bender, CEN de Bordeaux Gradignan MREDF



Decomposition
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Decomposition
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Energy surfaces
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Odd-A nuclei with SLyMR0: The example of 25Mg

PR
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R
Y

”False vacuum” (non-blocked HFB
ground state with 〈N̂〉 = 13, 〈Ẑ 〉 = 12)
B. Bally, B. Avez, M. B., P.-H. Heenen (to be published)
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Blocked HFB 1-quasiparticle state,
where blocked particle has 〈jz 〉 ≈ 5/2
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Blocked HFB 1-quasiparticle state,M. Bender, CEN de Bordeaux Gradignan MREDF



First ”beyond-mean-field” results for odd-A nuclei with SLyMR0
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Blocked 1-qp state with 〈jz 〉 ≈ 5/2,
projected on Z = 12, N = 13, J = 5/2+.
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Blocked 1-qqp state with 〈jz 〉 ≈ 3/2,
projected on Z = 12, N = 13, J = 3/2+.
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Decomposition of the blocked HFB
1-quasiparticle state that gives the lowest
energy after projection.
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Full GCM of projected states.

Benjamin Bally, Benôıt Avez, M. B., P.-H. Heenen (to be published)M. Bender, CEN de Bordeaux Gradignan MREDF



Ongoing improvements: 3-body terms of 2nd order in gradients

◮ most general central 3-body force has been constructed by J. Sadoudi with
a dedicated formal algebra code

v̂123 = u0

(

δ̂r1r3 δ̂r2r3 + δ̂r3r2 δ̂r1r2 + δ̂r2r1 δ̂r3r1

)

+
u1

2

[

1 + y1P
σ
12

] (

k̂12 · k̂12 + k̂
′

12 · k̂
′

12

)

δ̂r1r3 δ̂r2r3

+
u1

2

[

1 + y1P
σ
31

] (

k̂31 · k̂31 + k̂
′

31 · k̂
′

31

)

δ̂r3r2 δ̂r1r2

+
u1

2

[

1 + y1P
σ
23

] (

k̂23 · k̂23 + k̂
′

23 · k̂
′

23

)

δ̂r2r1 δ̂r3r1

+u2

[

1 + y21P
σ
12 + y22(P

σ
13 + P

σ
23)

] (

k̂12 · k̂
′

12

)

δ̂r1r3 δ̂r2r3

+u2

[

1 + y21P
σ
31 + y22(P

σ
32 + P

σ
12)

] (

k̂31 · k̂
′

31

)

δ̂r3r2 δ̂r1r2

+u2

[

1 + y21P
σ
23 + y22(P

σ
21 + P

σ
31)

] (

k̂23 · k̂
′

23

)

δ̂r2r1 δ̂r3r1

◮ complete functional in particle-hole and T = 1 pairing channel
◮ derivation of nuclear matter properties
◮ derivation of mean fields and pairing fields
◮ implementation in spherical HFB code
◮ first preliminary fits
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Take-away messages

◮ Generalization of MR EDF to angular-momentum-optimized reference
states

◮ improved moments of inertia
◮ K isomers
◮ odd-A nuclei

◮ At time being, there is no scheme to safely handle general EDFs in
multi-reference framework. When conserving many symmetries on the
single-referece level, there are two recipes that more-or-less almost work

◮ density-dependent Hamiltonians with special treatment of the density
entering the density dependence

◮ regularized MR EDF

Both require particular forms of the EDF.

◮ Going back to Hamiltonians is (at time being) the safest strategy to
follow. This shifts the problem from constructing a consistent MR EDF
framework for general functionals to constructing treatable and performant
pseudo-potentials.

Publications are in preparation.
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