REAPR Resonantly Enhanced Axion Photon Regeneration

William Wester Fermilab

N/ISABLE

Axions

 Postulated in the late 1970s as a consequence of not observing CP violation in the strong interaction.

$$L_{CP} = -\frac{\alpha_{s}}{8\pi} (\Theta - \arg \det M_{q}) \operatorname{Tr} \tilde{G}_{\mu\nu} G^{\mu\nu}$$
$$0 \le \Theta \le 2\pi$$

- The measurement of the electric dipole of the neutron implies $\overline{\Theta}$ < ~10⁻¹⁰. => Strong CP Problem of QCD
 - This is very much on the same order of an issue with the Standard Model as the hierarchy problem that motivates supersymmetry.
 - Axions originate from a new symmetry that explains small $\overline{\Theta}$

Bjorken "Axions are just as viable a candidate for dark matter as sparticles" Wilczek "If not axions, please tell me how to solve the Strong-CP problem" Witten "Axions may be intrinsic to the structure of string theory"

Axions

- Axion mass related to the pion mass: $m_a \sim m_\pi f_\pi/f_a$
- Axions couple to two photons

Photon coupling

$$L_{a\gamma} = -\frac{g_{a\gamma}}{4}F\tilde{F}a = g_{a\gamma}\vec{E}\cdot\vec{B}a \qquad a - - -f_{\gamma}\rho_{\gamma}\rho_{\gamma}\gamma \qquad a - - -f_{\gamma}\rho_{\gamma}\rho_{\gamma}\gamma \qquad Baffelt$$

 An axion-like-particle (ALP) is a more general particle that can arise from either a pseudoscalar or scalar field, φ, and no longer has the connection to the pion.

$$\mathcal{L}_{\text{int}} = -\frac{1}{4} \frac{\phi}{M} F_{\mu\nu} \widetilde{F}^{\mu\nu} = \frac{\phi}{M} (\vec{\vec{E}} \cdot \vec{\vec{B}})$$
$$\mathcal{L}_{\text{int}} = -\frac{1}{4} \frac{\phi}{M} F_{\mu\nu} F^{\mu\nu} = \frac{\phi}{M} (\vec{\vec{E}} \cdot \vec{\vec{E}} - \vec{\vec{B}} \cdot \vec{\vec{B}})$$

W. Wester, Fermilab, Vistas in Axions

PVLAS Experiment (2006)

 Designed to study the vacuum by optical means: birefringence (generated ellipticity) and dichroism (rotated polarization)

W. Wester, Fermilab, Vistas in Axions

4

PVLAS Rotation Results

PRL 96, 110406, (2006)

PVLAS ALP Interpretation

A new axion-like particle with mass at 1.2 meV and $g\sim 2\times 10^{-6}$ is consistent with rotation and ellipticity measurements.

W. Wester, Fermilab, Vistas in Axions

milli-eV Mass Scale

- milli-eV (10⁻³) eV mass scale arises in various areas in modern particle physics.
 - Dark Energy density
 - $\Lambda^4 = 7 \times 10^{-30} \text{ g/cm}^3 \sim (2 \times 10^{-3} \text{ eV})^4$
 - Neutrinos
 - $(\Delta m_{21})^2 = (9 \times 10^{-3} \text{ eV})^2$
 - $(\Delta m_{32})^2 = (50 \times 10^{-3} \text{ eV})^2$
 - See-saw with the TeV scale
 - meV ~ TeV²/ M_{planck}
 - Dark Matter Candidates
 - Certain SUSY sparticles (low mass gravitino)
 - Axions and axion-like particles

Motivation and target

- We had two points of motivation
 - PVLAS anomaly
 - milli-eV new particles that couple to photons
- Search for New Physics on par with Dark Matter experimental efforts
- We also had a target with goals to unambiguously test the suggested PVLAS ALP interpretation
- Similar to DM efforts testing SUSY

Light Shining Through a Wall

$$P_{regen}^{GammeV} = (3.9 \times 10^{-21}) \times \frac{(B_1/5 \text{ T})^2 (B_2/5 \text{ T})^2 (\omega/2.33 \text{ eV})^4}{(M/4 \times 10^5 \text{ GeV})^4 (m_{\phi}/1.2 \times 10^{-3} \text{ eV})^8} \\ \times \sin^2 \left(\frac{\pi}{2} \frac{(m_{\phi}/1.2 \times 10^{-3} \text{ eV})^2 (L_1/2.0 \text{ m})}{(\omega/2.33 \text{ eV})}\right) \sin^2 \left(\frac{\pi}{2} \frac{(m_{\phi}/1.2 \times 10^{-3} \text{ eV})^2 (L_2/2.0 \text{ m})}{(\omega/2.33 \text{ eV})}\right)$$

Light Shining Through a Wall

• Brookhaven, Fermilab, Rochester, Trieste (1992)

W. Wester, Fermilab, Vistas in Axions

Light Shining Through a Wall

• Brookhaven, Fermilab, Rochester, Trieste (1992)

W. Wester, Fermilab, Vistas in Axions

GammeV Collaboration

A. Baumbaugh, A. Chou^{*}, Y. Irizarry-Valle[†], P. Mazur, J. Steffen, R. Tomlin, W. Wester^{*}, Y. Xi[‡], J. Yoo Fermi National Accelerator Laboratory Batavia, IL 60510

> D. Gustafson University of Michigan Ann Arbor, MI 48109

Ten person team including a summer student, 3 postdocs, 2 accelerator / laser experts, 4 experimentalists (nearly everyone had a day job) PLUS technical support at FNAL

Nov 2006 : Initial discussion and design (Aaron Chou, WW leaders) Apr 2007 : Review and approval from Fermilab (\$30K budget!) May 2007 : Acquire and machine parts Jun 2007 : Assemble parts, test electronics and PMT calibration Jul 2007 : First data but magnet and laser problems

- Aug 2007 : Start data taking in earnest
- Sep 2007 : Complete data taking and analysis
- Jan 2008 : PRL Accepted

4/24/12

Apparatus

Gamme**V** was located on a test stand at Fermilab' s Maget Test Facility. Two shifts/day of cryogenic operations were supported.

Laser box /

Tevatron magnet

4/24/12

port

Vacuum

Cryogenic magnet feed can Cryogenic magnet return can

Vary wall position to change baseline: Tune to the correct oscillation length

Vary wall position to change baseline: Tune to the correct oscillation length

GammeV Results

Spin	Position	# Laser pulse	# photon / pulse	Expected Background	Signal Candidates
Scalar	Center	1.34 M	0.41e18	1.56±0.04	1
Scalar	1 m	1.47M	0.38e18	1.67±0.04	0
Pseudo	Center	1.43M	0.41e18	1.59±0.04	1
Pseudo	1m	1.47M	0.42e18	1.50±0.04	2

W. Wester, Fermilab, Vistas in Axions

GammeV Limits

 Results are derived. We show 3σ exclusion regions and completely rule out the PVLAS axion-like particle interpretation by more than 5σ.
 Pseudoscalar
 Scalar

 Job is done. Limit generally improves slowly (4th root) vs. longer running time, or increased laser power, etc.
 W. Wester, Fermilab, Vistas in Axions

Other experiments worldwide

configurations of LSW technique.

ALPS

PLB 689, **149** (2010)

LSW as an intensity frontier experiment

- LSW uses
 - An intense beam of photons
 - New Physics weakly coupled to ordinary matter
 - Detection of a non-SM rare process = discovery
- LSW hindered by 4th root of the coupling constant due to production and regeneration but there are positives to purely lab exp't.
- Coupling to photons opens several experimental options using modern lasers and optical techniques

Motivation for $g_{\alpha\gamma\gamma} \sim 10^{-(11ish)}$

Anomalous observation of high energy gamma rays

 High energy gamma rays can penetrate the opaque wall of background photons by converting into axions at the source, and then reconverting into photons in the galaxy.

Large uncertainties and so this is just a hint that there might be possible New Physics.

REAPR: Future LSW

Resonantly enhanced axion-photon regeneration

F. Hoogeveen and T. Ziegenhagen, Nucl. Phys. B **358**, 3 (1991) Mueller, Sikivie, Tanner, van Bibber, Phys. Rev. D **80**, 072004 (2009) Phys. Rev. Lett. **98**, 172002 (2007)

 \mathcal{F} factor of 10^5

Prob(regeneration):

magnetic field length

30 -> 360 Tm (x12)

0-bkgd int time (x3)

finesse factor: \mathcal{FF}

(x300)

Linearly:

1⁄4 - root:

Production cavity: \mathcal{F}^{fa} High finesse amplifies forward moving photons x \mathcal{F} Regeneration cavity:

E field of regenerated photon amplified until

quantum measurement -> E2 proportional to \mathcal{FF}

Measurement device:

loose a factor of $\mathcal F$ for regenerated photon to be detected

GRIM REAPR

"This time we mow the axion down for good"

REAPR Requirements

- Optimize magnetic field length Talk by P. Mazur
- High finesse cavities Talk by D. Tanner
- Cavities locked to each other with no leakage from the generation cavity
- Need sensitive photon detection

Possible reach

Baseline design with BL=180 Tesla-meters, with F=3 10⁵, P=10W, Integration time T=30 days.

4/24/12

R&D Phase

- Magnets
 - We are "on the list" for Tevatron magnets
 - Explore possible modifications to magnets
 - Preliminary discussions on the scope to operate a magnet string
- Optical cavities
 - Synergy with the Fermilab holometer project
- Optical bench and signal detection
 - Synergy with the Fermilab holometer project
 - To-be proposed demonstrator

Tevatron Magnets

• Besides those in the Tevatron, there are existing spares

- More important is magnet infrastructure at Fermilab
- Not excluded ... new high field magnets

4/24/12

Strawperson optical design

- Use two lasers.
- Laser 1 injects power into generation cavity
- Laser 2 is offset locked to Laser 1
- Offset frequency Ω = integer * FSR of the cavities
- Regeneration cavity is PDH locked to Laser 2
- Laser 2 used to for heterodyne readout of signal in regeneration cavity

G. Mueller (D. Tanner, Univ of FL, DOE Intensity Frontier Workshop)

Spin-off from GammeV

- The Fermilab Holometer.
 - Two 40m long interferometers to test for a possible jitter in space-time.

40 m cavity at FNAL

40 m cavity in lock

End station vacuum vessels hold custom optical cavity mirrors and eventually beamsplitters

U.Chicago graduate students R.Lanza, L.McCuller

Spot on input mirror

Have not fully studied 5ppm mirrors

Seismic Noise

TEM00 cavity mode

4/24/12

Optical bench demonstrator

One possibility

- Univ of Florida to build optical bench to test/develop locking scheme and readout.
- FNAL supplies permanent magnets (0.5T 2m)
- Perform ALP search

 Possibility exists to bring optical bench to FNAL to first do a resonant regeneration hidden sector photon search (new phase space for lower mass HSPs).

Conclusions

- Fermilab has published results on axion-like particles and also chameleons.
- Next experiments such as REAPR are much more ambitious and we are starting to get experience with optical cavities and interferometers. We have a R&D path.
- New ideas are frequent and might lead to experiments not yet thought of such as holographic noise.
- GammeV has trained two postdocs (now Wilson fellows) and the third postdoc, Jason Steffen, lead the GammeV-CHASE experiment. In addition, we worked with two young theorists who now have permanent jobs!
- Nature picks its own parameters. Relatively low cost, high risk, but high payoff physics has an appropriate place.

Axion and WISP momentum

- Hidden sector photons, axions, and WISPs working group at the DOE Physics at the Intensity Frontier Workshop
- Vistas in Axions (April 2012, Seattle)
- 8th Patras Workshop (July 18-22, Chicago)

Registration now open axion-wimp.desy.de