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WMAP 7-year Cosmological Interpretation 3

TABLE 1
Summary of the cosmological parameters of ΛCDM modela

Class Parameter WMAP 7-year MLb
WMAP+BAO+H0 ML WMAP 7-year Meanc

WMAP+BAO+H0 Mean

Primary 100Ωbh
2 2.227 2.253 2.249+0.056

−0.057 2.255 ± 0.054

Ωch
2 0.1116 0.1122 0.1120 ± 0.0056 0.1126 ± 0.0036

ΩΛ 0.729 0.728 0.727+0.030
−0.029 0.725 ± 0.016

ns 0.966 0.967 0.967 ± 0.014 0.968 ± 0.012
τ 0.085 0.085 0.088 ± 0.015 0.088 ± 0.014

∆2
R(k0)

d 2.42 × 10−9 2.42 × 10−9 (2.43 ± 0.11) × 10−9 (2.430 ± 0.091) × 10−9

Derived σ8 0.809 0.810 0.811+0.030
−0.031 0.816 ± 0.024

H0 70.3 km/s/Mpc 70.4 km/s/Mpc 70.4 ± 2.5 km/s/Mpc 70.2 ± 1.4 km/s/Mpc
Ωb 0.0451 0.0455 0.0455 ± 0.0028 0.0458 ± 0.0016
Ωc 0.226 0.226 0.228 ± 0.027 0.229 ± 0.015

Ωmh2 0.1338 0.1347 0.1345+0.0056
−0.0055 0.1352 ± 0.0036

zreion
e 10.4 10.3 10.6 ± 1.2 10.6 ± 1.2

t0
f 13.79 Gyr 13.76 Gyr 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr

a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All
the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood
code, unless stated otherwise. The difference is small. See Appendix A for comparison.
b Larson et al. (2010). “ML” refers to the Maximum Likelihood parameters.
c Larson et al. (2010). “Mean” refers to the mean of the posterior distribution of each parameter. The quoted errors
show the 68% confidence levels (CL).
d ∆2

R(k) = k3PR(k)/(2π2) and k0 = 0.002 Mpc−1.
e “Redshift of reionization,” if the universe was reionized instantaneously from the neutral state to the fully ionized
state at zreion. Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely
because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).
f The present-day age of the universe.

TABLE 2
Summary of the 95% confidence limits on deviations from the simple (flat, Gaussian, adiabatic, power-law) ΛCDM model except for dark energy

parameters

Section Name Case WMAP 7-year WMAP+BAO+SNa
WMAP+BAO+H0

Section 4.1 Grav. Waveb No Running Ind. r < 0.36c r < 0.20 r < 0.24
Section 4.2 Running Index No Grav. Wave −0.084 < dns/d ln k < 0.020c −0.065 < dns/d ln k < 0.010 −0.061 < dns/d lnk < 0.017
Section 4.3 Curvature w = −1 N/A −0.0178 < Ωk < 0.0063 −0.0133 < Ωk < 0.0084
Section 4.4 Adiabaticity Axion α0 < 0.13c α0 < 0.064 α0 < 0.077

Curvaton α−1 < 0.011c α−1 < 0.0037 α−1 < 0.0047
Section 4.5 Parity Violation Chern-Simonsd −5.0◦ < ∆α < 2.8◦e N/A N/A
Section 4.6 Neutrino Massf w = −1

∑

mν < 1.3 eVc ∑

mν < 0.71 eV
∑

mν < 0.58 eVg

w #= −1
∑

mν < 1.4 eVc ∑

mν < 0.91 eV
∑

mν < 1.3 eVh

Section 4.7 Relativistic Species w = −1 Neff > 2.7c N/A 4.34+0.86
−0.88 (68% CL)i

Section 6 Gaussianityj Local −10 < f local
NL < 74k N/A N/A

Equilateral −214 < fequil
NL < 266 N/A N/A

Orthogonal −410 < forthog
NL < 6 N/A N/A

a “SN” denotes the “Constitution” sample of Type Ia supernovae compiled by Hicken et al. (2009b), which is an extension of the “Union” sample
(Kowalski et al. 2008) that we used for the 5-year “WMAP+BAO+SN” parameters presented in Komatsu et al. (2009a). Systematic errors in the
supernova data are not included. While the parameters in this column can be compared directly to the 5-year WMAP+BAO+SN parameters, they may
not be as robust as the “WMAP+BAO+H0” parameters, as the other compilations of the supernova data do not give the same answers (Hicken et al.
2009b; Kessler et al. 2009). See Section 3.2.4 for more discussion. The SN data will be used to put limits on dark energy properties. See Section 5 and
Table 4.
b In the form of the tensor-to-scalar ratio, r, at k = 0.002 Mpc−1.
c Larson et al. (2010).
d For an interaction of the form given by [φ(t)/M ]FαβF̃

αβ , the polarization rotation angle is ∆α = M−1 ∫

dt
a φ̇.

e The 68% CL limit is ∆α = −1.1◦ ± 1.4◦ (stat.) ± 1.5◦ (syst.), where the first error is statistical and the second error is systematic.
f ∑

mν = 94(Ωνh
2) eV.

g For WMAP+LRG+H0 ,
∑

mν < 0.44 eV.
h For WMAP+LRG+H0 ,

∑

mν < 0.71 eV.
i The 95% limit is 2.7 < Neff < 6.2. For WMAP+LRG+H0 , Neff = 4.25 ± 0.80 (68%) and 2.8 < Neff < 5.9 (95%).
j V+W map masked by the KQ75y7 mask. The Galactic foreground templates are marginalized over.
k When combined with the limit on f local

NL from SDSS, −29 < f local
NL < 70 (Slosar et al. 2008), we find −5 < f local

NL < 59.

Different mechanisms for generating fluctuations pro-
duce distinctive correlated patterns in temperature and
polarization:

1. Adiabatic scalar fluctuations predict a radial po-
larization pattern around temperature cold spots
and a tangential pattern around temperature hot
spots on angular scales greater than the horizon
size at the decoupling epoch, ! 2◦. On angular

scales smaller than the sound horizon size at the
decoupling epoch, both radial and tangential pat-
terns are formed around both hot and cold spots,
as the acoustic oscillation of the CMB modulates
the polarization pattern (Coulson et al. 1994). As
we have not seen any evidence for non-adiabatic
fluctuations (Komatsu et al. 2009a, see Section 4.4
for the 7-year limits), in this section we shall as-
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ABSTRACT

The combination of 7-year data from WMAP and improved astrophysical data rigorously tests
the standard cosmological model and places new constraints on its basic parameters and extensions.
By combining the WMAP data with the latest distance measurements from the Baryon Acoustic
Oscillations (BAO) in the distribution of galaxies (Percival et al. 2009) and the Hubble constant (H0)
measurement (Riess et al. 2009), we determine the parameters of the simplest 6-parameter ΛCDM
model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL)
for this data combination, a measurement that excludes the Harrison-Zel’dovich-Peebles spectrum by
99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and
improved from, the 5-year results. We find no convincing deviations from the minimal model. The 7-
year temperature power spectrum gives a better determination of the third acoustic peak, which results
in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of
improved parameters are the total mass of neutrinos,

∑

mν < 0.58 eV (95% CL), and the effective
number of neutrino species, Neff = 4.34+0.86

−0.88 (68% CL), which benefit from better determinations
of the third peak and H0. The limit on a constant dark energy equation of state parameter from
WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w = −1.10 ± 0.14 (68% CL). We
detect the effect of primordial helium on the temperature power spectrum and provide a new test of
big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the
map for the first time, the tangential and radial polarization patterns around hot and cold spots of
temperature fluctuations, an important test of physical processes at z = 1090 and the dominance
of adiabatic scalar fluctuations. The 7-year polarization data have significantly improved: we now
detect the temperature-E-mode polarization cross power spectrum at 21σ, compared to 13σ from
the 5-year data. With the 7-year temperature-B-mode cross power spectrum, the limit on a rotation
of the polarization plane due to potential parity-violating effects has improved by 38% to ∆α =
−1.1◦±1.4◦ (statistical)±1.5◦ (systematic) (68% CL). We report significant detections of the Sunyaev-
Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees
well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor
of 0.5 to 0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and
hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between
the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain
some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically-expected
SZ power spectrum recently measured by the South Pole Telescope collaboration.
Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter,
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TABLE 1
Summary of the cosmological parameters of ΛCDM modela

Class Parameter WMAP 7-year MLb
WMAP+BAO+H0 ML WMAP 7-year Meanc

WMAP+BAO+H0 Mean

Primary 100Ωbh
2 2.227 2.253 2.249+0.056

−0.057 2.255 ± 0.054

Ωch
2 0.1116 0.1122 0.1120 ± 0.0056 0.1126 ± 0.0036

ΩΛ 0.729 0.728 0.727+0.030
−0.029 0.725 ± 0.016

ns 0.966 0.967 0.967 ± 0.014 0.968 ± 0.012
τ 0.085 0.085 0.088 ± 0.015 0.088 ± 0.014

∆2
R(k0)

d 2.42 × 10−9 2.42 × 10−9 (2.43 ± 0.11) × 10−9 (2.430 ± 0.091) × 10−9

Derived σ8 0.809 0.810 0.811+0.030
−0.031 0.816 ± 0.024

H0 70.3 km/s/Mpc 70.4 km/s/Mpc 70.4 ± 2.5 km/s/Mpc 70.2 ± 1.4 km/s/Mpc
Ωb 0.0451 0.0455 0.0455 ± 0.0028 0.0458 ± 0.0016
Ωc 0.226 0.226 0.228 ± 0.027 0.229 ± 0.015

Ωmh2 0.1338 0.1347 0.1345+0.0056
−0.0055 0.1352 ± 0.0036

zreion
e 10.4 10.3 10.6 ± 1.2 10.6 ± 1.2

t0
f 13.79 Gyr 13.76 Gyr 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr

a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All
the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood
code, unless stated otherwise. The difference is small. See Appendix A for comparison.
b Larson et al. (2010). “ML” refers to the Maximum Likelihood parameters.
c Larson et al. (2010). “Mean” refers to the mean of the posterior distribution of each parameter. The quoted errors
show the 68% confidence levels (CL).
d ∆2

R(k) = k3PR(k)/(2π2) and k0 = 0.002 Mpc−1.
e “Redshift of reionization,” if the universe was reionized instantaneously from the neutral state to the fully ionized
state at zreion. Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely
because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).
f The present-day age of the universe.

TABLE 2
Summary of the 95% confidence limits on deviations from the simple (flat, Gaussian, adiabatic, power-law) ΛCDM model except for dark energy

parameters

Section Name Case WMAP 7-year WMAP+BAO+SNa
WMAP+BAO+H0

Section 4.1 Grav. Waveb No Running Ind. r < 0.36c r < 0.20 r < 0.24
Section 4.2 Running Index No Grav. Wave −0.084 < dns/d ln k < 0.020c −0.065 < dns/d ln k < 0.010 −0.061 < dns/d lnk < 0.017
Section 4.3 Curvature w = −1 N/A −0.0178 < Ωk < 0.0063 −0.0133 < Ωk < 0.0084
Section 4.4 Adiabaticity Axion α0 < 0.13c α0 < 0.064 α0 < 0.077

Curvaton α−1 < 0.011c α−1 < 0.0037 α−1 < 0.0047
Section 4.5 Parity Violation Chern-Simonsd −5.0◦ < ∆α < 2.8◦e N/A N/A
Section 4.6 Neutrino Massf w = −1

∑

mν < 1.3 eVc ∑

mν < 0.71 eV
∑

mν < 0.58 eVg

w #= −1
∑

mν < 1.4 eVc ∑

mν < 0.91 eV
∑

mν < 1.3 eVh

Section 4.7 Relativistic Species w = −1 Neff > 2.7c N/A 4.34+0.86
−0.88 (68% CL)i

Section 6 Gaussianityj Local −10 < f local
NL < 74k N/A N/A

Equilateral −214 < fequil
NL < 266 N/A N/A

Orthogonal −410 < forthog
NL < 6 N/A N/A

a “SN” denotes the “Constitution” sample of Type Ia supernovae compiled by Hicken et al. (2009b), which is an extension of the “Union” sample
(Kowalski et al. 2008) that we used for the 5-year “WMAP+BAO+SN” parameters presented in Komatsu et al. (2009a). Systematic errors in the
supernova data are not included. While the parameters in this column can be compared directly to the 5-year WMAP+BAO+SN parameters, they may
not be as robust as the “WMAP+BAO+H0” parameters, as the other compilations of the supernova data do not give the same answers (Hicken et al.
2009b; Kessler et al. 2009). See Section 3.2.4 for more discussion. The SN data will be used to put limits on dark energy properties. See Section 5 and
Table 4.
b In the form of the tensor-to-scalar ratio, r, at k = 0.002 Mpc−1.
c Larson et al. (2010).
d For an interaction of the form given by [φ(t)/M ]FαβF̃

αβ , the polarization rotation angle is ∆α = M−1 ∫

dt
a φ̇.

e The 68% CL limit is ∆α = −1.1◦ ± 1.4◦ (stat.) ± 1.5◦ (syst.), where the first error is statistical and the second error is systematic.
f ∑

mν = 94(Ωνh
2) eV.

g For WMAP+LRG+H0 ,
∑

mν < 0.44 eV.
h For WMAP+LRG+H0 ,

∑

mν < 0.71 eV.
i The 95% limit is 2.7 < Neff < 6.2. For WMAP+LRG+H0 , Neff = 4.25 ± 0.80 (68%) and 2.8 < Neff < 5.9 (95%).
j V+W map masked by the KQ75y7 mask. The Galactic foreground templates are marginalized over.
k When combined with the limit on f local

NL from SDSS, −29 < f local
NL < 70 (Slosar et al. 2008), we find −5 < f local

NL < 59.

Different mechanisms for generating fluctuations pro-
duce distinctive correlated patterns in temperature and
polarization:

1. Adiabatic scalar fluctuations predict a radial po-
larization pattern around temperature cold spots
and a tangential pattern around temperature hot
spots on angular scales greater than the horizon
size at the decoupling epoch, ! 2◦. On angular

scales smaller than the sound horizon size at the
decoupling epoch, both radial and tangential pat-
terns are formed around both hot and cold spots,
as the acoustic oscillation of the CMB modulates
the polarization pattern (Coulson et al. 1994). As
we have not seen any evidence for non-adiabatic
fluctuations (Komatsu et al. 2009a, see Section 4.4
for the 7-year limits), in this section we shall as-
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ABSTRACT

The combination of 7-year data from WMAP and improved astrophysical data rigorously tests
the standard cosmological model and places new constraints on its basic parameters and extensions.
By combining the WMAP data with the latest distance measurements from the Baryon Acoustic
Oscillations (BAO) in the distribution of galaxies (Percival et al. 2009) and the Hubble constant (H0)
measurement (Riess et al. 2009), we determine the parameters of the simplest 6-parameter ΛCDM
model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL)
for this data combination, a measurement that excludes the Harrison-Zel’dovich-Peebles spectrum by
99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and
improved from, the 5-year results. We find no convincing deviations from the minimal model. The 7-
year temperature power spectrum gives a better determination of the third acoustic peak, which results
in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of
improved parameters are the total mass of neutrinos,

∑

mν < 0.58 eV (95% CL), and the effective
number of neutrino species, Neff = 4.34+0.86

−0.88 (68% CL), which benefit from better determinations
of the third peak and H0. The limit on a constant dark energy equation of state parameter from
WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w = −1.10 ± 0.14 (68% CL). We
detect the effect of primordial helium on the temperature power spectrum and provide a new test of
big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the
map for the first time, the tangential and radial polarization patterns around hot and cold spots of
temperature fluctuations, an important test of physical processes at z = 1090 and the dominance
of adiabatic scalar fluctuations. The 7-year polarization data have significantly improved: we now
detect the temperature-E-mode polarization cross power spectrum at 21σ, compared to 13σ from
the 5-year data. With the 7-year temperature-B-mode cross power spectrum, the limit on a rotation
of the polarization plane due to potential parity-violating effects has improved by 38% to ∆α =
−1.1◦±1.4◦ (statistical)±1.5◦ (systematic) (68% CL). We report significant detections of the Sunyaev-
Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees
well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor
of 0.5 to 0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and
hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between
the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain
some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically-expected
SZ power spectrum recently measured by the South Pole Telescope collaboration.
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

∗Electronic address: jrs65@cita.utoronto.ca

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (??) in terms of a transfer function

Bij leaving the measured visibility as

Vij(φ) =

�
d2n̂Bij(n̂;φ)T (n̂) + nij(φ) (8)

where the transfer function is

Bij(n̂;φ) =
1

Ωij
Ai(n̂;φ)A

∗
j (n̂;φ)e

2πin̂·uij(φ) . (9)

As expected in the rotating system the UV -plane changes

orientation with respect to the celestial sphere. Given

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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WMAP 7-year Cosmological Interpretation 3

TABLE 1
Summary of the cosmological parameters of ΛCDM modela

Class Parameter WMAP 7-year MLb
WMAP+BAO+H0 ML WMAP 7-year Meanc

WMAP+BAO+H0 Mean

Primary 100Ωbh
2 2.227 2.253 2.249+0.056

−0.057 2.255 ± 0.054

Ωch
2 0.1116 0.1122 0.1120 ± 0.0056 0.1126 ± 0.0036

ΩΛ 0.729 0.728 0.727+0.030
−0.029 0.725 ± 0.016

ns 0.966 0.967 0.967 ± 0.014 0.968 ± 0.012
τ 0.085 0.085 0.088 ± 0.015 0.088 ± 0.014

∆2
R(k0)

d 2.42 × 10−9 2.42 × 10−9 (2.43 ± 0.11) × 10−9 (2.430 ± 0.091) × 10−9

Derived σ8 0.809 0.810 0.811+0.030
−0.031 0.816 ± 0.024

H0 70.3 km/s/Mpc 70.4 km/s/Mpc 70.4 ± 2.5 km/s/Mpc 70.2 ± 1.4 km/s/Mpc
Ωb 0.0451 0.0455 0.0455 ± 0.0028 0.0458 ± 0.0016
Ωc 0.226 0.226 0.228 ± 0.027 0.229 ± 0.015

Ωmh2 0.1338 0.1347 0.1345+0.0056
−0.0055 0.1352 ± 0.0036

zreion
e 10.4 10.3 10.6 ± 1.2 10.6 ± 1.2

t0
f 13.79 Gyr 13.76 Gyr 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr

a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All
the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood
code, unless stated otherwise. The difference is small. See Appendix A for comparison.
b Larson et al. (2010). “ML” refers to the Maximum Likelihood parameters.
c Larson et al. (2010). “Mean” refers to the mean of the posterior distribution of each parameter. The quoted errors
show the 68% confidence levels (CL).
d ∆2

R(k) = k3PR(k)/(2π2) and k0 = 0.002 Mpc−1.
e “Redshift of reionization,” if the universe was reionized instantaneously from the neutral state to the fully ionized
state at zreion. Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely
because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).
f The present-day age of the universe.

TABLE 2
Summary of the 95% confidence limits on deviations from the simple (flat, Gaussian, adiabatic, power-law) ΛCDM model except for dark energy

parameters

Section Name Case WMAP 7-year WMAP+BAO+SNa
WMAP+BAO+H0

Section 4.1 Grav. Waveb No Running Ind. r < 0.36c r < 0.20 r < 0.24
Section 4.2 Running Index No Grav. Wave −0.084 < dns/d ln k < 0.020c −0.065 < dns/d ln k < 0.010 −0.061 < dns/d lnk < 0.017
Section 4.3 Curvature w = −1 N/A −0.0178 < Ωk < 0.0063 −0.0133 < Ωk < 0.0084
Section 4.4 Adiabaticity Axion α0 < 0.13c α0 < 0.064 α0 < 0.077

Curvaton α−1 < 0.011c α−1 < 0.0037 α−1 < 0.0047
Section 4.5 Parity Violation Chern-Simonsd −5.0◦ < ∆α < 2.8◦e N/A N/A
Section 4.6 Neutrino Massf w = −1

∑

mν < 1.3 eVc ∑

mν < 0.71 eV
∑

mν < 0.58 eVg

w #= −1
∑

mν < 1.4 eVc ∑

mν < 0.91 eV
∑

mν < 1.3 eVh

Section 4.7 Relativistic Species w = −1 Neff > 2.7c N/A 4.34+0.86
−0.88 (68% CL)i

Section 6 Gaussianityj Local −10 < f local
NL < 74k N/A N/A

Equilateral −214 < fequil
NL < 266 N/A N/A

Orthogonal −410 < forthog
NL < 6 N/A N/A

a “SN” denotes the “Constitution” sample of Type Ia supernovae compiled by Hicken et al. (2009b), which is an extension of the “Union” sample
(Kowalski et al. 2008) that we used for the 5-year “WMAP+BAO+SN” parameters presented in Komatsu et al. (2009a). Systematic errors in the
supernova data are not included. While the parameters in this column can be compared directly to the 5-year WMAP+BAO+SN parameters, they may
not be as robust as the “WMAP+BAO+H0” parameters, as the other compilations of the supernova data do not give the same answers (Hicken et al.
2009b; Kessler et al. 2009). See Section 3.2.4 for more discussion. The SN data will be used to put limits on dark energy properties. See Section 5 and
Table 4.
b In the form of the tensor-to-scalar ratio, r, at k = 0.002 Mpc−1.
c Larson et al. (2010).
d For an interaction of the form given by [φ(t)/M ]FαβF̃

αβ , the polarization rotation angle is ∆α = M−1 ∫

dt
a φ̇.

e The 68% CL limit is ∆α = −1.1◦ ± 1.4◦ (stat.) ± 1.5◦ (syst.), where the first error is statistical and the second error is systematic.
f ∑

mν = 94(Ωνh
2) eV.

g For WMAP+LRG+H0 ,
∑

mν < 0.44 eV.
h For WMAP+LRG+H0 ,

∑

mν < 0.71 eV.
i The 95% limit is 2.7 < Neff < 6.2. For WMAP+LRG+H0 , Neff = 4.25 ± 0.80 (68%) and 2.8 < Neff < 5.9 (95%).
j V+W map masked by the KQ75y7 mask. The Galactic foreground templates are marginalized over.
k When combined with the limit on f local

NL from SDSS, −29 < f local
NL < 70 (Slosar et al. 2008), we find −5 < f local

NL < 59.

Different mechanisms for generating fluctuations pro-
duce distinctive correlated patterns in temperature and
polarization:

1. Adiabatic scalar fluctuations predict a radial po-
larization pattern around temperature cold spots
and a tangential pattern around temperature hot
spots on angular scales greater than the horizon
size at the decoupling epoch, ! 2◦. On angular

scales smaller than the sound horizon size at the
decoupling epoch, both radial and tangential pat-
terns are formed around both hot and cold spots,
as the acoustic oscillation of the CMB modulates
the polarization pattern (Coulson et al. 1994). As
we have not seen any evidence for non-adiabatic
fluctuations (Komatsu et al. 2009a, see Section 4.4
for the 7-year limits), in this section we shall as-
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ABSTRACT

The combination of 7-year data from WMAP and improved astrophysical data rigorously tests
the standard cosmological model and places new constraints on its basic parameters and extensions.
By combining the WMAP data with the latest distance measurements from the Baryon Acoustic
Oscillations (BAO) in the distribution of galaxies (Percival et al. 2009) and the Hubble constant (H0)
measurement (Riess et al. 2009), we determine the parameters of the simplest 6-parameter ΛCDM
model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL)
for this data combination, a measurement that excludes the Harrison-Zel’dovich-Peebles spectrum by
99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and
improved from, the 5-year results. We find no convincing deviations from the minimal model. The 7-
year temperature power spectrum gives a better determination of the third acoustic peak, which results
in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of
improved parameters are the total mass of neutrinos,

∑

mν < 0.58 eV (95% CL), and the effective
number of neutrino species, Neff = 4.34+0.86

−0.88 (68% CL), which benefit from better determinations
of the third peak and H0. The limit on a constant dark energy equation of state parameter from
WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w = −1.10 ± 0.14 (68% CL). We
detect the effect of primordial helium on the temperature power spectrum and provide a new test of
big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the
map for the first time, the tangential and radial polarization patterns around hot and cold spots of
temperature fluctuations, an important test of physical processes at z = 1090 and the dominance
of adiabatic scalar fluctuations. The 7-year polarization data have significantly improved: we now
detect the temperature-E-mode polarization cross power spectrum at 21σ, compared to 13σ from
the 5-year data. With the 7-year temperature-B-mode cross power spectrum, the limit on a rotation
of the polarization plane due to potential parity-violating effects has improved by 38% to ∆α =
−1.1◦±1.4◦ (statistical)±1.5◦ (systematic) (68% CL). We report significant detections of the Sunyaev-
Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees
well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor
of 0.5 to 0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and
hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between
the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain
some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically-expected
SZ power spectrum recently measured by the South Pole Telescope collaboration.
Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter,

space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes
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Ωch2
= 0.1126± 0.0036

zeq = 3232± 87

1 + zeq =
Ωm

Ωr
=

Ωmh2

4.16× 10−5(Neff/3.02)

100Ωbh
2
= 2.255± 0.054

I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

∗Electronic address: jrs65@cita.utoronto.ca

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (5) in terms of a transfer function

Bij leaving the measured visibility as

Vij(φ) =

�
d2n̂Bij(n̂;φ)T (n̂) + nij(φ) (8)

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

∗Electronic address: jrs65@cita.utoronto.ca

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (5) in terms of a transfer function

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
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FiF

∗
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(3)
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d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)
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where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (5) in terms of a transfer function

Bij leaving the measured visibility as

Vij(φ) =

�
d2n̂Bij(n̂;φ)T (n̂) + nij(φ) (8)

where the transfer function is

Bij(n̂;φ) =
1

Ωij
Ai(n̂;φ)A

∗
j (n̂;φ)e

2πin̂·uij(φ) . (9)

As expected in the rotating system the UV -plane changes

orientation with respect to the celestial sphere. Given

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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II. FORMALISM
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where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-
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(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity
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=
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where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
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ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =
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|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (5) in terms of a transfer function

Bij leaving the measured visibility as

Vij(φ) =

�
d2n̂Bij(n̂;φ)T (n̂) + nij(φ) (8)

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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FIG. 1: The evolution of the energy densities in the decay-
ing scalar field and its decay products, as fractions of ρcrit,0:
the critical density at a = 1. The scalar field is modeled as
a pressureless fluid; its energy evolves as ρ ∝ a−3 until the
expansion rate equals its decay rate at a " 104. While the
universe is scalar-dominated, the scalar is feeding energy into
the matter and radiation fields, and both the matter and ra-
diation fields evolve as ρ ∝ a−3/2. Once nearly all the scalar
density is transferred to the matter and radiation fields, their
energy densities evolve in the usual way: radiation as ρ ∝ a−4

and matter as ρ ∝ a−3.

At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)

5
[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

To numerically solve these equations, we go to Fourier
space and define the following dimensionless parameters:
E(a) ≡ H(a)/H1, k̃ ≡ k/H1, θ̃φ ≡ θφ/H1, θ̃r ≡ θr/H1,
and θ̃dm ≡ θdm/H1. The equation set that we solve is
given in Appendix B. We use the scale factor a as our
time variable, and we set initial conditions when the uni-
verse is scalar-dominated and the mode is outside the
Hubble horizon. Since we start our solution when a = 1
and H = H1, these restrictions imply that Γ̃φ # 1 and
k̃ # 1. In Appendix B we derive the following initial
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ing scalar field and its decay products, as fractions of ρcrit,0:
the critical density at a = 1. The scalar field is modeled as
a pressureless fluid; its energy evolves as ρ ∝ a−3 until the
expansion rate equals its decay rate at a " 104. While the
universe is scalar-dominated, the scalar is feeding energy into
the matter and radiation fields, and both the matter and ra-
diation fields evolve as ρ ∝ a−3/2. Once nearly all the scalar
density is transferred to the matter and radiation fields, their
energy densities evolve in the usual way: radiation as ρ ∝ a−4

and matter as ρ ∝ a−3.

At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)

5
[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2 (ρdδd + ρrδr).(11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

To numerically solve these equations, we go to Fourier
space and define the following dimensionless parameters:
E(a) ≡ H(a)/H1, k̃ ≡ k/H1, θ̃φ ≡ θφ/H1, θ̃r ≡ θr/H1,
and θ̃dm ≡ θdm/H1. The equation set that we solve is
given in Appendix B. We use the scale factor a as our
time variable, and we set initial conditions when the uni-
verse is scalar-dominated and the mode is outside the
Hubble horizon. Since we start our solution when a = 1
and H = H1, these restrictions imply that Γ̃φ # 1 and
k̃ # 1. In Appendix B we derive the following initial
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At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)
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[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2 (ρdδd + ρrδr).(11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

To numerically solve these equations, we go to Fourier
space and define the following dimensionless parameters:
E(a) ≡ H(a)/H1, k̃ ≡ k/H1, θ̃φ ≡ θφ/H1, θ̃r ≡ θr/H1,
and θ̃dm ≡ θdm/H1. The equation set that we solve is
given in Appendix B. We use the scale factor a as our
time variable, and we set initial conditions when the uni-
verse is scalar-dominated and the mode is outside the
Hubble horizon. Since we start our solution when a = 1
and H = H1, these restrictions imply that Γ̃φ # 1 and
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At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)

5
[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2 (ρdδd + ρrδr).(11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

To numerically solve these equations, we go to Fourier
space and define the following dimensionless parameters:
E(a) ≡ H(a)/H1, k̃ ≡ k/H1, θ̃φ ≡ θφ/H1, θ̃r ≡ θr/H1,
and θ̃dm ≡ θdm/H1. The equation set that we solve is
given in Appendix B. We use the scale factor a as our
time variable, and we set initial conditions when the uni-
verse is scalar-dominated and the mode is outside the
Hubble horizon. Since we start our solution when a = 1
and H = H1, these restrictions imply that Γ̃φ # 1 and
k̃ # 1. In Appendix B we derive the following initial
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FIG. 1: The evolution of the energy densities in the decay-
ing scalar field and its decay products, as fractions of ρcrit,0:
the critical density at a = 1. The scalar field is modeled as
a pressureless fluid; its energy evolves as ρ ∝ a−3 until the
expansion rate equals its decay rate at a " 104. While the
universe is scalar-dominated, the scalar is feeding energy into
the matter and radiation fields, and both the matter and ra-
diation fields evolve as ρ ∝ a−3/2. Once nearly all the scalar
density is transferred to the matter and radiation fields, their
energy densities evolve in the usual way: radiation as ρ ∝ a−4

and matter as ρ ∝ a−3.

At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)

5
[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

$∇ → −i$k (12)

δ̇r +
4

3
θr + 4Φ̇ = 0 (13a)

θ̇r − k2

(

δr

4
+ Ψ

)

= 0 (13b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

−k2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (14)
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FIG. 1: The evolution of the energy densities in the decay-
ing scalar field and its decay products, as fractions of ρcrit,0:
the critical density at a = 1. The scalar field is modeled as
a pressureless fluid; its energy evolves as ρ ∝ a−3 until the
expansion rate equals its decay rate at a " 104. While the
universe is scalar-dominated, the scalar is feeding energy into
the matter and radiation fields, and both the matter and ra-
diation fields evolve as ρ ∝ a−3/2. Once nearly all the scalar
density is transferred to the matter and radiation fields, their
energy densities evolve in the usual way: radiation as ρ ∝ a−4

and matter as ρ ∝ a−3.

At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)

5
[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

beginsubequations

δ̇r +
4

3
θr + 4Φ̇ = 0 (12)

θ̇r − k2

(

δr

4
+ Ψ

)

= 0 (13)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

−k2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (11)
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FIG. 1: The evolution of the energy densities in the decay-
ing scalar field and its decay products, as fractions of ρcrit,0:
the critical density at a = 1. The scalar field is modeled as
a pressureless fluid; its energy evolves as ρ ∝ a−3 until the
expansion rate equals its decay rate at a " 104. While the
universe is scalar-dominated, the scalar is feeding energy into
the matter and radiation fields, and both the matter and ra-
diation fields evolve as ρ ∝ a−3/2. Once nearly all the scalar
density is transferred to the matter and radiation fields, their
energy densities evolve in the usual way: radiation as ρ ∝ a−4

and matter as ρ ∝ a−3.

At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)

5
[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

beginsubequations

δ̇r +
4

3
θr + 4Φ̇ = 0 (12)

θ̇r − k2

(

δr

4
+ Ψ

)

= 0 (13)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

−k2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (11)
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FIG. 1: The evolution of the energy densities in the decay-
ing scalar field and its decay products, as fractions of ρcrit,0:
the critical density at a = 1. The scalar field is modeled as
a pressureless fluid; its energy evolves as ρ ∝ a−3 until the
expansion rate equals its decay rate at a " 104. While the
universe is scalar-dominated, the scalar is feeding energy into
the matter and radiation fields, and both the matter and ra-
diation fields evolve as ρ ∝ a−3/2. Once nearly all the scalar
density is transferred to the matter and radiation fields, their
energy densities evolve in the usual way: radiation as ρ ∝ a−4

and matter as ρ ∝ a−3.

At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)

5
[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

$∇ → −i$k (12)

δ̇r +
4

3
θr + 4Φ̇ = 0 (13a)

θ̇r − k2

(

δr

4
+ Ψ

)

= 0 (13b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

−k2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (14)
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FIG. 1: The evolution of the energy densities in the decay-
ing scalar field and its decay products, as fractions of ρcrit,0:
the critical density at a = 1. The scalar field is modeled as
a pressureless fluid; its energy evolves as ρ ∝ a−3 until the
expansion rate equals its decay rate at a " 104. While the
universe is scalar-dominated, the scalar is feeding energy into
the matter and radiation fields, and both the matter and ra-
diation fields evolve as ρ ∝ a−3/2. Once nearly all the scalar
density is transferred to the matter and radiation fields, their
energy densities evolve in the usual way: radiation as ρ ∝ a−4

and matter as ρ ∝ a−3.

At this time, the universe transitions from scalar dom-
ination to radiation domination. The duration of the
radiation-dominated era is determined by the branch-
ing ratio f ; if TRH is the temperature of the radiation
bath immediately after the decay of the scalar field, and
Teq is the temperature at matter-radiation equality, then
f ! Teq/TRH. From the cosmic microwave background,
we know that Teq = 0.75 eV [11], and nucleosynthesis re-
quires that TRH ∼> 10 MeV. We are therefore required to
choose f ∼< 10−8 to ensure that the universe is radiation-
dominated for a sufficient period of time.

In the limit that Γφt # 1, the universe is scalar-
dominated, and the solutions to the background equa-
tions are

ρφ = ρφ(t0) a−3 (4)

ρr =
3(1 − f)

5
[ρφ(t0)Γφt0] a

−3/2 + cr a−4 (5)

ρdm = f [ρφ(t0)Γφt0] a
−3/2 + cm a−3. (6)

In these equations, cr and cm are arbitrary constants,
and they are nonzero only if there is matter and radi-
ation that did not originate from scalar decay; we will
assume that the scalar field was initially the only sub-
stance in the universe, so we take cr = cm = 0. Thus
we see that, if all the radiation and dark matter origi-
nated from the decaying scalar field, then the initial val-
ues (at t = t0) of ρ̃φ, ρ̃r, and ρ̃dm are determined by the
chosen values for Γ̃φ and the branching ratio f . Dur-
ing scalar domination, H = 2/(3t), which implies that

ρφ(t0)Γφt0 = (2/3)Γ̃φρφ(t0). It follows that

ρ̃dm(t0) =
2

3
f Γ̃φρ̃φ(t0), (7)

ρ̃r(t0) =
2

5
(1 − f)Γ̃φρ̃φ(t0). (8)

Finally, our assumption that the universe is flat demands
that ρ̃φ(t0)+ ρ̃r(t0)+ ρ̃dm(t0) = 1. We want the universe
to be initially dominated by the scalar energy density, so
we must set Γ̃φ # 1. Figure 1 shows the evolution of the
energy densities of the scalar, matter and radiation fields
for Γ̃φ = 10−6 and f = 10−8. We see that the universe

becomes radiation-dominated at aRH ! Γ̃−2/3
φ .

As described in Appendix A, the evolution equations
for perturbations in the scalar, radiation and matter flu-
ids are derived by perturbing covariant versions of Eqs.
(1)-(3) [12–14]. We work in conformal Newtonian gauge,
with

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj ]. (9)

In addition to the metric perturbations Ψ and Φ,
we must solve for the fractional density perturbations
[δ ≡ δρ(τ, $x)/ρ0(τ)] in the scalar field (δφ), the radia-
tion (δr), and the matter (δdm). The three fluids also
have velocity perturbations [vi ≡ dxi/dτ ], and we solve
for the divergences of the velocity fields for the scalar
field (θφ ≡ $∇ · $vφ), the matter (θdm ≡ $∇ · $vdm) and the

radiation (θr ≡ $∇ · $vr). The perturbation equations are

δ̇r +
4

3
θr + 4Φ̇ = 0 (10a)

θ̇r + ∇2

(

δr

4
+ Ψ

)

= 0 (10b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

∇2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (11)

Finally, we close the system of perturbation equations
by noting that the absence of anisotropic stress implies
Φ = −Ψ.

$∇ → −i$k (12)

δ̇r +
4

3
θr + 4Φ̇ = 0 (13a)

θ̇r − k2

(

δr

4
+ Ψ

)

= 0 (13b)

where a dot denotes differentiation with respect to con-
formal time τ . We also have the perturbed Einstein field
equation

−k2Φ + 3
ȧ

a

(

ȧ

a
Ψ − Φ̇

)

= −4πGa2ρrδr. (14)
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The cartoon
• At early times the universe was hot, dense and

ionized.  Photons and matter were tightly coupled by
Thomson scattering.

– Short m.f.p. allows fluid approximation.

• Initial fluctuations in density and gravitational
potential drive acoustic waves in the fluid:
compressions and rarefactions with !"#!b.

• Consider a (standing) plane wave perturbation of
comoving wavenumber k.

• If we expand the Euler equation to first order in the
Compton mean free path over the wavelength we
obtain
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Ḟγ l =
k

2l + 1

[

lFγ (l−1) − (l + 1)Fγ (l+1)

]

− aneσT Fγ l , l ≥ 3 ,

Ġγ l =
k

2l + 1

[

lGγ (l−1) − (l + 1)Gγ (l+1)

]

+ aneσT

[

−Gγ l +
1

2
(Fγ 2 + Gγ 0 + Gγ 2)

(

δl0 +
δl2

5

)]

,

(63)

Conformal Newtonian gauge —

δ̇γ = −
4

3
θγ + 4φ̇ ,

θ̇γ = k2
(

1

4
δγ − σγ

)

+ k2ψ + aneσT (θb − θγ) ,

Ḟγ 2 = 2σ̇γ =
8

15
θγ −

3

5
kFγ 3 −

9

5
aneσT σγ +

1

10
aneσT (Gγ 0 + Gγ 2) ,

Ḟγ l =
k

2l + 1

[

lFγ (l−1) − (l + 1)Fγ (l+1)

]

− aneσT Fγ l , l ≥ 3

Ġγ l =
k

2l + 1

[

lGγ (l−1) − (l + 1)Gγ (l+1)

]

+ aneσT

[

−Gγ l +
1

2
(Fγ 2 + Gγ 0 + Gγ 2)

(

δl0 +
δl2

5

)]

,

(64)

The subscripts γ and b refer to photons and baryons respectively.

We truncate the photon Boltzmann equations in a manner similar to massless neutrinos

(eq. 51), except that Thomson opacity terms must be added. For l = lmax we replace equations

(63) and (64) by

Ḟγ l = kFγ (l−1) −
l + 1

τ
Fγ l − aneσT Fγ l ,

Ġγ l = kGγ (l−1) −
l + 1

τ
Gγ l − aneσT Gγ l . (65)

5.6. Baryons

The baryons (and electrons) behave like a non-relativistic fluid described, in the absence

of coupling to radiation, by the energy-momentum conservation equations (29) and (30) with

δPb/δρb = c2
s = w # 1 and σ = 0. Since the baryons are very nonrelativistic after neutrino

decoupling (the period of interest), we may neglect w and δP/δρ in all terms except the acoustic

term c2
sk

2δ (which is important for sufficiently high k; note that the shear stress term k2σ is far

smaller so we neglect it). Before recombination, however, the coupling of the baryons and the

photons causes a transfer of momentum and energy between the two components.

From equation (22) the momentum density T 0
j for a given species is related to θ by

ikjδT 0
j = (ρ̄ + P̄ )θ. The momentum transfer into the photon component is represented by
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aneσT (θb − θγ) of equations (63) and (64). Momentum conservation in Thomson scattering then

implies that a term (4ρ̄γ/3ρ̄b) aneσT (θγ − θb) has to be added to the equation for θ̇b (where we

have used P̄b " ρ̄b), so equations (29) and (30) are modified to become

Synchronous gauge —

δ̇b = −θb −
1

2
ḣ ,

θ̇b = −
ȧ

a
θb + c2

sk
2δb +

4ρ̄γ

3ρ̄b
aneσT (θγ − θb) , (66)

Conformal Newtonian gauge —

δ̇b = −θb + 3φ̇ ,

θ̇b = −
ȧ

a
θb + c2

sk
2δb +

4ρ̄γ

3ρ̄b
aneσT (θγ − θb) + k2ψ . (67)

The square of the baryon sound speed is evaluated from

c2
s =

Ṗb

ρ̇b
=

kBTb

µ

(

1 −
1

3

d ln Tb

d ln a

)

, (68)

where µ is the mean molecular weight (including free electrons and all ions of H and He) and,

in the second equality, we have neglected the slow time variation of µ. (This approximation is

adequate because even during recombination, when µ̇ is largest, the baryons contribute very little

to the pressure of the photon-baryon fluid.) The baryon temperature evolves according to

Ṫb = −2
ȧ

a
Tb +

8

3

µ

me

ρ̄γ

ρ̄b
aneσT (Tγ − Tb) . (69)

We assume that electron-ion collisions are rapid enough for kinetic equilibrium to hold with

a common temperature Tb for electrons and all baryon species. Equation (69) follows from

the first law of thermodynamics, dQ = (3/2)d(Pb/ρb) + Pbd(1/ρb), with specific heating rate

Q̇ = 4(ρ̄γ/ρ̄b)aneσT kB(Tγ − Tb).

5.7. Tight-Coupling Approximation

Before recombination the Thomson opacity is so large that photons and baryons are tightly

coupled, with aneσT ≡ τ−1
c $ ȧ/a ∼ τ−1. The large values of the Thomson drag terms in

equations (63)–(67) for θ̇γ and θ̇b make them numerically difficult to solve. Therefore, in this limit

we shall follow the method of Peebles & Yu (1970) to obtain an alternative form of the equations
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aneσT (θb − θγ) of equations (63) and (64). Momentum conservation in Thomson scattering then

implies that a term (4ρ̄γ/3ρ̄b) aneσT (θγ − θb) has to be added to the equation for θ̇b (where we

have used P̄b " ρ̄b), so equations (29) and (30) are modified to become
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δ̇b = −θb −
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ḣ ,

θ̇b = −
ȧ
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θb + c2

sk
2δb +

4ρ̄γ
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aneσT (θγ − θb) , (66)

Conformal Newtonian gauge —

δ̇b = −θb + 3φ̇ ,

θ̇b = −
ȧ

a
θb + c2

sk
2δb +

4ρ̄γ

3ρ̄b
aneσT (θγ − θb) + k2ψ . (67)

The square of the baryon sound speed is evaluated from

c2
s =

Ṗb

ρ̇b
=

kBTb

µ

(

1 −
1

3

d ln Tb

d ln a

)

, (68)

where µ is the mean molecular weight (including free electrons and all ions of H and He) and,

in the second equality, we have neglected the slow time variation of µ. (This approximation is

adequate because even during recombination, when µ̇ is largest, the baryons contribute very little

to the pressure of the photon-baryon fluid.) The baryon temperature evolves according to

Ṫb = −2
ȧ

a
Tb +

8

3

µ

me

ρ̄γ

ρ̄b
aneσT (Tγ − Tb) . (69)

We assume that electron-ion collisions are rapid enough for kinetic equilibrium to hold with

a common temperature Tb for electrons and all baryon species. Equation (69) follows from

the first law of thermodynamics, dQ = (3/2)d(Pb/ρb) + Pbd(1/ρb), with specific heating rate

Q̇ = 4(ρ̄γ/ρ̄b)aneσT kB(Tγ − Tb).

5.7. Tight-Coupling Approximation

Before recombination the Thomson opacity is so large that photons and baryons are tightly

coupled, with aneσT ≡ τ−1
c $ ȧ/a ∼ τ−1. The large values of the Thomson drag terms in

equations (63)–(67) for θ̇γ and θ̇b make them numerically difficult to solve. Therefore, in this limit

we shall follow the method of Peebles & Yu (1970) to obtain an alternative form of the equations

5*7D/*+%5*66#$#*+%A."7$]%%

%J*7.+/(7%A"9+$1."%A.+)$%/*%ca(96#l.%2(6L%:.6*>#3.$%*1%=4*/*+%9+)%29"0*+%e6(#)$%%

A#'4/Z5*(D6#+'%#+/*%9%&#+'6.%=4*/*+Z29"0*+%e6(#)%V4.+]%



5J2%=40$#>$%

?79'.%5*("/.$0%J9"3+%V4#/.%

29"0*+$% =4*/*+$%



5J2%=40$#>$%

?79'.%5*("/.$0%J9"3+%V4#/.%

29"0*+$% =4*/*+$%



5J2%=40$#>$%

?79'.%5*("/.$0%J9"3+%V4#/.%

29"0*+$% =4*/*+$%



5J2%=40$#>$%

?79'.%5*("/.$0%J9"3+%V4#/.%

29"0*+$% =4*/*+$%



5J2%=40$#>$%

?79'.%5*("/.$0%J9"3+%V4#/.%

29"0*+$% =4*/*+$%



5J2%=40$#>$%

?79'.%5*("/.$0%J9"3+%V4#/.%

29"0*+$% =4*/*+$%



5J2%=40$#>$%

?79'.%5*("/.$0%J9"3+%V4#/.%

29"0*+$% =4*/*+$%



5J2%=40$#>$%

?79'.%5*("/.$0%J9"3+%V4#/.%

29"0*+$% =4*/*+$%



5J2%=40$#>$]%=4*/*+%J.7*"0!
– 22 –

Ḟγ l =
k

2l + 1

[

lFγ (l−1) − (l + 1)Fγ (l+1)

]

− aneσT Fγ l , l ≥ 3 ,

Ġγ l =
k

2l + 1

[

lGγ (l−1) − (l + 1)Gγ (l+1)

]

+ aneσT

[

−Gγ l +
1

2
(Fγ 2 + Gγ 0 + Gγ 2)

(

δl0 +
δl2

5

)]

,

(63)

Conformal Newtonian gauge —

δ̇γ = −
4

3
θγ + 4φ̇ ,

θ̇γ = k2
(

1

4
δγ − σγ

)

+ k2ψ + aneσT (θb − θγ) ,

Ḟγ 2 = 2σ̇γ =
8

15
θγ −

3

5
kFγ 3 −

9

5
aneσT σγ +

1

10
aneσT (Gγ 0 + Gγ 2) ,

Ḟγ l =
k

2l + 1

[

lFγ (l−1) − (l + 1)Fγ (l+1)

]

− aneσT Fγ l , l ≥ 3

Ġγ l =
k

2l + 1

[

lGγ (l−1) − (l + 1)Gγ (l+1)

]

+ aneσT

[

−Gγ l +
1

2
(Fγ 2 + Gγ 0 + Gγ 2)

(

δl0 +
δl2

5

)]

,

(64)

The subscripts γ and b refer to photons and baryons respectively.

We truncate the photon Boltzmann equations in a manner similar to massless neutrinos

(eq. 51), except that Thomson opacity terms must be added. For l = lmax we replace equations

(63) and (64) by

Ḟγ l = kFγ (l−1) −
l + 1

τ
Fγ l − aneσT Fγ l ,

Ġγ l = kGγ (l−1) −
l + 1

τ
Gγ l − aneσT Gγ l . (65)

5.6. Baryons

The baryons (and electrons) behave like a non-relativistic fluid described, in the absence

of coupling to radiation, by the energy-momentum conservation equations (29) and (30) with

δPb/δρb = c2
s = w # 1 and σ = 0. Since the baryons are very nonrelativistic after neutrino

decoupling (the period of interest), we may neglect w and δP/δρ in all terms except the acoustic

term c2
sk

2δ (which is important for sufficiently high k; note that the shear stress term k2σ is far

smaller so we neglect it). Before recombination, however, the coupling of the baryons and the

photons causes a transfer of momentum and energy between the two components.

From equation (22) the momentum density T 0
j for a given species is related to θ by

ikjδT 0
j = (ρ̄ + P̄ )θ. The momentum transfer into the photon component is represented by
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Ωch2
= 0.1126± 0.0036

zeq = 3232± 87

I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

∗Electronic address: jrs65@cita.utoronto.ca

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (5) in terms of a transfer function

Bij leaving the measured visibility as

Vij(φ) =

�
d2n̂Bij(n̂;φ)T (n̂) + nij(φ) (8)

where the transfer function is

Bij(n̂;φ) =
1

Ωij
Ai(n̂;φ)A

∗
j (n̂;φ)e

2πin̂·uij(φ) . (9)

As expected in the rotating system the UV -plane changes

orientation with respect to the celestial sphere. Given

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
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)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-
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stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (5) in terms of a transfer function

Bij leaving the measured visibility as

Vij(φ) =

�
d2n̂Bij(n̂;φ)T (n̂) + nij(φ) (8)

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

∗Electronic address: jrs65@cita.utoronto.ca

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)
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In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (5) in terms of a transfer function

Bij leaving the measured visibility as

Vij(φ) =

�
d2n̂Bij(n̂;φ)T (n̂) + nij(φ) (8)

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)
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where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)
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where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term

nij(φ)1. We will write (??) in terms of a transfer function

Bij leaving the measured visibility as

Vij(φ) =

�
d2n̂Bij(n̂;φ)T (n̂) + nij(φ) (8)

where the transfer function is

Bij(n̂;φ) =
1

Ωij
Ai(n̂;φ)A

∗
j (n̂;φ)e

2πin̂·uij(φ) . (9)

As expected in the rotating system the UV -plane changes

orientation with respect to the celestial sphere. Given

1 Unlike the sky, the instrumental noise is not strictly periodic in
φ, however, provided it is stationary we can treat it as such when
combining the measured sidereal days.
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)
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where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As

the Earths rotation ensures that the sky signal is peri-

odic we can identify each sidereal day of observation as

equivalent and average over them. The measured visibil-

ities are also corrupted by instrumental noise, which we

must explicitly take account of by adding a noise term
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I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the
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complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
These visibilities are sensitive to localised regions of

the sky and so as the Earth rotates their measured val-

ues change, we take this into account by explicitly in-

cluding the dependence on the azimuthal angle φ. As
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Hidden Hot Dark Matter as Cold Dark Matter

Kris Sigurdson∗

Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

We show that hidden hot dark matter, hidden-sector dark matter with interactions that decouple
when it is relativistic, is a viable dark matter candidate provided it has never been in thermal
equilibrium with the particles of the standard model. This hidden hot dark matter may reheat to
a lower temperature and number density than the visible Universe and thus account, simply with
its thermal abundance, for all the dark matter in the Universe while evading the typical constraints
on hot dark matter arising from structure formation. We find masses ranging from ∼3 keV to
∼ 10 TeV. While never in equilibrium with the standard model, this class of models may have
unique observational signatures in the matter power spectrum or via extra-weak interactions with
standard model particles.

PACS numbers: 95.35.+d, 98.80.Cq, 14.80.-j

Introduction – Dark matter is a known unknown. While
we know its abundance [1] and some of its cosmological
and astrophysical properties (see, e.g., Ref. [2]) its funda-
mental nature remains elusive. Viable candidates, that
may also play a role in the solution of other pressing is-
sues in physics, have been proposed including weakly in-
teracting massive particles (WIMPs) [3], and axions [4].
Although they have drastically different properties both
would have been relatively cold dark matter (CDM) par-
ticles (relative to their mass) when first produced. They
would have moved only a short distance, cosmologically
speaking, before their initial momentum redshifted away.

On the contrary, while standard model (SM) neutrinos
have mass [5], they fail as a candidate for dark matter
because they decoupled from the primordial plasma at
a high temperature relative to their mass. They are hot
dark matter (HDM) particles that stream through the
Universe at velocities v ! c and travel huge cosmologi-
cal distances before slowing down. This free-streaming
would erase small-scale density fluctuations in violent
conflict with observations [6]. Moreover, to account for
a cosmological dark matter density of Ωdh2 ! 0.11 [1]
a single Dirac (Majorana) fermion that decoupled while
relativistic must have a mass !50 eV (!100 eV) if it
decoupled prior to the QCD and electroweak phase tran-
sitions, and a lower mass if (like neutrinos) it decoupled
later. As the Tremaine-Gunn bound on the phase space
density of dark matter requires m ! 300 eV [7], it appears
that an interacting species once in thermal equilibrium
that decouples when relativistic, like the SM neutrinos,
can only account for a minor fraction of the dark matter
in the Universe.

However, there is an important caveat to this conclu-
sion. It assumes that dark matter was, at some point in
the history of the Universe, in thermal equilibrium with
standard model particles. This need not be the case if
dark matter exists in a hidden sector (HS). In fact, dark-
matter could have been thermalized with hidden sector
particles at a HS temperature less than the SM tempera-

ture.1 This may occur straightforwardly, for instance, if
reheating after inflation proceeds more efficiently to the
SM sector than the HS.2 Hidden sectors have long been
imagined [8], and HS dark matter candidates that freeze
out when non-relativistic have recently received attention
[9]. Potential implications of extra HS interactions have
also been considered (see, e.g., Refs. [10]).

In this Letter we show that hidden hot dark matter
(HHDM), a thermalized HS species with interactions that
decouple while relativistic, is a candidate for the all of the
dark matter in our Universe. This alternative class of
dark matter candidates has a thermal relic abundance,
significantly different particle properties than standard
thermal relics, and might have extra-weak interactions
with the SM.

Mass and Relic Density – We assume that dark matter
is a particle χ of mass mχ which freezes out when it is
relativistic. This analysis is for a fermion, but appropri-
ately adapted results hold for bosons. A fermion with dχ

internal degrees of freedom in thermal equilibrium at a
temperature Tχ has a number density

nχ = dχ
3ζ(3)

4π2
T 3

χ = dχ
3ζ(3)

4π2

gs(T )

gs
f

ξ3T 3 , (1)

where T is the SM temperature, gs(T ) is the effective
number of entropy degrees of freedom coupled to the SM,
and ξ ≡ Tχ/T is the dark-to-SM temperature ratio at the
temperature Tχ. When HS interactions of χ particles
decoupled at temperature Tχf we have ξf ≡ Tχf/Tf .
Here ζ(3) ! 1.202 and for Dirac fermion dχ = 4 counting
both particles and antiparticles (for a Majorona fermion
dχ = 2). If χ particles are dark matter they are now

1 A different possibility, one example being the Dodelson-Windrow
sterile neutrino [11], is non-thermal dark matter that never equi-
librates with any species. This alternative is not our focus here.

2 The relative temperature could also be reduced if g
s decreases

by a huge factor before electroweak but after hidden decoupling.
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arise from all of the power spectra measured by WMAP

with the greatest power coming from the shape of the
TT spectrum. Komatsu et al. (2010) consider the con-
straints that arise from polarization alone and show that
the limits improve from r < 1.6 to r < 0.93 using the
5-year and 7-year data, respectively.

4.2.2. Scale Dependent Spectral Index

Some inflation models predict a scale dependence
or “running” in the (nearly) power-law spectrum of
scalar perturbations. This is conveniently parameter-
ized by the logarithmic derivative of the spectral index,
dns/d ln k, which gives rise to a spectrum of the form
(Kosowsky & Turner 1995)

∆2
R(k) = ∆2

R(k0)

(

k

k0

)ns(k0)−1+ 1

2
ln(k/k0)dns/d ln k

,

(12)
with k0 = 0.002 Mpc−1. In the Markov chain, we use a
flat prior on dns/d lnk.
We do not detect a statistically significant (i.e., >95%

CL) deviation from a pure power-law spectrum with the
7-year WMAP data. The allowed range of dns/d lnk is
both closer to zero and has a smaller confidence range
using the 7-year data: dns/d lnk = −0.034± 0.026 com-
pared to dns/d ln k = −0.037 ± 0.028 from the 5-year
data.
If we allow both tensors and running as additional pri-

mordial degrees of freedom, the data prefer a slight neg-
ative running, but still at less than 2σ. The joint con-
straint on all parameters in this model is significantly
tighter with the 7-year data (see §4.3). The 7-year con-
straints on models with additional power spectrum de-
grees of freedom are given in Table 4.

4.2.3. Isocurvature Modes

In addition to adiabatic fluctuations, where different
species fluctuate in phase to produce curvature fluctua-
tions, it is possible to have an overdensity in one species
compensate for an underdensity in another without pro-
ducing a curvature. These entropy, or isocurvature per-
turbations have a measurable effect on the CMB by shift-
ing the acoustic peaks in the power spectrum. For cold
dark matter and photons, we define the field

Sc,γ ≡
δρc
ρc

−
3δργ
4ργ

(13)

(Bean et al. 2006; Komatsu et al. 2009). The relative
amplitude of its power spectrum is parameterized by α,

α

1− α
≡

PS(k0)

PR(k0)
, (14)

with k0 = 0.002 Mpc−1.
We consider two types of isocurvature modes: those

which are completely uncorrelated with the curvature
modes (with amplitude α0), motivated with the axion
model, and those which are anti-correlated with the the
curvature modes (with amplitude α−1), motivated with
the curvaton model. For the latter, we adopt the con-
vention in which anticorrelation increases the power at
low multipoles (Komatsu et al. 2009). For both α0 and
α−1, we adopt a flat prior and require α0 > 0, α−1 > 0.

Figure 14. The range of non-flat models consistent with the
WMAP 7-year data. The plotted points are drawn from the
Markov chain (ΛCDM, with curvature, fit to WMAP data only);
the color of each point indicates the Hubble constant for that ele-
ment in the chain, as indicated in the legend. Due to the geometric
degeneracy, CMB data alone do not strongly constrain closed mod-
els with ΩΛ+Ωm > 1, provided a low Hubble constant is tolerated,
see Table 6. The dashed line parameterizes the geometric degener-
acy in the 7-year data: Ωk = −0.2654 + 0.3697ΩΛ. When WMAP

data are combined with H0 and BAO data, the result strongly fa-
vors a flat universe: 0.99 < Ωtot < 1.01 (95% CL) (Komatsu et al.
2010). The joints constraints, shown as 68% and 95% blue con-
tours, provide compelling support for basic ΛCDM.

The constraints on both types of isocurvature modes
are given in Table 5. We do not detect a significant
contribution from either type of perturbation in the 7-
year data. The limit on uncorrelated modes improves the
most with the new data: from α0 < 0.16 (95% CL) to
α0 < 0.13 (95% CL) using the 5-year and 7-year data, re-
spectively. Table 5 also shows that the standard ΛCDM
parameters are only weakly affected by the isocurvature
degrees of freedom. Komatsu et al. (2010) derive anal-
ogous constraints using a combination of WMAP plus
other data. They find limits that are roughly a factor of
two lower than the WMAP-only limits.

4.2.4. Spatial Curvature

The basic ΛCDM model of the universe is flat, with
Ωk = 1 − Ωtot = 0. There is a compelling theoreti-
cal case for a flat universe in General Relativity, arising
from the apparent paradox that a flat geometry is dy-
namically unstable. That is, in order for the curvature
to be acceptably small today, say |Ωk| < 1, the curva-
ture in the early universe had to be extraordinarily fine
tuned. Cosmological inflation achieves this by expanding
the primordial curvature scale, if any, to super-horizon
scales today.
With knowledge of the redshift of matter-radiation

equality, the acoustic scale can be accurately computed
for use as a standard ruler at the epoch of recombina-
tion. The first acoustic peak in the CMB then provides
a means to measure the angular diameter of the acoustic
scale at the surface of last scattering. If we have indepen-
dent knowledge of the local distance-redshift relation (the
Hubble constant, H0) we can infer the physical distance
to the last scattering surface, and hence the geometry
of the universe. If we assume nothing about H0 we are
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arise from all of the power spectra measured by WMAP

with the greatest power coming from the shape of the
TT spectrum. Komatsu et al. (2010) consider the con-
straints that arise from polarization alone and show that
the limits improve from r < 1.6 to r < 0.93 using the
5-year and 7-year data, respectively.

4.2.2. Scale Dependent Spectral Index

Some inflation models predict a scale dependence
or “running” in the (nearly) power-law spectrum of
scalar perturbations. This is conveniently parameter-
ized by the logarithmic derivative of the spectral index,
dns/d ln k, which gives rise to a spectrum of the form
(Kosowsky & Turner 1995)

∆2
R(k) = ∆2

R(k0)

(

k

k0

)ns(k0)−1+ 1

2
ln(k/k0)dns/d ln k

,

(12)
with k0 = 0.002 Mpc−1. In the Markov chain, we use a
flat prior on dns/d lnk.
We do not detect a statistically significant (i.e., >95%

CL) deviation from a pure power-law spectrum with the
7-year WMAP data. The allowed range of dns/d lnk is
both closer to zero and has a smaller confidence range
using the 7-year data: dns/d lnk = −0.034± 0.026 com-
pared to dns/d ln k = −0.037 ± 0.028 from the 5-year
data.
If we allow both tensors and running as additional pri-

mordial degrees of freedom, the data prefer a slight neg-
ative running, but still at less than 2σ. The joint con-
straint on all parameters in this model is significantly
tighter with the 7-year data (see §4.3). The 7-year con-
straints on models with additional power spectrum de-
grees of freedom are given in Table 4.

4.2.3. Isocurvature Modes

In addition to adiabatic fluctuations, where different
species fluctuate in phase to produce curvature fluctua-
tions, it is possible to have an overdensity in one species
compensate for an underdensity in another without pro-
ducing a curvature. These entropy, or isocurvature per-
turbations have a measurable effect on the CMB by shift-
ing the acoustic peaks in the power spectrum. For cold
dark matter and photons, we define the field

Sc,γ ≡
δρc
ρc

−
3δργ
4ργ

(13)

(Bean et al. 2006; Komatsu et al. 2009). The relative
amplitude of its power spectrum is parameterized by α,

α

1− α
≡

PS(k0)

PR(k0)
, (14)

with k0 = 0.002 Mpc−1.
We consider two types of isocurvature modes: those

which are completely uncorrelated with the curvature
modes (with amplitude α0), motivated with the axion
model, and those which are anti-correlated with the the
curvature modes (with amplitude α−1), motivated with
the curvaton model. For the latter, we adopt the con-
vention in which anticorrelation increases the power at
low multipoles (Komatsu et al. 2009). For both α0 and
α−1, we adopt a flat prior and require α0 > 0, α−1 > 0.

Figure 14. The range of non-flat models consistent with the
WMAP 7-year data. The plotted points are drawn from the
Markov chain (ΛCDM, with curvature, fit to WMAP data only);
the color of each point indicates the Hubble constant for that ele-
ment in the chain, as indicated in the legend. Due to the geometric
degeneracy, CMB data alone do not strongly constrain closed mod-
els with ΩΛ+Ωm > 1, provided a low Hubble constant is tolerated,
see Table 6. The dashed line parameterizes the geometric degener-
acy in the 7-year data: Ωk = −0.2654 + 0.3697ΩΛ. When WMAP

data are combined with H0 and BAO data, the result strongly fa-
vors a flat universe: 0.99 < Ωtot < 1.01 (95% CL) (Komatsu et al.
2010). The joints constraints, shown as 68% and 95% blue con-
tours, provide compelling support for basic ΛCDM.

The constraints on both types of isocurvature modes
are given in Table 5. We do not detect a significant
contribution from either type of perturbation in the 7-
year data. The limit on uncorrelated modes improves the
most with the new data: from α0 < 0.16 (95% CL) to
α0 < 0.13 (95% CL) using the 5-year and 7-year data, re-
spectively. Table 5 also shows that the standard ΛCDM
parameters are only weakly affected by the isocurvature
degrees of freedom. Komatsu et al. (2010) derive anal-
ogous constraints using a combination of WMAP plus
other data. They find limits that are roughly a factor of
two lower than the WMAP-only limits.

4.2.4. Spatial Curvature

The basic ΛCDM model of the universe is flat, with
Ωk = 1 − Ωtot = 0. There is a compelling theoreti-
cal case for a flat universe in General Relativity, arising
from the apparent paradox that a flat geometry is dy-
namically unstable. That is, in order for the curvature
to be acceptably small today, say |Ωk| < 1, the curva-
ture in the early universe had to be extraordinarily fine
tuned. Cosmological inflation achieves this by expanding
the primordial curvature scale, if any, to super-horizon
scales today.
With knowledge of the redshift of matter-radiation

equality, the acoustic scale can be accurately computed
for use as a standard ruler at the epoch of recombina-
tion. The first acoustic peak in the CMB then provides
a means to measure the angular diameter of the acoustic
scale at the surface of last scattering. If we have indepen-
dent knowledge of the local distance-redshift relation (the
Hubble constant, H0) we can infer the physical distance
to the last scattering surface, and hence the geometry
of the universe. If we assume nothing about H0 we are
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arise from all of the power spectra measured by WMAP

with the greatest power coming from the shape of the
TT spectrum. Komatsu et al. (2010) consider the con-
straints that arise from polarization alone and show that
the limits improve from r < 1.6 to r < 0.93 using the
5-year and 7-year data, respectively.

4.2.2. Scale Dependent Spectral Index

Some inflation models predict a scale dependence
or “running” in the (nearly) power-law spectrum of
scalar perturbations. This is conveniently parameter-
ized by the logarithmic derivative of the spectral index,
dns/d ln k, which gives rise to a spectrum of the form
(Kosowsky & Turner 1995)

∆2
R(k) = ∆2

R(k0)

(

k

k0

)ns(k0)−1+ 1

2
ln(k/k0)dns/d ln k

,

(12)
with k0 = 0.002 Mpc−1. In the Markov chain, we use a
flat prior on dns/d lnk.
We do not detect a statistically significant (i.e., >95%

CL) deviation from a pure power-law spectrum with the
7-year WMAP data. The allowed range of dns/d lnk is
both closer to zero and has a smaller confidence range
using the 7-year data: dns/d lnk = −0.034± 0.026 com-
pared to dns/d ln k = −0.037 ± 0.028 from the 5-year
data.
If we allow both tensors and running as additional pri-

mordial degrees of freedom, the data prefer a slight neg-
ative running, but still at less than 2σ. The joint con-
straint on all parameters in this model is significantly
tighter with the 7-year data (see §4.3). The 7-year con-
straints on models with additional power spectrum de-
grees of freedom are given in Table 4.

4.2.3. Isocurvature Modes

In addition to adiabatic fluctuations, where different
species fluctuate in phase to produce curvature fluctua-
tions, it is possible to have an overdensity in one species
compensate for an underdensity in another without pro-
ducing a curvature. These entropy, or isocurvature per-
turbations have a measurable effect on the CMB by shift-
ing the acoustic peaks in the power spectrum. For cold
dark matter and photons, we define the field

Sc,γ ≡
δρc
ρc

−
3δργ
4ργ

(13)

(Bean et al. 2006; Komatsu et al. 2009). The relative
amplitude of its power spectrum is parameterized by α,

α

1− α
≡

PS(k0)

PR(k0)
, (14)

with k0 = 0.002 Mpc−1.
We consider two types of isocurvature modes: those

which are completely uncorrelated with the curvature
modes (with amplitude α0), motivated with the axion
model, and those which are anti-correlated with the the
curvature modes (with amplitude α−1), motivated with
the curvaton model. For the latter, we adopt the con-
vention in which anticorrelation increases the power at
low multipoles (Komatsu et al. 2009). For both α0 and
α−1, we adopt a flat prior and require α0 > 0, α−1 > 0.

Figure 14. The range of non-flat models consistent with the
WMAP 7-year data. The plotted points are drawn from the
Markov chain (ΛCDM, with curvature, fit to WMAP data only);
the color of each point indicates the Hubble constant for that ele-
ment in the chain, as indicated in the legend. Due to the geometric
degeneracy, CMB data alone do not strongly constrain closed mod-
els with ΩΛ+Ωm > 1, provided a low Hubble constant is tolerated,
see Table 6. The dashed line parameterizes the geometric degener-
acy in the 7-year data: Ωk = −0.2654 + 0.3697ΩΛ. When WMAP

data are combined with H0 and BAO data, the result strongly fa-
vors a flat universe: 0.99 < Ωtot < 1.01 (95% CL) (Komatsu et al.
2010). The joints constraints, shown as 68% and 95% blue con-
tours, provide compelling support for basic ΛCDM.

The constraints on both types of isocurvature modes
are given in Table 5. We do not detect a significant
contribution from either type of perturbation in the 7-
year data. The limit on uncorrelated modes improves the
most with the new data: from α0 < 0.16 (95% CL) to
α0 < 0.13 (95% CL) using the 5-year and 7-year data, re-
spectively. Table 5 also shows that the standard ΛCDM
parameters are only weakly affected by the isocurvature
degrees of freedom. Komatsu et al. (2010) derive anal-
ogous constraints using a combination of WMAP plus
other data. They find limits that are roughly a factor of
two lower than the WMAP-only limits.

4.2.4. Spatial Curvature

The basic ΛCDM model of the universe is flat, with
Ωk = 1 − Ωtot = 0. There is a compelling theoreti-
cal case for a flat universe in General Relativity, arising
from the apparent paradox that a flat geometry is dy-
namically unstable. That is, in order for the curvature
to be acceptably small today, say |Ωk| < 1, the curva-
ture in the early universe had to be extraordinarily fine
tuned. Cosmological inflation achieves this by expanding
the primordial curvature scale, if any, to super-horizon
scales today.
With knowledge of the redshift of matter-radiation

equality, the acoustic scale can be accurately computed
for use as a standard ruler at the epoch of recombina-
tion. The first acoustic peak in the CMB then provides
a means to measure the angular diameter of the acoustic
scale at the surface of last scattering. If we have indepen-
dent knowledge of the local distance-redshift relation (the
Hubble constant, H0) we can infer the physical distance
to the last scattering surface, and hence the geometry
of the universe. If we assume nothing about H0 we are
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Ωch2
= 0.1126± 0.0036

Ωch2
= 0.135± 0.016

zeq = 3232± 87

zeq = 3209± 85

1 + zeq =
Ωm

Ωr
=

Ωmh2

4.16× 10−5(Neff/3.02)

100Ωbh
2
= 2.255± 0.054

100Ωbh
2
= 2.246± 0.054

Ωγh
2

2.7 < Neff < 6.2

α = α0

I. INTRODUCTION

In the past two decades cosmologists have spectacu-

larly advanced our understanding of the Universe.

Mapping the Universe with the 21-cm line of neutral

hydrogen is, perhaps, the final cosmological frontier.

We describe here a new formalism for analyzing data

from transit telescopes that is particularly well-suited to

wide-field interferometers.

II. FORMALISM

A. Unpolarised Case

Any transit telescope can be viewed as a collection of

feeds, fixed relative to the ground frame, where any par-

ticular feed Fi measures a combination of the electric

∗Electronic address: jrs65@cita.utoronto.ca

field Ea(n̂) coming from various directions on the sky.

Initially it will be instructive to pretend that the elec-

tric field is a scalar quantity, allowing us to leave the

complexity of the polarised notation behind. The signal

measured at a particular feed is given by

Fi =

�
d2n̂Ai(n̂)E(n̂)e2πin̂·ui , (1)

where the function Ai(n̂) gives the amplitude of the re-

sponse in that direction, the exponential factor keeps

track of the phase relative to an arbitrary reference point,

and ui is the displacement to that point, divided by the

wavelength. We assume that the radiation from the sky

is incoherent, that is

�E(n̂)E∗
(n̂�

)� = δ(n̂− n̂�
)I(n̂) . (2)

In traditional interferometry a visibility Vij is the cor-

relation between two feeds Fi and Fj at a particular in-

stant

Vij =
�
FiF

∗
j

�
(3)

=

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijI(n̂) (4)

where uij = ui − uj , the separation in the UV plane

(fixed relative to the ground). However where we are

concerned with observing continuous fields it will be more

convenient to rescale this definition, and use a quantity

Vij =
ν2

2kbc2Ωij
Vij (5)

=
1

Ωij

�
d2n̂Ai(n̂)A

∗
j (n̂)e

2πin̂·uijT (n̂) (6)

where we have switched to using the brightness temper-

ature T instead of the intensity I = 2kbν2T/c2 (in the

Rayleigh-Jeans limit). The quantity Ωij =
�
ΩiΩj is the

geometric mean of the individual beam solid angles

Ωi =

�
|Ai(n̂)|2 d2n̂ (7)

which also gives the effective antenna area Aeff = Ωλ2
.

The usefulness of this definition of Vij is that our visibil-

ities are a temperature-like quantity whereas the usual

quantity V is a flux — specifically for a sky with uniform

brightness temperature, with our definition, the auto-

correlation of an antenna Vii = T .
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24

r=
4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc

Ωa

)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)
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=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24
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4.7× 10−12
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Ωch2
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)12/7 (
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)2/7 α0
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, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24

r=
4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc

Ωa

)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
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(

fa
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)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:
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4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
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For both cases, we consider non-adiabatic fluctuations
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where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
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where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from
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≈
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, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-
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where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
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By eliminating fa from equation (37) and (39), we obtain
another formula for r:
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4.0× 10−10
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)4/3 (
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Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24

r=
4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc

Ωa

)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24

r=
4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc

Ωa

)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24

r=
4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc

Ωa

)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24
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4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc
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)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)
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=
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, (37)

Ωah
2=1.0× 10−3γθ2a

(
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1010 GeV
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, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24

r=
4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc

Ωa

)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.

18 Komatsu et al.

1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24

r=
4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc

Ωa

)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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1985, 1991; Turner & Wilczek 1991) and curvaton-
type (Linde & Mukhanov 1997; Lyth & Wands 2003;
Moroi & Takahashi 2001, 2002; Bartolo & Liddle 2002).
For both cases, we consider non-adiabatic fluctuations

between photons and cold dark matter:

S =
δρc
ρc

−
3δργ
4ργ

, (33)

and report limits on the ratio of the power spectrum
of S and that of the curvature perturbation R (e.g.,
Bean et al. 2006):

α(k0)

1− α(k0)
=

PS(k0)

PR(k0)
, (34)

where k0 = 0.002 Mpc−1. We denote the limits on axion-
type and curvaton-type by α0 and α−1, respectively.23

We find no evidence for non-adiabatic fluctuations.
The WMAP data-only limits are α0 < 0.13 (95% CL)
and α−1 < 0.011 (95% CL) (95% CL; Larson et al.
2010). With WMAP+BAO+H0, we find

α0 < 0.077 (95% CL) and α−1 < 0.0047 (95% CL),

while with WMAP+BAO+SN, we find α0 <
0.064 (95% CL) and α−1 < 0.0037 (95% CL).
The limit on α0 has an important implication for ax-

ion dark matter. In particular, a limit on α0 is related
to a limit on the tensor-to-scalar ratio, r (Kain 2006;
Beltran et al. 2007; Sikivie 2008; Kawasaki & Sekiguchi
2008). The explicit formula is given by equation (48) of
Komatsu et al. (2009a) as24

r=
4.7× 10−12

θ10/7a

(

Ωch2

γ

)12/7 (
Ωc

Ωa

)2/7 α0

1− α0
, (36)

where Ωa ≤ Ωc is the axion density parameter, θa is
the phase of the Peccei-Quinn field within our observ-
able universe, and γ ≤ 1 is a “dilution factor” represent-
ing the amount by which the axion density parameter,
Ωah2, would have been diluted due to a potential late-
time entropy production by, e.g., decay of some (unspec-
ified) heavy particles, between 200 MeV and the epoch
of nucleosynthesis, 1 MeV.
Where does this formula come from? Within the con-

text of the “misalignment” scenario of axion dark mat-
ter25, there are two observables one can use to place lim-
its on the axion properties: the dark matter density and

23 The limits on α can also be converted into the numbers
showing “how much the adiabatic relation (S = 0) can be violated,”
δadi, which can be calculated from

δadi =
δρc/ρc − 3δργ/(4ργ )

1
2
[δρc/ρc + 3δργ/(4ργ )]

≈
√
α

3
, (35)

for α $ 1 (Komatsu et al. 2009a).
24 This formula assumes that the axion field began to oscillate

before the QCD phase transition. The formula in the other limit
will be given later. We shall assume that the energy density of the
universe was dominated by radiation when the axion field began
to oscillate; however, this may not always be true (Kawasaki et al.
1996; Kawasaki & Takahashi 2005) when there was a significant
amount of entropy production after the QCD phase transition, i.e.,
γ $ 1.

25 We make the following assumptions: the Peccei-Quinn sym-
metry was broken during inflation but before the fluctuations we
observe today left the horizon, and was not restored before or after
the end of inflation (reheating). That the Peccei-Quinn symme-

α0. They are given by (e.g., Kawasaki & Sekiguchi 2008,
and references therein)

α0(k)

1− α0(k)
=

Ω2
a

Ω2
c

8ε

θ2a(fa/Mpl)2
, (37)

Ωah
2=1.0× 10−3γθ2a

(

fa
1010 GeV

)7/6

, (38)

where fa is the axion decay constant, and ε = −Ḣinf/H2
inf

is the so-called slow-roll parameter (where Hinf is the
Hubble expansion rate during inflation). For single-field
inflation models, ε is related to r as r = 16ε. By eliminat-
ing the axion decay constant, one obtains equation (36).
In deriving the above formula for Ωah2 (equation (38)),

we have assumed that the axion field began to oscillate
before the QCD phase transition.26 This is true when
fa < O(10−2)Mpl; however, when fa > O(10−2)Mpl,
the axions are so light that the axion field would not
start oscillating after the QCD phase transition.27 In
this limit, the formula for Ωah2 is given by

Ωah
2 = 1.6× 105γθ2a

(

fa
1017 GeV

)3/2

. (39)

By eliminating fa from equation (37) and (39), we obtain
another formula for r:

r =
4.0× 10−10

θ2/3a

(

Ωch2

γ

)4/3 (
Ωc

Ωa

)2/3 α0

1− α0
. (40)

Equation (36) and (40), combined with our limits on
Ωch2 and α0, implies that the axion dark matter scenario
in which axions account for most of the observed amount
of dark matter, Ωa ∼ Ωc, must satisfy

r<
7.6× 10−15

θ10/7a γ12/7
for fa < O(10−2)Mpl, (41)

r<
1.5× 10−12

θ2/3a γ4/3
for fa > O(10−2)Mpl. (42)

try was not restored before reheating requires the expansion rate
during inflation not to exceed the axion decay constant, Hinf < fa
(Lyth & Stewart 1992). That the Peccei-Quinn symmetry was not
restored after reheating requires the reheating temperature after
inflation not to exceed fa.

26 Specifically, the temperature at which the axion field began
to oscillate, T1, can be calculated from the condition 3H(T1) =
ma(T1), where ma(T ) ≈ 0.1ma0(0.2 GeV/T )4 is the mass of
axions before the QCD phase transition, T ! 0.2 GeV, and
ma0 = 13 MeV(1 GeV/fa) is the mass of axions at the zero
temperature. Here, we have used the pion decay constant of
Fπ = 184 MeV to calculate ma0, following equation (3.4.16) of
Weinberg (2008). The Hubble expansion rate during radiation era
is given by M2

plH
2(T ) = (π2/90)g∗T 4, whereMpl = 2.4×1018 GeV

is the reduced Planck mass and g∗ is the number of relativistic de-
grees of freedom. Before the QCD phase transition, g∗ = 61.75.
After the QCD phase transition but before the electron-positron
annihilation, g∗ = 10.75.

27 This dividing point, fa = O(10−2)Mpl, can be found from
the condition T1 = 0.2 GeV and 3H(T1) = ma(T1). See
Hertzberg et al. (2008) for more accurate numerical estimate. Note
that Hertzberg et al. (2008) used Fπ = 93 MeV for the pion decay
constant when calculating the axion mass at the zero temperature.
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Alternatively, one can express this constraint as

θaγ
6/5< 3.3× 10−9

(

10−2

r

)7/10

for fa < O(10−2)Mpl,

θaγ
2< 1.8× 10−15

(

10−2

r

)3/2

for fa > O(10−2)Mpl.

Therefore, a future detection of tensor modes at the level
of r = 10−2 would imply a fine-tuning of θa or γ or both
of these parameters (Komatsu et al. 2009a). If such fine-
tunings are not permitted, axions cannot account for the
observed abundance of dark matter (in the misalignment
scenario that we have considered here).
Depending on one’s interest, one may wish to elimi-

nate the phase, leaving the axion decay constant in the
formula (see equation (B7) of Komatsu et al. 2009a):

r = (1.6×10−12)

(

Ωch2

γ

)(

Ωc

Ωa

)(

fa
1012 GeV

)5/6 α0

1− α0
,

(43)
for f < O(10−2)Mpl. This formula gives

fa > 1.8× 1026 GeV γ6/5
( r

10−2

)6/5
, (44)

which is inconsistent with the condition fa <
O(10−2)Mpl (unless r is extremely small). The formula
that is valid for f > O(10−2)Mpl is

r = (2.2×10−8)

(

Ωch2

γ

)(

Ωc

Ωa

)(

fa
1017 GeV

)1/2 α0

1− α0
,

(45)
which gives

fa > 3.2× 1032 GeV γ2
( r

10−2

)2
. (46)

Requiring fa < Mpl = 2.4× 1018 GeV, we obtain

r <
8.7× 10−10

γ
. (47)

Thus, a future detection of tensor modes at the level of
r = 10−2 implies a significant amount of entropy produc-
tion, γ # 1, or a super-Planckian axion decay constant,
fa $ Mpl, or both. Also see Hertzberg et al. (2008);
Mack (2009); Mack & Steinhardt (2009) for similar stud-
ies.
For the implications of α−1 for curvaton dark matter,

see Section 3.6.4 of Komatsu et al. (2009a).

4.5. Parity Violation

While the TB and EB correlations vanish in a
parity-conserving universe, they may not vanish when
global parity symmetry is broken on cosmological scales
(Lue et al. 1999; Carroll 1998). In pixel space, they
would show up as a non-vanishing 〈Ur〉. As we showed
already in Section 2.4, the WMAP 7-year 〈Ur〉 data are
consistent with noise. What can we learn from this?
It is now a routine work of CMB experiments to deliver

the TB and EB data, and constrain a rotation angle of
the polarization plane due to a parity-violating effect (or
a rotation due to some systematic error). Specifically, a

rotation of the polarization plane by an angle ∆α gives
the following 5 transformations:

CTE,obs
l =CTE

l cos(2∆α), (48)

CTB,obs
l =CTE

l sin(2∆α), (49)

CEE,obs
l =CEE

l cos2(2∆α), (50)

CBB,obs
l =CEE

l sin2(2∆α), (51)

CEB,obs
l =

1

2
CEE

l sin(4∆α), (52)

where Cl’s on the right hand side are the primordial
power spectra in the absence of rotation, while Cobs

l ’s
on the left hand side are what we would observe in the
presence of rotation.
Note that these equations are not exact but valid only

when the primordial B-mode polarization is negligible
compared to the E-mode polarization, i.e., CBB

l # CEE
l .

For the full expression including CBB
l , see Lue et al.

(1999) and Feng et al. (2005).
Roughly speaking, when the polarization data are still

dominated by noise rather than by the cosmic signal, the
uncertainty in ∆α is given by a half of the inverse of the
signal-to-noise ratio of TE or EE, i.e.,

Err[∆αTB]'
1

2(S/N)TE
,

Err[∆αEB]'
1

2(S/N)EE
.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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Alternatively, one can express this constraint as
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)7/10

for fa < O(10−2)Mpl,

θaγ
2< 1.8× 10−15

(

10−2

r

)3/2

for fa > O(10−2)Mpl.

Therefore, a future detection of tensor modes at the level
of r = 10−2 would imply a fine-tuning of θa or γ or both
of these parameters (Komatsu et al. 2009a). If such fine-
tunings are not permitted, axions cannot account for the
observed abundance of dark matter (in the misalignment
scenario that we have considered here).
Depending on one’s interest, one may wish to elimi-

nate the phase, leaving the axion decay constant in the
formula (see equation (B7) of Komatsu et al. 2009a):

r = (1.6×10−12)

(
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)(
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for f < O(10−2)Mpl. This formula gives
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, (44)

which is inconsistent with the condition fa <
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Requiring fa < Mpl = 2.4× 1018 GeV, we obtain

r <
8.7× 10−10

γ
. (47)

Thus, a future detection of tensor modes at the level of
r = 10−2 implies a significant amount of entropy produc-
tion, γ # 1, or a super-Planckian axion decay constant,
fa $ Mpl, or both. Also see Hertzberg et al. (2008);
Mack (2009); Mack & Steinhardt (2009) for similar stud-
ies.
For the implications of α−1 for curvaton dark matter,

see Section 3.6.4 of Komatsu et al. (2009a).

4.5. Parity Violation

While the TB and EB correlations vanish in a
parity-conserving universe, they may not vanish when
global parity symmetry is broken on cosmological scales
(Lue et al. 1999; Carroll 1998). In pixel space, they
would show up as a non-vanishing 〈Ur〉. As we showed
already in Section 2.4, the WMAP 7-year 〈Ur〉 data are
consistent with noise. What can we learn from this?
It is now a routine work of CMB experiments to deliver

the TB and EB data, and constrain a rotation angle of
the polarization plane due to a parity-violating effect (or
a rotation due to some systematic error). Specifically, a

rotation of the polarization plane by an angle ∆α gives
the following 5 transformations:

CTE,obs
l =CTE

l cos(2∆α), (48)

CTB,obs
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l sin(2∆α), (49)
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l sin2(2∆α), (51)

CEB,obs
l =
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CEE

l sin(4∆α), (52)

where Cl’s on the right hand side are the primordial
power spectra in the absence of rotation, while Cobs

l ’s
on the left hand side are what we would observe in the
presence of rotation.
Note that these equations are not exact but valid only

when the primordial B-mode polarization is negligible
compared to the E-mode polarization, i.e., CBB

l # CEE
l .

For the full expression including CBB
l , see Lue et al.

(1999) and Feng et al. (2005).
Roughly speaking, when the polarization data are still

dominated by noise rather than by the cosmic signal, the
uncertainty in ∆α is given by a half of the inverse of the
signal-to-noise ratio of TE or EE, i.e.,

Err[∆αTB]'
1

2(S/N)TE
,

Err[∆αEB]'
1

2(S/N)EE
.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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tunings are not permitted, axions cannot account for the
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Depending on one’s interest, one may wish to elimi-

nate the phase, leaving the axion decay constant in the
formula (see equation (B7) of Komatsu et al. 2009a):

r = (1.6×10−12)

(

Ωch2

γ

)(

Ωc

Ωa

)(

fa
1012 GeV

)5/6 α0

1− α0
,

(43)
for f < O(10−2)Mpl. This formula gives

fa > 1.8× 1026 GeV γ6/5
( r

10−2

)6/5
, (44)

which is inconsistent with the condition fa <
O(10−2)Mpl (unless r is extremely small). The formula
that is valid for f > O(10−2)Mpl is

r = (2.2×10−8)

(

Ωch2

γ

)(

Ωc

Ωa

)(

fa
1017 GeV

)1/2 α0

1− α0
,

(45)
which gives

fa > 3.2× 1032 GeV γ2
( r

10−2

)2
. (46)

Requiring fa < Mpl = 2.4× 1018 GeV, we obtain

r <
8.7× 10−10

γ
. (47)

Thus, a future detection of tensor modes at the level of
r = 10−2 implies a significant amount of entropy produc-
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Mack (2009); Mack & Steinhardt (2009) for similar stud-
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see Section 3.6.4 of Komatsu et al. (2009a).
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would show up as a non-vanishing 〈Ur〉. As we showed
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when the primordial B-mode polarization is negligible
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For the full expression including CBB
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Roughly speaking, when the polarization data are still

dominated by noise rather than by the cosmic signal, the
uncertainty in ∆α is given by a half of the inverse of the
signal-to-noise ratio of TE or EE, i.e.,
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1
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1
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.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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Therefore, a future detection of tensor modes at the level
of r = 10−2 would imply a fine-tuning of θa or γ or both
of these parameters (Komatsu et al. 2009a). If such fine-
tunings are not permitted, axions cannot account for the
observed abundance of dark matter (in the misalignment
scenario that we have considered here).
Depending on one’s interest, one may wish to elimi-

nate the phase, leaving the axion decay constant in the
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Thus, a future detection of tensor modes at the level of
r = 10−2 implies a significant amount of entropy produc-
tion, γ # 1, or a super-Planckian axion decay constant,
fa $ Mpl, or both. Also see Hertzberg et al. (2008);
Mack (2009); Mack & Steinhardt (2009) for similar stud-
ies.
For the implications of α−1 for curvaton dark matter,

see Section 3.6.4 of Komatsu et al. (2009a).

4.5. Parity Violation

While the TB and EB correlations vanish in a
parity-conserving universe, they may not vanish when
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(Lue et al. 1999; Carroll 1998). In pixel space, they
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already in Section 2.4, the WMAP 7-year 〈Ur〉 data are
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It is now a routine work of CMB experiments to deliver

the TB and EB data, and constrain a rotation angle of
the polarization plane due to a parity-violating effect (or
a rotation due to some systematic error). Specifically, a
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power spectra in the absence of rotation, while Cobs
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on the left hand side are what we would observe in the
presence of rotation.
Note that these equations are not exact but valid only

when the primordial B-mode polarization is negligible
compared to the E-mode polarization, i.e., CBB

l # CEE
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For the full expression including CBB
l , see Lue et al.

(1999) and Feng et al. (2005).
Roughly speaking, when the polarization data are still

dominated by noise rather than by the cosmic signal, the
uncertainty in ∆α is given by a half of the inverse of the
signal-to-noise ratio of TE or EE, i.e.,
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.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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only be used to provide an intuitive feel of how the er-
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0.024 radian ' 1.4◦, which is significantly better than
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only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
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pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦
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that is valid for f > O(10−2)Mpl is

r = (2.2×10−8)
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which gives

fa > 3.2× 1032 GeV γ2
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. (46)

Requiring fa < Mpl = 2.4× 1018 GeV, we obtain

r <
8.7× 10−10

γ
. (47)

Thus, a future detection of tensor modes at the level of
r = 10−2 implies a significant amount of entropy produc-
tion, γ # 1, or a super-Planckian axion decay constant,
fa $ Mpl, or both. Also see Hertzberg et al. (2008);
Mack (2009); Mack & Steinhardt (2009) for similar stud-
ies.
For the implications of α−1 for curvaton dark matter,

see Section 3.6.4 of Komatsu et al. (2009a).

4.5. Parity Violation

While the TB and EB correlations vanish in a
parity-conserving universe, they may not vanish when
global parity symmetry is broken on cosmological scales
(Lue et al. 1999; Carroll 1998). In pixel space, they
would show up as a non-vanishing 〈Ur〉. As we showed
already in Section 2.4, the WMAP 7-year 〈Ur〉 data are
consistent with noise. What can we learn from this?
It is now a routine work of CMB experiments to deliver

the TB and EB data, and constrain a rotation angle of
the polarization plane due to a parity-violating effect (or
a rotation due to some systematic error). Specifically, a

rotation of the polarization plane by an angle ∆α gives
the following 5 transformations:

CTE,obs
l =CTE

l cos(2∆α), (48)

CTB,obs
l =CTE

l sin(2∆α), (49)

CEE,obs
l =CEE

l cos2(2∆α), (50)

CBB,obs
l =CEE

l sin2(2∆α), (51)

CEB,obs
l =

1

2
CEE

l sin(4∆α), (52)

where Cl’s on the right hand side are the primordial
power spectra in the absence of rotation, while Cobs

l ’s
on the left hand side are what we would observe in the
presence of rotation.
Note that these equations are not exact but valid only

when the primordial B-mode polarization is negligible
compared to the E-mode polarization, i.e., CBB

l # CEE
l .

For the full expression including CBB
l , see Lue et al.

(1999) and Feng et al. (2005).
Roughly speaking, when the polarization data are still

dominated by noise rather than by the cosmic signal, the
uncertainty in ∆α is given by a half of the inverse of the
signal-to-noise ratio of TE or EE, i.e.,

Err[∆αTB]'
1

2(S/N)TE
,

Err[∆αEB]'
1

2(S/N)EE
.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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Therefore, a future detection of tensor modes at the level
of r = 10−2 would imply a fine-tuning of θa or γ or both
of these parameters (Komatsu et al. 2009a). If such fine-
tunings are not permitted, axions cannot account for the
observed abundance of dark matter (in the misalignment
scenario that we have considered here).
Depending on one’s interest, one may wish to elimi-

nate the phase, leaving the axion decay constant in the
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r = 10−2 implies a significant amount of entropy produc-
tion, γ # 1, or a super-Planckian axion decay constant,
fa $ Mpl, or both. Also see Hertzberg et al. (2008);
Mack (2009); Mack & Steinhardt (2009) for similar stud-
ies.
For the implications of α−1 for curvaton dark matter,

see Section 3.6.4 of Komatsu et al. (2009a).
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parity-conserving universe, they may not vanish when
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would show up as a non-vanishing 〈Ur〉. As we showed
already in Section 2.4, the WMAP 7-year 〈Ur〉 data are
consistent with noise. What can we learn from this?
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Note that these equations are not exact but valid only
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For the full expression including CBB
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Roughly speaking, when the polarization data are still
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.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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θaγ
6/5< 3.3× 10−9

(

10−2

r

)7/10

for fa < O(10−2)Mpl,

θaγ
2< 1.8× 10−15

(

10−2

r

)3/2

for fa > O(10−2)Mpl.

Therefore, a future detection of tensor modes at the level
of r = 10−2 would imply a fine-tuning of θa or γ or both
of these parameters (Komatsu et al. 2009a). If such fine-
tunings are not permitted, axions cannot account for the
observed abundance of dark matter (in the misalignment
scenario that we have considered here).
Depending on one’s interest, one may wish to elimi-

nate the phase, leaving the axion decay constant in the
formula (see equation (B7) of Komatsu et al. 2009a):
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for f < O(10−2)Mpl. This formula gives
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which is inconsistent with the condition fa <
O(10−2)Mpl (unless r is extremely small). The formula
that is valid for f > O(10−2)Mpl is
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Requiring fa < Mpl = 2.4× 1018 GeV, we obtain

r <
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Thus, a future detection of tensor modes at the level of
r = 10−2 implies a significant amount of entropy produc-
tion, γ # 1, or a super-Planckian axion decay constant,
fa $ Mpl, or both. Also see Hertzberg et al. (2008);
Mack (2009); Mack & Steinhardt (2009) for similar stud-
ies.
For the implications of α−1 for curvaton dark matter,

see Section 3.6.4 of Komatsu et al. (2009a).

4.5. Parity Violation

While the TB and EB correlations vanish in a
parity-conserving universe, they may not vanish when
global parity symmetry is broken on cosmological scales
(Lue et al. 1999; Carroll 1998). In pixel space, they
would show up as a non-vanishing 〈Ur〉. As we showed
already in Section 2.4, the WMAP 7-year 〈Ur〉 data are
consistent with noise. What can we learn from this?
It is now a routine work of CMB experiments to deliver

the TB and EB data, and constrain a rotation angle of
the polarization plane due to a parity-violating effect (or
a rotation due to some systematic error). Specifically, a

rotation of the polarization plane by an angle ∆α gives
the following 5 transformations:
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where Cl’s on the right hand side are the primordial
power spectra in the absence of rotation, while Cobs

l ’s
on the left hand side are what we would observe in the
presence of rotation.
Note that these equations are not exact but valid only

when the primordial B-mode polarization is negligible
compared to the E-mode polarization, i.e., CBB

l # CEE
l .

For the full expression including CBB
l , see Lue et al.

(1999) and Feng et al. (2005).
Roughly speaking, when the polarization data are still

dominated by noise rather than by the cosmic signal, the
uncertainty in ∆α is given by a half of the inverse of the
signal-to-noise ratio of TE or EE, i.e.,

Err[∆αTB]'
1

2(S/N)TE
,

Err[∆αEB]'
1

2(S/N)EE
.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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Therefore, a future detection of tensor modes at the level
of r = 10−2 would imply a fine-tuning of θa or γ or both
of these parameters (Komatsu et al. 2009a). If such fine-
tunings are not permitted, axions cannot account for the
observed abundance of dark matter (in the misalignment
scenario that we have considered here).
Depending on one’s interest, one may wish to elimi-

nate the phase, leaving the axion decay constant in the
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Thus, a future detection of tensor modes at the level of
r = 10−2 implies a significant amount of entropy produc-
tion, γ # 1, or a super-Planckian axion decay constant,
fa $ Mpl, or both. Also see Hertzberg et al. (2008);
Mack (2009); Mack & Steinhardt (2009) for similar stud-
ies.
For the implications of α−1 for curvaton dark matter,

see Section 3.6.4 of Komatsu et al. (2009a).

4.5. Parity Violation

While the TB and EB correlations vanish in a
parity-conserving universe, they may not vanish when
global parity symmetry is broken on cosmological scales
(Lue et al. 1999; Carroll 1998). In pixel space, they
would show up as a non-vanishing 〈Ur〉. As we showed
already in Section 2.4, the WMAP 7-year 〈Ur〉 data are
consistent with noise. What can we learn from this?
It is now a routine work of CMB experiments to deliver

the TB and EB data, and constrain a rotation angle of
the polarization plane due to a parity-violating effect (or
a rotation due to some systematic error). Specifically, a
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For the full expression including CBB
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(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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of r = 10−2 would imply a fine-tuning of θa or γ or both
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tunings are not permitted, axions cannot account for the
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Depending on one’s interest, one may wish to elimi-
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tion, γ # 1, or a super-Planckian axion decay constant,
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parity-conserving universe, they may not vanish when
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a rotation due to some systematic error). Specifically, a

rotation of the polarization plane by an angle ∆α gives
the following 5 transformations:

CTE,obs
l =CTE

l cos(2∆α), (48)

CTB,obs
l =CTE

l sin(2∆α), (49)

CEE,obs
l =CEE

l cos2(2∆α), (50)

CBB,obs
l =CEE

l sin2(2∆α), (51)

CEB,obs
l =

1

2
CEE

l sin(4∆α), (52)

where Cl’s on the right hand side are the primordial
power spectra in the absence of rotation, while Cobs

l ’s
on the left hand side are what we would observe in the
presence of rotation.
Note that these equations are not exact but valid only

when the primordial B-mode polarization is negligible
compared to the E-mode polarization, i.e., CBB

l # CEE
l .

For the full expression including CBB
l , see Lue et al.

(1999) and Feng et al. (2005).
Roughly speaking, when the polarization data are still

dominated by noise rather than by the cosmic signal, the
uncertainty in ∆α is given by a half of the inverse of the
signal-to-noise ratio of TE or EE, i.e.,
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(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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Alternatively, one can express this constraint as
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(

10−2

r

)3/2

for fa > O(10−2)Mpl.

Therefore, a future detection of tensor modes at the level
of r = 10−2 would imply a fine-tuning of θa or γ or both
of these parameters (Komatsu et al. 2009a). If such fine-
tunings are not permitted, axions cannot account for the
observed abundance of dark matter (in the misalignment
scenario that we have considered here).
Depending on one’s interest, one may wish to elimi-

nate the phase, leaving the axion decay constant in the
formula (see equation (B7) of Komatsu et al. 2009a):
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for f < O(10−2)Mpl. This formula gives
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( r

10−2

)6/5
, (44)

which is inconsistent with the condition fa <
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which gives
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Requiring fa < Mpl = 2.4× 1018 GeV, we obtain

r <
8.7× 10−10

γ
. (47)

Thus, a future detection of tensor modes at the level of
r = 10−2 implies a significant amount of entropy produc-
tion, γ # 1, or a super-Planckian axion decay constant,
fa $ Mpl, or both. Also see Hertzberg et al. (2008);
Mack (2009); Mack & Steinhardt (2009) for similar stud-
ies.
For the implications of α−1 for curvaton dark matter,

see Section 3.6.4 of Komatsu et al. (2009a).

4.5. Parity Violation

While the TB and EB correlations vanish in a
parity-conserving universe, they may not vanish when
global parity symmetry is broken on cosmological scales
(Lue et al. 1999; Carroll 1998). In pixel space, they
would show up as a non-vanishing 〈Ur〉. As we showed
already in Section 2.4, the WMAP 7-year 〈Ur〉 data are
consistent with noise. What can we learn from this?
It is now a routine work of CMB experiments to deliver

the TB and EB data, and constrain a rotation angle of
the polarization plane due to a parity-violating effect (or
a rotation due to some systematic error). Specifically, a

rotation of the polarization plane by an angle ∆α gives
the following 5 transformations:

CTE,obs
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where Cl’s on the right hand side are the primordial
power spectra in the absence of rotation, while Cobs

l ’s
on the left hand side are what we would observe in the
presence of rotation.
Note that these equations are not exact but valid only

when the primordial B-mode polarization is negligible
compared to the E-mode polarization, i.e., CBB

l # CEE
l .

For the full expression including CBB
l , see Lue et al.

(1999) and Feng et al. (2005).
Roughly speaking, when the polarization data are still

dominated by noise rather than by the cosmic signal, the
uncertainty in ∆α is given by a half of the inverse of the
signal-to-noise ratio of TE or EE, i.e.,

Err[∆αTB]'
1

2(S/N)TE
,

Err[∆αEB]'
1

2(S/N)EE
.

(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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(Note that we use the full likelihood code to find the best-
fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
The magnitude of polarization rotation angle, ∆α, de-

pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
Liu et al. (2006), this leads to the polarization angle that
depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
during reionization (Zaldarriaga 1997). We are sensitive
only to the polarization rotation between the reionization
epoch and present epoch. (ii) l " 20: the polarization
signal was generated at the decoupling epoch. We are
sensitive to the polarization rotation between the decou-
pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦

(Komatsu et al. 2009a).
Let us turn our attention to lower multipoles, l ≤ 23.

Here, with the 7-year polarization data, the EE power
spectrum is detected at 5.1σ, whereas the TE power
spectrum is only marginally seen (1.9σ). (The overall
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fitting values and error bars. These equations should
only be used to provide an intuitive feel of how the er-
rors scale with signal-to-noise.) As we mentioned in the
last paragraph of Section 2.4, with the 7-year polariza-
tion data we detect the TE power spectrum at 21σ from
l = 24 to 800. We thus expect Err[∆αTB] ' 1/42 '
0.024 radian ' 1.4◦, which is significantly better than
the 5-year value, 2.2◦ (Komatsu et al. 2009a). On the
other hand, we detect the EE power spectrum at l ≥ 24
only at a few σ level, and thus Err[∆αEB] $ Err[∆αTB],
implying that we may ignore the high-l EB data.
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pends on the path length over which photons experi-
enced a parity-violating interaction. As pointed out by
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depends on l. We can divide this l-dependence in two
regimes: (i) l ! 20: the polarization signal was generated
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only to the polarization rotation between the reionization
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signal was generated at the decoupling epoch. We are
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pling epoch and present epoch; thus, we have the largest
path length in this case.
Using the high-l TB data from l = 24 to 800, we

find ∆α = −0.9◦ ± 1.4◦, which is a significant improve-
ment over the 5-year high-l result, ∆α = −1.2◦ ± 2.2◦
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ABSTRACT

The combination of 7-year data from WMAP and improved astrophysical data rigorously tests
the standard cosmological model and places new constraints on its basic parameters and extensions.
By combining the WMAP data with the latest distance measurements from the Baryon Acoustic
Oscillations (BAO) in the distribution of galaxies (Percival et al. 2009) and the Hubble constant (H0)
measurement (Riess et al. 2009), we determine the parameters of the simplest 6-parameter ΛCDM
model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL)
for this data combination, a measurement that excludes the Harrison-Zel’dovich-Peebles spectrum by
99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and
improved from, the 5-year results. We find no convincing deviations from the minimal model. The 7-
year temperature power spectrum gives a better determination of the third acoustic peak, which results
in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of
improved parameters are the total mass of neutrinos,

∑

mν < 0.58 eV (95% CL), and the effective
number of neutrino species, Neff = 4.34+0.86

−0.88 (68% CL), which benefit from better determinations
of the third peak and H0. The limit on a constant dark energy equation of state parameter from
WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w = −1.10 ± 0.14 (68% CL). We
detect the effect of primordial helium on the temperature power spectrum and provide a new test of
big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the
map for the first time, the tangential and radial polarization patterns around hot and cold spots of
temperature fluctuations, an important test of physical processes at z = 1090 and the dominance
of adiabatic scalar fluctuations. The 7-year polarization data have significantly improved: we now
detect the temperature-E-mode polarization cross power spectrum at 21σ, compared to 13σ from
the 5-year data. With the 7-year temperature-B-mode cross power spectrum, the limit on a rotation
of the polarization plane due to potential parity-violating effects has improved by 38% to ∆α =
−1.1◦±1.4◦ (statistical)±1.5◦ (systematic) (68% CL). We report significant detections of the Sunyaev-
Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees
well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor
of 0.5 to 0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and
hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between
the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain
some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically-expected
SZ power spectrum recently measured by the South Pole Telescope collaboration.
Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter,

space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes
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TABLE 1
Summary of the cosmological parameters of ΛCDM modela

Class Parameter WMAP 7-year MLb
WMAP+BAO+H0 ML WMAP 7-year Meanc

WMAP+BAO+H0 Mean

Primary 100Ωbh
2 2.227 2.253 2.249+0.056

−0.057 2.255 ± 0.054

Ωch
2 0.1116 0.1122 0.1120 ± 0.0056 0.1126 ± 0.0036

ΩΛ 0.729 0.728 0.727+0.030
−0.029 0.725 ± 0.016

ns 0.966 0.967 0.967 ± 0.014 0.968 ± 0.012
τ 0.085 0.085 0.088 ± 0.015 0.088 ± 0.014

∆2
R(k0)

d 2.42 × 10−9 2.42 × 10−9 (2.43 ± 0.11) × 10−9 (2.430 ± 0.091) × 10−9

Derived σ8 0.809 0.810 0.811+0.030
−0.031 0.816 ± 0.024

H0 70.3 km/s/Mpc 70.4 km/s/Mpc 70.4 ± 2.5 km/s/Mpc 70.2 ± 1.4 km/s/Mpc
Ωb 0.0451 0.0455 0.0455 ± 0.0028 0.0458 ± 0.0016
Ωc 0.226 0.226 0.228 ± 0.027 0.229 ± 0.015

Ωmh2 0.1338 0.1347 0.1345+0.0056
−0.0055 0.1352 ± 0.0036

zreion
e 10.4 10.3 10.6 ± 1.2 10.6 ± 1.2

t0
f 13.79 Gyr 13.76 Gyr 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr

a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All
the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood
code, unless stated otherwise. The difference is small. See Appendix A for comparison.
b Larson et al. (2010). “ML” refers to the Maximum Likelihood parameters.
c Larson et al. (2010). “Mean” refers to the mean of the posterior distribution of each parameter. The quoted errors
show the 68% confidence levels (CL).
d ∆2

R(k) = k3PR(k)/(2π2) and k0 = 0.002 Mpc−1.
e “Redshift of reionization,” if the universe was reionized instantaneously from the neutral state to the fully ionized
state at zreion. Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely
because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).
f The present-day age of the universe.

TABLE 2
Summary of the 95% confidence limits on deviations from the simple (flat, Gaussian, adiabatic, power-law) ΛCDM model except for dark energy

parameters

Section Name Case WMAP 7-year WMAP+BAO+SNa
WMAP+BAO+H0

Section 4.1 Grav. Waveb No Running Ind. r < 0.36c r < 0.20 r < 0.24
Section 4.2 Running Index No Grav. Wave −0.084 < dns/d ln k < 0.020c −0.065 < dns/d ln k < 0.010 −0.061 < dns/d lnk < 0.017
Section 4.3 Curvature w = −1 N/A −0.0178 < Ωk < 0.0063 −0.0133 < Ωk < 0.0084
Section 4.4 Adiabaticity Axion α0 < 0.13c α0 < 0.064 α0 < 0.077

Curvaton α−1 < 0.011c α−1 < 0.0037 α−1 < 0.0047
Section 4.5 Parity Violation Chern-Simonsd −5.0◦ < ∆α < 2.8◦e N/A N/A
Section 4.6 Neutrino Massf w = −1

∑

mν < 1.3 eVc ∑

mν < 0.71 eV
∑

mν < 0.58 eVg

w #= −1
∑

mν < 1.4 eVc ∑

mν < 0.91 eV
∑

mν < 1.3 eVh

Section 4.7 Relativistic Species w = −1 Neff > 2.7c N/A 4.34+0.86
−0.88 (68% CL)i

Section 6 Gaussianityj Local −10 < f local
NL < 74k N/A N/A

Equilateral −214 < fequil
NL < 266 N/A N/A

Orthogonal −410 < forthog
NL < 6 N/A N/A

a “SN” denotes the “Constitution” sample of Type Ia supernovae compiled by Hicken et al. (2009b), which is an extension of the “Union” sample
(Kowalski et al. 2008) that we used for the 5-year “WMAP+BAO+SN” parameters presented in Komatsu et al. (2009a). Systematic errors in the
supernova data are not included. While the parameters in this column can be compared directly to the 5-year WMAP+BAO+SN parameters, they may
not be as robust as the “WMAP+BAO+H0” parameters, as the other compilations of the supernova data do not give the same answers (Hicken et al.
2009b; Kessler et al. 2009). See Section 3.2.4 for more discussion. The SN data will be used to put limits on dark energy properties. See Section 5 and
Table 4.
b In the form of the tensor-to-scalar ratio, r, at k = 0.002 Mpc−1.
c Larson et al. (2010).
d For an interaction of the form given by [φ(t)/M ]FαβF̃

αβ , the polarization rotation angle is ∆α = M−1 ∫

dt
a φ̇.

e The 68% CL limit is ∆α = −1.1◦ ± 1.4◦ (stat.) ± 1.5◦ (syst.), where the first error is statistical and the second error is systematic.
f ∑

mν = 94(Ωνh
2) eV.

g For WMAP+LRG+H0 ,
∑

mν < 0.44 eV.
h For WMAP+LRG+H0 ,

∑

mν < 0.71 eV.
i The 95% limit is 2.7 < Neff < 6.2. For WMAP+LRG+H0 , Neff = 4.25 ± 0.80 (68%) and 2.8 < Neff < 5.9 (95%).
j V+W map masked by the KQ75y7 mask. The Galactic foreground templates are marginalized over.
k When combined with the limit on f local

NL from SDSS, −29 < f local
NL < 70 (Slosar et al. 2008), we find −5 < f local

NL < 59.

Different mechanisms for generating fluctuations pro-
duce distinctive correlated patterns in temperature and
polarization:

1. Adiabatic scalar fluctuations predict a radial po-
larization pattern around temperature cold spots
and a tangential pattern around temperature hot
spots on angular scales greater than the horizon
size at the decoupling epoch, ! 2◦. On angular

scales smaller than the sound horizon size at the
decoupling epoch, both radial and tangential pat-
terns are formed around both hot and cold spots,
as the acoustic oscillation of the CMB modulates
the polarization pattern (Coulson et al. 1994). As
we have not seen any evidence for non-adiabatic
fluctuations (Komatsu et al. 2009a, see Section 4.4
for the 7-year limits), in this section we shall as-


