Axion / Axino Dark Matter BBN constraints and LHC phenomenology

Frank D. Steffen

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Vistas in Axion Physics INT Seattle, April 25, 2012

- Axion DM
 - Lee-Weinberg curve
 - decoupling temperature T_D
- Axino DM scenarios with long-lived staus
 - BBN constraints: new f_{PQ} limits
 - LHC phenomenology: probing f_{PQ}

Extremely Weakly Interacting Particles (EWIPs)

Extremely Weakly Interacting Particles (EWIPs)

[Talk by Georg Raffelt]

4

Lee-Weinberg Curve for Axions

[Talk by Georg Raffelt] Bounds on the Peccei-Quinn Scale

Bounds from Axion Searches Cosmological Axion Bounds Astrophysical Axion Bounds

Peccei-Quinn Scale $f_a \gtrsim 6 \times 10^8 \,\mathrm{GeV}$

Axion Mass $m_a \simeq 0.6 \, \mathrm{meV} \, (10^{10} \, \mathrm{GeV} / f_{\mathrm{PQ}})$

[Talk by Georg Raffelt]

6

Lee-Weinberg Curve for Axions

Axion Dark Matter

Frank D. Steffen (Max-Planck-Institute for Physics, Munich)

Axion / Axino DM - BBN Constraints and LHC Phenomenology

Axion Dark Matter

Frank D. Steffen (Max-Planck-Institute for Physics, Munich)

Axion / Axino DM - BBN Constraints and LHC Phenomenology

_ /

Axion Dark Matter

Frank D. Steffen (Max-Planck-Institute for Physics, Munich)

Axion / Axino DM - BBN Constraints and LHC Phenomenology

[Graf, Steffen, '11] Lee-Weinberg Curve for Axions

Axion Condensate: CDM

 $\Omega_a^{\text{MIS}} h^2 \sim 0.15 \, \theta_i^2 (f_{\text{PQ}}/10^{12} \, \text{GeV})^{7/6}$ [...; Sikivie, '08; Kim, Carosi, '08; ...]

Axions can provide CDM

Frank D. Steffen (Max-Planck-Institute for Physics, Munich)

Axion / Axino DM - BBN Constraints and LHC Phenomenology

Axion Interactions

 with gluons model independent

$$\mathcal{L}_{agg} = \frac{g_{\rm s}^2}{32\pi^2 f_a} \, a \, G^a_{\mu\nu} \widetilde{G}^{a\mu\nu}$$

 with photons model dependent

$$\mathcal{L}_{a\gamma\gamma} = \frac{e^2 C_{a\gamma\gamma}}{32\pi^2 f_a} a F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

(or $\mathcal{L}_{a\gamma\gamma} = \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \widetilde{F}^{\mu\nu}$)

but crucial for axion searches and governs the axion lifetime $\tau_a = \Gamma_{a \to \gamma\gamma}^{-1} = \frac{64\pi}{g_{a\gamma\gamma}^2 m_a^3}$

Axion Decoupling Temperature

 $T > T_D$: axion in thermal eq. with the primordial plasma T ~ T_D: axion decouples as a **hot thermal relic**

•
$$T_R > T_D$$
: $I+2 \rightarrow 3+axion$

[Graf, Steffen, '11]

Thermal Axion Production in the Hot QGP

[Graf, Steffen, '11]

Lee-Weinberg Curve for Axions

Conclusions - Part I

- Lee-Weinberg curve for axions
- two guaranteed axion populations
- axions from the misalignm. mech. may provide all or only a fraction of Ω_{dm} depending on f_{PQ} & θ_i
- thermal relic or thermally produced axions will be present as a HDM with $(\Omega_a)^{th} < \Omega_Y << \Omega_{dm}$

extremely challenging to detect experimentally

Extremely Weakly Interacting Particles (EWIPs)

Extremely Weakly Interacting Particles (EWIPs)

[see also talk by Howard Baer]

Axino LSP Case

Frank D. Steffen (Max-Planck-Institute for Physics, Munich)

Axion / Axino DM - BBN Constraints and LHC Phenomenology

Big-Bang Nucleosynthesis

[Freitas, FDS, Tajuddin, Wyler, '09]

20

Late Hadronic Energy Injection

Catalyzed BBN [Pospelov, '06]

[Cyburt et al., '06; FDS, '06; Pradler, FDS, '07; Hamaguchi et al., '07; Kawasaki, Kohri, Moroi, '07; Takayama, '07; Jedamzik, '07; Pradler, FDS, '08]

CBBN of ⁹Be: [Pospelov, '07; Pospelov, Pradler, FDS, '08]

[Freitas, Tajuddin, FDS, Wyler, '09]

Stau Decays into Axinos

22

Frank D. Steffen (Max-Planck-Institute for Physics, Munich)

[Freitas, FDS, Tajuddin, Wyler, 0909.3293]

Axino LSP Case with a Charged Slepton NLSP

Frank D. Steffen (Max-Planck-Institute for Physics, Munich)

Very different from the large E_T^{miss} signal of Neutralino DM

Stau Production @ LHC

[Lindert, Steffen, Trenkel, '11]

26

Direct Stau Production at Hadron Colliders

 $\int_{\bar{a}} \frac{1}{\gamma/Z} \int_{\tilde{\tau}_1^*} O(\alpha^2) \& \text{NLO}(S) QCD O(\alpha_s^2 \alpha^2)$

bb annihilation

Drell-Yan production

 $\sum_{\tau} \widetilde{\tau_1^*} \sum_{h^0/H^0} \widetilde{\tau_1^*} O(\alpha^2)$ + bottom PDFs

[del Aguila, Ametller; '91; Bisset, Raychaudhuri; '96]

[Lindert, Steffen, Trenkel, '11] Stopping of long-lived staus

Stopping of long-lived staus @ CMS

[Hamaguchi, Nojiri, de Roeck, '07]

Stopping of long-lived staus

Probing f_a @ Colliders

[Brandenburg et al., '05]

[Brandenburg, Covi, Hamaguchi, Roszkowski, FDS, '05]

[Raffelt, '06] Bounds on the Peccei-Quinn Scale

Is the value of the Peccei-Quinn scale inferred from axino searches consistent with astrophysical axion bounds and results from axion searches?

[Raffelt, '06] Bounds on the Peccei-Quinn Scale

[Raffelt, '06] Bounds on the Peccei-Quinn Scale

Axion DM & Axino DM might coexist!

Conclusions - Part II

- axino LSP is possible if PQ mech. & SUSY exist
- axinos from therm. prod. and NLSP decays may provide (a fraction of) Ω_{dm} dep. on f_{PQ} , T_R , m_{stau}
- stau NLSP is possible CHAMP signal @ LHC
- BBN constraints new m_{stau} -dep. upper limits on f_{PQ}
- LHC pheno prod. & stopping of staus probing f_{PQ}

complementary to f_{PQ} determ. in axion searches

For a review (including an extensive list of references),

see

[FDS, Dark Matter Candidates, Eur. Phys. J. C59 (2009) 557, arXiv:0811.3347]

in

Bonus slides

[Lindert, FDS, Trenkel, '11] Direct Stau Production @ LHC

Frank D. Steffen (Max-Planck-Institute for Physics, Munich)

Axion / Axino DM - BBN Constraints and LHC Phenomenology

[Lindert, FDS, Trenkel, '11] Kinematical Cuts

[Lindert, FDS, Trenkel, '11]

Direct Production vs. Cascade Decays

Benchmark point		α	β	γ	ϵ
LHC $7 \mathrm{TeV}$					
$\sigma(\tilde{\tau}_1\tilde{\tau}_1^*)_{\mathrm{DY}}$	[fb]	3.2(2.3)	12.5(7.3)	9.0(5.6)	7.95(5.00)
$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{bar{b}}$	[fb]	9.8(5.1)	0.03(0.02)	19.2(16.5)	0.07(0.06)
$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{ m gg}$	[fb]	0.1(0.1)	3.3(2.4)	0.32(0.25)	0.01(0.01)
$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{ m all}$	[fb]	13.1(7.5)	15.8(9.7)	28.5(22.4)	8.03(5.07)
$\sigma(ilde{g} ilde{g})$	[fb]	0.05	10^{-6}	0.06	2.57
$\sigma(ilde{g} ilde{q})$	[fb]	0.63	4×10^{-4}	0.99	37.36
$\sigma(ilde{q} ilde{q})$	[fb]	1.18	0.006	2.41	77.25
$\sigma(\tilde{\chi}\tilde{q}) + \sigma(\tilde{\chi}\tilde{g})$	[fb]	0.481	0.007	0.72	12.77
$\sigma(ilde{\chi} ilde{\chi})$	[fb]	20.4	0.29	19.8	91.78
LHC $14 \mathrm{TeV}$					
$\sigma(\tilde{\tau}_1\tilde{\tau}_1^*)_{\mathrm{DY}}$	[fb]	11.2(5.64)	37.5(15.9)	28.0(12.4)	24.7(11.2)
$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{bar{b}}$	[fb]	58.4(27.0)	0.7(0.2)	113.3(87.1)	0.5(0.4)
$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{ m gg}$	[fb]	0.7(0.4)	17.4(11.1)	1.8(1.3)	0.07(0.05)
$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{ m all}$	[fb]	70.3(33.1)	55.6(27.2)	143.1(100.8)	25.3(11.6)
$\sigma(ilde{g} ilde{g})$	[fb]	20.2	0.12	20.8	232.19
$\sigma(ilde{g} ilde{q})$	[fb]	104.4	2.46	133.2	1328.4
$\sigma(ilde{q} ilde{q})$	[fb]	92.5	6.46	139.0	1301.1
$\sigma(\tilde{\chi}\tilde{q}) + \sigma(\tilde{\chi}\tilde{g})$	[fb]	16.9	1.08	22.4	175.12
$\sigma(ilde{\chi} ilde{\chi})$	[fb]	134.5	6.40	131.1	422.2

	Benchmark point		α	β	γ	έ
	$m_{1/2}$	[GeV]	600	1050	600	440
	m_0	[GeV]	800	30	600	20
	aneta		55	55	55	15
	A_0	[GeV]	1600	60	1200	-250
	$m_{ ilde{ au}_1}$	[GeV]	193	136	148	153
	$ heta_{ ilde{ au}}$		81°	73°	77°	76°
	m_{H^0}	[GeV]	402	763	413	613
	Γ_{H^0}	[GeV]	15	26	16	2.2
	$m_{\tilde{g}}$	[GeV]	1397	2276	1385	1028
	avg. $m_{\tilde{q}}$	[GeV]	1370	1943	1287	894
	μ	[GeV]	667	1166	648	562
	A_{τ}	[GeV]	515	-143	351	-275
	$BR(b \to s\gamma)$	$[10^{-4}]$	3.08	3.03	2.94	3.00
	$BR(B_s^0 \to \mu^+ \mu^-)$	$[10^{-8}]$	1.65	1.04	2.44	0.30
	a_{μ}	$[10^{-10}]$	13.2	11.5	16.8	18.7
	CCB [108]		\checkmark		\checkmark	\checkmark
	$Y_{\tilde{\tau}_1}$	$[10^{-15}]$	3.5	2.5	37.7	164

[Freitas, Tajuddin, FDS, Wyler, '09]

Maxino, **M**gravitino < **M**stau

