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ing and on results which bear practical significance.
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Cavity parameters

Gaussian beams

Strawman parameters

ltems governing finesse _ _
E amplitude of intensity [W/m3

electric field [V/m]

ltems governing length

position x
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Paraxial approximation

A gaussian beam is described in the pararial approximation (sin# = ) by

E(P, 2.} — A wWo eé.i:: e tan~ Yz /2) eé.i:pgl."ER(::l E—pg_ﬁ'wzﬂzj

w(z)

where wy is the beam waist dimension (a radius) and

i

i

A

Zp =

is the Rayleigh range. The beam is /2 bigger at » = 2, from the waist.

(5]

The beam has a “diameter” of 2w(z), with

_ Az \? _
w(z)=wi |1+ (—2) = wh
W,

the beam “size,” and a curvature

AN 22
R(z)=2 |1+ ( Az‘) zz—l—?.
Finally,
H = A
iy

is the beam divergance angle.

Vistas in Axion Physics
April 2012




Intensities

At the waist, 2 = 0, w = wy, R = ~, and

The intensity ~ E?, so

E = Ae /"

[ = [je 2"/

and the power enclosed by a circle of diameter D) is

P(D)=F, {1 — e_ﬂ'zf’%%]

with F, the total power of the beam.
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Cavities
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How do we find the waist? Set up a cavity, with curved mirrors of radil /2y
and Rs and with a distance L between them. The resonant beam will have
radinl of curvature of R; at each mirror, and a waist between them. For us.
with curve/flat, Ry = R and Ry = oc. Then,

g=1-5

and

2 A [ g
wo = —
“ T 1 —g

(= g1g2) is called the stability product. We have go = 1. Want 0 < |g| < 1.
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Cavities have an infinite set of modes

 Hermite Gauss (r) or Laguerre Gauss (l)
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Finesse and free spectral range

istas

Finesse is like Q of a metal cavity
Effectively, it is the number of bounces a beam makes before
leaking out or being absorbed.
47Ty
(Tl + V)2

with T, the transmission of the input mirror (assumed to be larger
than that of the end mirror) and V the round-trip fractional power
loss from power absorption in both mirrors, scattering due to
mirror defects, diffraction from the finite mirror size, etc.

FSR:

F =

C
Ia —
SR 57

Finesse is equal to FSR divided by the FWHM of the resonance.
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Cavity with Finesse = 100,000

« Cavity transmission as function of frequency (left) or motion of
one mirror (right)
 Cavity is 12 m in length, with modes at 12 MHz (=FSR)
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Factors controlling finesse

Loss

Scatter
Microroughness
Coating nonuniformity

Ultimately, transmission of input mirrors
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Loss
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Scatter

« Determined by dust particulates on surface, as
well as by defects from polishing

» Scatter from 100 particles of 10 u diameter
already dominates the loss budget

e Cleanliness!

Vistas in Axion Physics
April 2012



Microroughness

* Low-angle scatter

 Rms ~ 0.5 nNm

 “superpolish”
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Coating nonuniformity

PR201 Transmission  (x=10864 nm, 8=2°, ¢,___=1mm, Step=1mm) (ppm)
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Transmission

« At1064 nm, T ~ 3 ppm

* Finesse ~ 2 million (ignoring scattering, which
you cannot do)
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Transmission 2

« At1064 nm, T ~ 5.5 ppm

* Finesse ~ 1 million (ignoring scattering, which
you cannot do)
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Strawman cavity design

Magnets: 6+6 Tevatron dipoles

5T field
6 m length each

48 mm diameter
BO*Lmag =180 T-m

Cavity: curved-flat FP
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45 m length; FSR =c¢/2L_,, ~ 3.3 MHz
Mirror radii: 114 m (outer) and -4500 m
(inner); g = 0.59
Gaussian beam radii (field): 5.5 mm
(outer); 4.3 mm (inner)
1 ppm diameter = 30 mm
Finesse = 3.1 x 10°; T =10 ppm;

A < 1 ppm/mirror
Stored power ~ 1 MW
Intensity 2.2 MW/cm?
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Locking the cavities

* Pound-Drever-Hall locking

* Resonant regeneration experiment is complex:
« 2 length degrees of freedom + alignment
 Absolute position must be held to ~10-13 m
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Heating

 With 1 MW incident, 1 ppm loss, absorbed
power would be 1 W

* Heating, deformation of mirror surface, loss of
m 0 d e _ Temnpera:u Profile for 1 Wait Coating Absorbtion
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Thermal Compensation

« Add heaters to perimeter of mirror

« Heat reduces thermal gradients

e Used successfully in eLIGO
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DAMAGE

istas in Axion Physics

 An unknown unknown

« Damage thresholds said to be 1 GW/cm?
— vs 0.002 GW/cm2 in strawman

« Dust, sleeks, point defects seed damage
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Summary

« With care, optical cavities with lengths of ~50 m

and finesses of ~ 100,000 are well within the
state of the art.

* Peter's 105-110 m is OK. (1 ppm spot on curved
mirror is 46.5 mm diameter. [Spot on flat is 34
mm.], g ~ 0.64)
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THE END




Other issues

Can avoid zeros of sinc function in conversion rate by
alternating field directions.

To go beyond L ~ 90 m would require first removing
sagitta and then using larger diameter magnets. Km
scales => 200 mm diameters.

For high power in production cavity, thermal
management/thermal lenses become important.

Avoid stray light.
Must run in UHV.

Dust elimination is critical; scatter from 100 particles of
10 u diameter already dominates the loss budget.

Need vibration-free mirror suspensions. Possibly
suspended.

Include quantum efficiency, photodetector dark
current.
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