Kris Sigurdson University of British Columbia

Vistas in Axion Physics INT, Seattle April 24, 2012

from, mostly, the CMB with implications for Dark Matter and

Kris Sigurdson University of British Columbia

Vistas in Axion Physics INT, Seattle April 24, 2012

Outline

- Cosmological Parameters
- \circ Cosmological Perturbations
- \circ Some CMB Physics
- \odot Dark Radiation?
- \odot Isocurvature Constraints?

"In the past decade there has been considerable progress towards believable answers, but it may be well to bear in mind that people have been searching for ways to determine the cosmological parameters since the late 1920s."

Jim Peebles, 1993, Principles of Physical Cosmology

Cosmological Data

ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES Preprint typeset using LATEX style emulateapj v. 11/10/09

SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP¹) OBSERVATIONS: COSMOLOGICAL INTERPRETATION

E. KOMATSU², K. M. SMITH³, J. DUNKLEY⁴, C. L. BENNETT⁵, B. GOLD⁵, G. HINSHAW⁶, N. JAROSIK⁷, D. LARSON⁵, M. R. NOLTA⁸, L. PAGE⁷, D. N. SPERGEL^{3,9}, M. HALPERN¹⁰, R. S. HILL¹¹, A. KOGUT⁶, M. LIMON¹², S. S. MEYER¹³, N. ODEGARD¹¹, G. S. TUCKER¹⁴, J. L. WEILAND¹¹, E. WOLLAKG⁶, AND E. L. WRIGHT¹⁵ Accepted for Publication in the Astrophysical Journal Supplement Series

TABLE 1							
SUMMARY	OF	THE	COSMOLOGICAL	PARAMETERS	OF	$\Lambda \mathrm{CDM}$	$\mathrm{MODEL}^{\mathbf{a}}$

Class	Parameter	$W\!M\!AP$ 7-year $\rm ML^b$	$WMAP+BAO+H_0$ MI	$\t L$ WMAP 7-year $\rm Mean^c$	$W\!M\!AP\!\!+\!\mathrm{BAO}\!+\!H_0$ Mean
Primary	$100\Omega_b h^2$	2.227	2.253	$2.249^{+0.056}_{-0.057}$	2.255 ± 0.054
	$\Omega_c h^2$	0.1116	0.1122	0.1120 ± 0.0056	0.1126 ± 0.0036
	Ω_{Λ}	0.729	0.728	$0.727^{+0.030}_{-0.029}$	0.725 ± 0.016
	n_s	0.966	0.967	0.967 ± 0.014	0.968 ± 0.012
	au	0.085	0.085	0.088 ± 0.015	0.088 ± 0.014
	$\Delta^2_{\mathcal{R}}(k_0)^{\mathrm{d}}$	2.42×10^{-9}	2.42×10^{-9}	$(2.43 \pm 0.11) \times 10^{-9}$	$(2.430 \pm 0.091) \times 10^{-9}$
Derived	σ_8	0.809	0.810	$0.811^{+0.030}_{-0.031}$	0.816 ± 0.024
	H_0	70.3 km/s/Mpc	70.4 km/s/Mpc	$70.4 \pm 2.5 \text{ km/s/Mpc}$	$70.2 \pm 1.4 \text{ km/s/Mpc}$
	Ω_b	0.0451	0.0455	0.0455 ± 0.0028	0.0458 ± 0.0016
	Ω_c	0.226	0.226	0.228 ± 0.027	0.229 ± 0.015
	$\Omega_m h^2$	0.1338	0.1347	$0.1345^{+0.0056}_{-0.0055}$	0.1352 ± 0.0036
	$z_{ m reion}{}^{ m e}$	10.4	10.3	10.6 ± 1.2	10.6 ± 1.2
	$t_0{}^{\mathrm{f}}$	$13.79 \mathrm{Gyr}$	$13.76 \mathrm{Gyr}$	$13.77\pm0.13~\mathrm{Gyr}$	$13.76\pm0.11~\mathrm{Gyr}$

^a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood code, unless stated otherwise. The difference is small. See Appendix A for comparison.

^b Larson et al. (2010). "ML" refers to the Maximum Likelihood parameters.

^c Larson et al. (2010). "Mean" refers to the mean of the posterior distribution of each parameter. The quoted errors show the 68% confidence levels (CL).

^d $\Delta_{\mathcal{R}}^2(k) = k^3 P_{\mathcal{R}}(k) / (2\pi^2)$ and $k_0 = 0.002 \text{ Mpc}^{-1}$.

^e "Redshift of reionization," if the universe was reionized instantaneously from the neutral state to the fully ionized state at z_{reion} . Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).

^f The present-day age of the universe.

ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES Preprint typeset using LATEX style emulateapj v. 11/10/09

SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP¹) OBSERVATIONS: COSMOLOGICAL INTERPRETATION

E. KOMATSU², K. M. SMITH³, J. DUNKLEY⁴, C. L. BENNETT⁵, B. GOLD⁵, G. HINSHAW⁶, N. JAROSIK⁷, D. LARSON⁵, M. R. NOLTA⁸, L. PAGE⁷, D. N. SPERGEL^{3,9}, M. HALPERN¹⁰, R. S. HILL¹¹, A. KOGUT⁶, M. LIMON¹², S. S. MEYER¹³, N. ODEGARD¹¹, G. S. TUCKER¹⁴, J. L. WEILAND¹¹, E. WOLLAKG⁶, AND E. L. WRIGHT¹⁵ Accepted for Publication in the Astrophysical Journal Supplement Series

TABLE 1 Summary of the cosmological parameters of ΛCDM model^a

Class	Parameter	$WMAP$ 7-year ML^{b}	$WMAP+BAO+H_0 ML$	$W\!M\!AP$ 7-year $\rm Mean^c$	$WMAP + BAO + H_0$ Mean
Prim	$100\Omega_b h^2$	227	2.253	$2.249^{+0.056}_{-0.057}$	2.255 ± 0.00-
	$\Omega_c h^2$	116	0.1122	0.1120 ± 0.005	0.1126 ± 0.0036
	Ω_{Λ}	.729	0.728	$0.727^{+0.030}_{-0.029}$	0.725 ± 0.016
		0.966	0.967	0.967 ± 0.014	
	au	0.085	0.085	0.088 ± 0.015	0.088 ± 0.014
	$\Delta^2_{\mathcal{R}}(k_0)^{\mathrm{d}}$	2.42×10^{-9}	2.42×10^{-9}	$(2.43 \pm 0.11) \times 10^{-9}$	$(2.430 \pm 0.091) \times 10^{-9}$
Derived	σ_8	0.809	0.810	$0.811^{+0.030}_{-0.031}$	0.816 ± 0.024
	H_0	70.3 km/s/Mpc	70.4 km/s/Mpc	$70.4 \pm 2.5 \text{ km/s/Mpc}$	$70.2 \pm 1.4 \text{ km/s/Mpc}$
	Ω_b	0.0451	0.0455	0.0455 ± 0.0028	0.0458 ± 0.0016
	Ω_c	0.226	0.226	0.228 ± 0.027	0.229 ± 0.015
	$\Omega_m h^2$	0.1338	0.1347	$0.1345^{+0.0056}_{-0.0055}$	0.1352 ± 0.0036
	$z_{ m reion}{}^{ m e}$	10.4	10.3	10.6 ± 1.2	10.6 ± 1.2
	$t_0{}^{\mathrm{f}}$	13.79 Gyr	$13.76 \mathrm{Gyr}$	$13.77\pm0.13~\mathrm{Gyr}$	$13.76\pm0.11~\mathrm{Gyr}$

^a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood code, unless stated otherwise. The difference is small. See Appendix A for comparison.

^b Larson et al. (2010). "ML" refers to the Maximum Likelihood parameters.

^c Larson et al. (2010). "Mean" refers to the mean of the posterior distribution of each parameter. The quoted errors show the 68% confidence levels (CL).

^d $\Delta_{\mathcal{R}}^2(k) = k^3 P_{\mathcal{R}}(k) / (2\pi^2)$ and $k_0 = 0.002 \text{ Mpc}^{-1}$.

^e "Redshift of reionization," if the universe was reionized instantaneously from the neutral state to the fully ionized state at z_{reion} . Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).

^f The present-day age of the universe.

Something to Remember:

We know the cosmological abundance of dark matter to 3.2% (assuming standard 6-parameter ACDM cosmology)

ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES Preprint typeset using LATEX style emulateapj v. 11/10/09

SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP¹) OBSERVATIONS: COSMOLOGICAL INTERPRETATION

E. KOMATSU², K. M. SMITH³, J. DUNKLEY⁴, C. L. BENNETT⁵, B. GOLD⁵, G. HINSHAW⁶, N. JAROSIK⁷, D. LARSON⁵, M. R. NOLTA⁸, L. PAGE⁷, D. N. SPERGEL^{5,9}, M. HALPERN¹⁰, R. S. HILL¹¹, A. KOGUT⁶, M. LIMON¹², S. S. MEYER¹³, N. ODEGARD¹¹, G. S. TUCKER¹⁴, J. L. WEILAND¹¹, E. WOLLACK⁶, AND E. L. WRIGHT¹⁵ Accepted for Publication in the Astrophysical Journal Supplement Series

C'	1 arameter	7-year ML ^b	$WMAP+BAO+H_0 ML$	WMAP 7-year Mea	
Pri	$100\Omega_b h^2$	227	2.253	$2.249^{+0.056}_{-0.057}$	2.255 ± 0.054
	0.12	J.1116	0.1122	0.1120 ± 0.0056	1100 10
		0.729	0.728	$0.727^{+0.030}_{-0.029}$	0 0.010
	n_s	0.966	0.967	0.967 ± 0.014	0.968 ± 0.012
	au	0.085	0.085	0.088 ± 0.015	0.088 ± 0.014
	$\Delta^2_{\mathcal{R}}(k_0)^{\mathrm{d}}$	2.42×10^{-9}	2.42×10^{-9}	$(2.43 \pm 0.11) \times 10^{-9}$	$(2.430 \pm 0.091) \times 10^{-9}$
Derived	σ_8	0.809	0.810	$0.811^{+0.030}_{-0.031}$	0.816 ± 0.024
	H_0	$70.3 \mathrm{~km/s/Mpc}$	70.4 km/s/Mpc	$70.4 \pm 2.5 \text{ km/s/Mpc}$	$70.2 \pm 1.4 \text{ km/s/Mpc}$
	Ω_b	0.0451	0.0455	0.0455 ± 0.0028	0.0458 ± 0.0016
	Ω_c	0.226	0.226	0.228 ± 0.027	0.229 ± 0.015
	$\Omega_m h^2$	0.1338	0.1347	$0.1345^{+0.0056}_{-0.0055}$	0.1352 ± 0.0036
	$z_{ m reion}{}^{ m e}$	10.4	10.3	10.6 ± 1.2	10.6 ± 1.2
	$t_0{}^{\mathrm{f}}$	$13.79 \mathrm{Gyr}$	13.76 Gyr	$13.77\pm0.13~\mathrm{Gyr}$	$13.76\pm0.11~\mathrm{Gyr}$

TABLE 1 Summary of the cosmological parameters of ΛCDM model^a

^a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood code, unless stated otherwise. The difference is small. See Appendix A for comparison.

^b Larson et al. (2010). "ML" refers to the Maximum Likelihood parameters.

^c Larson et al. (2010). "Mean" refers to the mean of the posterior distribution of each parameter. The quoted errors show the 68% confidence levels (CL).

^d $\Delta_{\mathcal{R}}^2(k) = k^3 P_{\mathcal{R}}(k) / (2\pi^2)$ and $k_0 = 0.002 \text{ Mpc}^{-1}$.

^e "Redshift of reionization," if the universe was reionized instantaneously from the neutral state to the fully ionized state at z_{reion} . Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).

^f The present-day age of the universe.

We know the cosmological abundance of baryons to 2.4% (assuming standard 6-parameter ACDM cosmology)

Note: CMB is sensitive to photon-to-baryon ratio, but we "know" $~\Omega_\gamma h^2$ from first principles

	WMAP Cosmological Parameters					
	Model: lcdm+sz+lens					
	Data: wmap7+bao+h0					
$10^2\Omega_b h^2$	2.260 ± 0.053	$1 - n_s$	0.037 ± 0.012			
$1 - n_s$	$0.013 < 1-n_s < 0.061~(95\%~{\rm CL})$	$A_{\rm BAO}(z = 0.35)$	0.468 ± 0.011			
C_{220}	5762^{+38}_{-37}	$d_A(z_{eq})$	14238^{+128}_{-129} Mpc			
$d_A(z_*)$	$14073^{+129}_{-130} { m Mpc}$	Δ_R^2	$(2.441^{+0.088}_{-0.092}) \times 10^{-9}$			
h	$0.704\substack{+0.013\\-0.014}$	H_0	$70.4^{+1.3}_{-1.4}~{\rm km/s/Mpc}$			
k_{eq}	0.00985 ± 0.00026	ℓ_{eq}	$138.6\substack{+2.6\\-2.5}$			
ℓ_*	302.40 ± 0.73	n_s	0.963 ± 0.012			
Ω_b	0.0456 ± 0.0016	$\Omega_b h^2$	0.02260 ± 0.00053			
Ω_c	0.227 ± 0.014	$\Omega_c h^2$	0.1123 ± 0.0035			
Ω_{Λ}	$0.728\substack{+0.015\\-0.016}$	Ω_m	$0.272^{+0.016}_{-0.015}$			
$\Omega_m h^2$	0.1349 ± 0.0036	$r_{\rm hor}(z_{ m dec})$	$284.6\pm1.9~{\rm Mpc}$			
$r_s(z_d)$	$152.7\pm1.3~{\rm Mpc}$	$r_s(z_d)/D_v(z=0.2)$	$0.1904\substack{+0.0037\\-0.0038}$			
$r_s(z_d)/D_v(z=0.35)$	0.1143 ± 0.0020	$r_{s}(z_{*})$	$146.2\pm1.1~{\rm Mpc}$			
R	$1.7239\substack{+0.0100\\-0.0099}$	σ_8	0.809 ± 0.024			
$A_{\rm SZ}$	$0.96_{-0.96}^{+0.69}$	t_{0}	$13.75\pm0.11~\mathrm{Gyr}$			
au	0.087 ± 0.014	θ_{*}	0.010389 ± 0.000025			
$ heta_*$	$0.5953 \pm 0.0014 \ ^{\circ}$	t_*	$377730^{+3205}_{-3200} { m yr}$			
		z_d	1020.5 ± 1.3			
$z_{\rm eq}$	3232 ± 87	$z_{\rm reion}$	10.4 ± 1.2			
	1000 00 10					

We know the redshift of matter-radiation equality to 2.7% (assuming standard 6-parameter ACDM cosmology)

Credit: E. Komatsu

Standard Cosmology

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Standard Cosmology

Photons

Neutrinos

Baryons/Atoms

Dark Matter

Dark Energy

Cosmological Perturbations

Metric Perturbations about Friedmann-Robertson-Walker

4

$$ds^{2} = a^{2}(\tau) [-(1+2\Psi)d\tau^{2} + \delta_{ij}(1+2\Phi)dx^{i}dx^{j}]$$

Generally: Euler/Fluid Equations for Photons, Neutrinos, Baryons, and Dark Matter

$$\dot{\delta}_r + \frac{4}{3}\theta_r + 4\dot{\Phi} = 0 \qquad \qquad (\theta_r \equiv \vec{\nabla} \cdot \vec{v}_r)$$
$$\dot{\theta}_r + \nabla^2 \left(\frac{\delta_r}{4} + \Psi\right) = 0$$

For a Radiation Fluid:

Plus Einstein Equations for Gravitational Potentials

For a Radiation Fluid: $\Phi = - \Psi$

$$\nabla^2 \Phi + 3\frac{\dot{a}}{a} \left(\frac{\dot{a}}{a}\Psi - \dot{\Phi}\right) = -4\pi G a^2 \rho_r \delta_r$$

Cosmological Perturbations: Fourier Space

Generally: Euler/Fluid Equations for Photons, Neutrinos, Baryons, and Dark Matter

$$\dot{\delta}_r + \frac{4}{3}\theta_r + 4\dot{\Phi} = 0$$

For a Radiation Fluid:

$$\dot{\theta}_r - k^2 \left(\frac{\delta_r}{4} + \Psi\right) = 0$$

Plus Einstein Equations for Gravitational Potentials

For a Radiation Fluid: $\Phi = - \Psi$

$$-k^2\Phi + 3\frac{\dot{a}}{a}\left(\frac{\dot{a}}{a}\Psi - \dot{\Phi}\right) = -4\pi G a^2 \rho_r \delta_r$$

Forced Harmonic Oscillator with a time-dependent "effective-mass" Bottom Line is that Baryon-Photon Fluid Supports Acoustic Waves! At least until it ceases to exist as a "single" fluid!

Photons and "Baryons" are Separate But Interact

CMB Physics: Compton Coupling

$$\dot{\delta}_{\gamma} = -\frac{4}{3}\theta_{\gamma} + 4\dot{\phi},$$

$$\dot{\theta}_{\gamma} = k^{2}\left(\frac{1}{4}\delta_{\gamma} - \sigma_{\gamma}\right) + k^{2}\psi + an_{e}\sigma_{T}(\theta_{b} - \theta_{\gamma})$$

Compton Collision Terms: 🛸

Momentum Transfer Tends to Equalize Bulk Velocities of Photon and Baryon Fluids

$$\dot{\delta}_b = -\theta_b + 3\dot{\phi}, \dot{\theta}_b = -\frac{\dot{a}}{a}\theta_b + c_s^2 k^2 \delta_b + \frac{4\bar{\rho}_\gamma}{3\bar{\rho}_b} an_e \sigma_T (\theta_\gamma - \theta_b) + k^2 \psi$$

Tight-Coupling into a Single Photon-Baryon Fluid When:

$$an_e\sigma_T \equiv \tau_c^{-1} \gg \dot{a}/a \sim \tau^{-1}$$

CMB Physics: Photon Memory

Gets imprinted before photons free-stream to us!

Credit: E. Komatsu

	WMAP Cosmological Parameters					
	Model: lcdm+sz+lens+nrel					
	Data: wmap7+bao+h0					
$10^2\Omega_b h^2$	$2.246\substack{+0.051\\-0.054}$	$1 - n_s$	0.025 ± 0.014			
$1 - n_s$	$-0.0022 < 1-n_s < 0.0542~(95\%~{\rm CL})$	$A_{\text{BAO}}(z = 0.35)$	$0.473\substack{+0.011\\-0.012}$			
C_{220}	5755^{+37}_{-38}	$d_A(z_{eq})$	$13264^{+635}_{-632} { m Mpc}$			
$d_A(z_*)$	13112^{+628}_{-622} Mpc	Δ_R^2	$(2.449^{+0.096}_{-0.092})\times10^{-9}$			
h	$0.750^{+0.033}_{-0.034}$	H_0	$75.0^{+3.3}_{-3.4}~{ m km/s/Mpc}$			
k_{eq}	$0.01059\substack{+0.00058\\-0.00057}$	ℓ_{eq}	138.5 ± 2.6			
ℓ_*	$303.9^{+1.2}_{-1.1}$	N_{eff}	$4.34_{-0.88}^{+0.86}$			
$N_{\rm eff}$	$2.7 < N_{\rm eff} < 6.2 \ (95\% \ {\rm CL})$	n_s	0.975 ± 0.014			
Ω_b	$0.0402\substack{+0.0035\\-0.0036}$	$\Omega_b h^2$	$0.02246\substack{+0.00051\\-0.00054}$			
Ω_c	0.239 ± 0.017	$\Omega_c h^2$	0.135 ± 0.016			
Ω_{Λ}	0.721 ± 0.017	Ω_m	0.279 ± 0.017			
$\Omega_m h^2$	0.157 ± 0.016	$r_{\rm hor}(z_{\rm dec})$	$264^{+14}_{-13} \text{ Mpc}$			
$r_s(z_d)$	$141.7^{+7.2}_{-7.1}$ Mpc	$r_s(z_d)/D_v(z = 0.2)$	$0.1879\substack{+0.0041\\-0.0040}$			
$r_s(z_d)/D_v(z = 0.35)$	$0.1129\substack{+0.0022\\-0.0021}$	$r_{s}(z_{*})$	$135.6^{+6.9}_{-6.8} \mathrm{Mpc}$			
R	$1.728\substack{+0.010\\-0.011}$	σ_8	0.860 ± 0.042			
$A_{\rm SZ}$	$0.93\substack{+0.69\\-0.92}$	t_0	$12.85\pm0.58~\mathrm{Gyr}$			
au	0.086 ± 0.014	θ_*	0.010338 ± 0.000039			
$ heta_*$	$0.5923^{+0.0022}_{-0.0023}$ $^{\circ}$	t_*	$349570^{+18359}_{-18164} { m yr}$			
		z_d	1021.8 ± 1.5			
$z_{ m eq}$	3209^{+85}_{-89}	$z_{\rm reion}$	11.0 ± 1.3			
	100					

We know the redshift of matter-radiation equality to 2.7% (assuming 7-parameter Λ CDM w/ Neff variation)

	WMAP Cosmological Par	ameters	
	Model: lcdm+sz+lens-	⊢nrel	
	Data: wmap7+bao+	h0	
$10^2\Omega_b h^2$	$2.246\substack{+0.051\\-0.054}$	$1 - n_s$	0.025 ± 0.014
$1 - n_s$	$-0.0022 < 1-n_s < 0.0542~(95\%~{\rm CL})$	$A_{\text{BAO}}(z = 0.35)$	$0.473\substack{+0.011\\-0.012}$
C_{220}	5755^{+37}_{-38}	$d_A(z_{eq})$	$13264^{+635}_{-632} { m Mpc}$
$d_A(z_*)$	13112^{+628}_{-622} Mpc	Δ_R^2	$(2.449^{+0.096}_{-0.092}) \times 10^{-9}$
h	$0.750\substack{+0.033\\-0.034}$	H_0	$75.0^{+3.3}_{-3.4}~{\rm km/s/Mpc}$
k_{eq}	$0.01059\substack{+0.00058\\-0.00057}$	ℓ_{eq}	138.5 ± 2.6
ℓ_*	$303.9^{+1.2}_{-1.1}$	$N_{\rm eff}$	$4.34_{-0.88}^{+0.86}$
$N_{\rm eff}$	$2.7 < N_{\rm eff} < 6.2 \ (95\% \ {\rm CL})$		
Ω_b	$0.0402\substack{+0.0035\\-0.0036}$	$\Omega_b h^2$	$0.02246^{+0.00051}_{-0.00054}$
Ω_c	0.239 ± 0.017		0.105 1.0
Ω_{Λ}	0.721 ± 0.017	Ω_m	0.279 ± 0.017
$\Omega_m h^2$	0.157 ± 0.016	$r_{\rm hor}(z_{\rm dec})$	$264^{+14}_{-13} \text{ Mpc}$
$r_s(z_d)$	$141.7^{+7.2}_{-7.1}$ Mpc	$r_s(z_d)/D_v(z = 0.2)$	$0.1879\substack{+0.0041\\-0.0040}$
$r_s(z_d)/D_v(z = 0.35)$	$0.1129\substack{+0.0022\\-0.0021}$	$r_{s}(z_{*})$	$135.6^{+6.9}_{-6.8} \mathrm{Mpc}$
R	$1.728\substack{+0.010\\-0.011}$	σ_8	0.860 ± 0.042
$A_{\rm SZ}$	$0.93\substack{+0.69\\-0.92}$	t_0	$12.85\pm0.58~{\rm Gyr}$
τ	0.086 ± 0.014	θ_*	0.010338 ± 0.000039
θ_{*}	$0.5923^{+0.0022}_{-0.0023}$ $^{\circ}$	t_*	$349570^{+18359}_{-18164} { m yr}$
$z_{\rm dec}$	$1090.4^{+1.7}_{-1.8}$	z_d	1021.8 ± 1.5
$z_{\rm eq}$	$3209\substack{+85\\-89}$	$z_{\rm reion}$	11.0 ± 1.3
z_*	$1093.0^{+1.5}_{-1.6}$		

We know the cosmological abundance of baryons to 2.4% (assuming 7-parameter ACDM w/ Neff variation)

Compare: $100\Omega_b h^2 = 2.255 \pm 0.054$

	WMAP Cosmological Par	ameters	
	Model: lcdm+sz+lens-	⊢nrel	
	Data: wmap7+bao+	h0	
$10^2\Omega_b h^2$	$2.246\substack{+0.051\\-0.054}$	$1 - n_s$	0.025 ± 0.014
$1 - n_s$	$-0.0022 < 1-n_s < 0.0542~(95\%~{\rm CL})$	$A_{\text{BAO}}(z = 0.35)$	$0.473^{+0.011}_{-0.012}$
C_{220}	5755^{+37}_{-38}	$d_A(z_{eq})$	$13264^{+635}_{-632} { m Mpc}$
$d_A(z_*)$	13112^{+628}_{-622} Mpc	Δ_R^2	$(2.449^{+0.096}_{-0.092})\times10^{-9}$
h	$0.750\substack{+0.033\\-0.034}$	H_0	$75.0^{+3.3}_{-3.4} \ {\rm km/s/Mpc}$
$k_{\rm eq}$	$0.01059\substack{+0.00058\\-0.00057}$	ℓ_{eq}	138.5 ± 2.6
ℓ_*	$303.9^{+1.2}_{-1.1}$	$N_{\rm eff}$	$4.34_{-0.88}^{+0.86}$
$N_{\rm eff}$	$2.7 < N_{\rm eff} < 6.2~(95\%~{\rm CL})$	n_s	0.975 ± 0.014
Ω_b	$0.0402\substack{+0.0035\\-0.0036}$		-0.0000
Ω_c	0.239 ± 0.017	$\Omega_c h^2$	0.135 ± 0.016
Ω_{Λ}	0.721 ± 0.017		0.050 1.0
$\Omega_m h^2$	0.157 ± 0.016	$r_{\rm hor}(z_{\rm dec})$	264^{+14}_{-13} Mpc
$r_s(z_d)$	$141.7^{+7.2}_{-7.1} \mathrm{Mpc}$	$r_s(z_d)/D_v(z = 0.2)$	$0.1879\substack{+0.0041\\-0.0040}$
$r_s(z_d)/D_v(z = 0.35)$	$0.1129\substack{+0.0022\\-0.0021}$	$r_{s}(z_{*})$	$135.6^{+6.9}_{-6.8} \mathrm{Mpc}$
R	$1.728^{+0.010}_{-0.011}$	σ_8	0.860 ± 0.042
A_{SZ}	$0.93\substack{+0.69\\-0.92}$	t_0	$12.85\pm0.58~\mathrm{Gyr}$
τ	0.086 ± 0.014	θ_*	0.010338 ± 0.000039
$ heta_*$	$0.5923^{+0.0022}_{-0.0023}$ $^{\circ}$	t_*	$349570^{+18359}_{-18164} { m yr}$
$z_{\rm dec}$	$1090.4^{+1.7}_{-1.8}$	z_d	1021.8 ± 1.5
$z_{\rm eq}$	$3209\substack{+85\\-89}$	$z_{\rm reion}$	11.0 ± 1.3
Z_*	$1093.0^{+1.5}_{-1.6}$		

Courtesy of LAMBDA

NASA

Something to Remember:

We know the cosmological abundance of dark matter to 12% (assuming 7-parameter Λ CDM w/ Neff variation)

Prefers Higher Dark Matter Density?

Compare: $\Omega_c h^2 = 0.1126 \pm 0.0036$

	WMAP Cosmological Par	ameters	
	Model: lcdm+sz+lens-	⊢nrel	
	Data: wmap7+bao+	h0	
$10^2\Omega_b h^2$	$2.246\substack{+0.051\\-0.054}$	$1 - n_s$	0.025 ± 0.014
$1 - n_s$	$-0.0022 < 1-n_s < 0.0542~(95\%~{\rm CL})$	$A_{\text{BAO}}(z = 0.35)$	$0.473^{+0.011}_{-0.012}$
C_{220}	5755^{+37}_{-38}	$d_A(z_{eq})$	$13264^{+635}_{-632} { m Mpc}$
$d_A(z_*)$	13112^{+628}_{-622} Mpc	Δ_R^2	$(2.449^{+0.096}_{-0.092})\times10^{-9}$
h	$0.750\substack{+0.033\\-0.034}$	H_0	$75.0^{+3.3}_{-3.4} \ {\rm km/s/Mpc}$
$k_{\rm eq}$	$0.01059\substack{+0.00058\\-0.00057}$	ℓ_{eq}	138.5 ± 2.6
ℓ_*	$303.9^{+1.2}_{-1.1}$	$N_{\rm eff}$	$4.34_{-0.88}^{+0.86}$
$N_{\rm eff}$	$2.7 < N_{\rm eff} < 6.2~(95\%~{\rm CL})$	n_s	0.975 ± 0.014
Ω_b	$0.0402\substack{+0.0035\\-0.0036}$		-0.0000
Ω_c	0.239 ± 0.017	$\Omega_c h^2$	0.135 ± 0.016
Ω_{Λ}	0.721 ± 0.017		0.050 1.0
$\Omega_m h^2$	0.157 ± 0.016	$r_{\rm hor}(z_{\rm dec})$	264^{+14}_{-13} Mpc
$r_s(z_d)$	$141.7^{+7.2}_{-7.1} \mathrm{Mpc}$	$r_s(z_d)/D_v(z = 0.2)$	$0.1879\substack{+0.0041\\-0.0040}$
$r_s(z_d)/D_v(z = 0.35)$	$0.1129\substack{+0.0022\\-0.0021}$	$r_{s}(z_{*})$	$135.6^{+6.9}_{-6.8} \mathrm{Mpc}$
R	$1.728^{+0.010}_{-0.011}$	σ_8	0.860 ± 0.042
A_{SZ}	$0.93\substack{+0.69\\-0.92}$	t_0	$12.85\pm0.58~\mathrm{Gyr}$
τ	0.086 ± 0.014	θ_*	0.010338 ± 0.000039
$ heta_*$	$0.5923^{+0.0022}_{-0.0023}$ $^{\circ}$	t_*	$349570^{+18359}_{-18164} { m yr}$
$z_{\rm dec}$	$1090.4^{+1.7}_{-1.8}$	z_d	1021.8 ± 1.5
$z_{\rm eq}$	$3209\substack{+85\\-89}$	$z_{\rm reion}$	11.0 ± 1.3
Z_*	$1093.0^{+1.5}_{-1.6}$		

Courtesy of LAMBDA

NASA

(assuming 7-parameter ACDM w/ Neff variation)

WMAP-7+ACT+HST (Hamann, arXiv:1110.427

(From Georg Raffelt's Talk Yesterday)

Dark Matter "Knowns"

Abundance:

 $\Omega_d h^2 \simeq 0.11$

"Small" Interaction Atoms

Not Too Much Free Streaming:

"Small" Self-Interaction:

Creation of Adiabatic vs. Isocurvature Perturbations

Inflaton field

De Sitter expansion imprints scale invariant fluctuations

Inflaton decay \rightarrow matter & radiation Both fluctuate the same: Adiabatic fluctuations

Axion field

De Sitter expansion imprints scale invariant fluctuations

Inflaton decay \rightarrow radiation Axion field oscillates late \rightarrow matter Matter fluctuates relative to radiation: Entropy fluctuations

 $\mathcal{S}_{c,\gamma} \equiv \frac{\delta \rho_c}{\rho_c} - \frac{\mathbf{3}}{\rho_c}$ $\frac{3\delta\rho_{\gamma}}{4\rho_{\gamma}}$

Spatial Variation of the Relative Amount of Dark Matter and Standard Model Plasma CMB Fluctuations are known to be mostly Adiabatic (not DM Isocurvature) If Inflation before PQ Symmetry Breaking Axion can have Isocurvature

Credit: Wayne Hu

Credit: Wayne Hu; from Hu and White 1996b

DM Isocurvature Fluctuations Alter CMB Angular Power Spectrum

(Georg Raffelt's Talk Yesterday)

Relative Amplitude of Isocurvature Power to Curvature Power

Uncorrelated Isocurvature Fluctuations:

 $\alpha = \alpha_0$

 $\alpha_0 < 0.13 \ (95\% \ {
m CL})$ wmap7+h0+bao $\alpha_0 < 0.077 \ (95\% \ {
m CL})$

Single Field Slow Roll w/ Axion DM fraction

$$r < \frac{7.6 \times 10^{-15}}{\theta_a^{10/7} \gamma^{12/7}} \quad \text{for } f_a < \mathcal{O}(10^{-2}) M_{pl}$$
$$r < \frac{1.5 \times 10^{-12}}{\theta_a^{2/3} \gamma^{4/3}} \quad \text{for } f_a > \mathcal{O}(10^{-2}) M_{pl}$$

$$\begin{aligned} \theta_a \gamma^{6/5} < 3.3 \times 10^{-9} \left(\frac{10^{-2}}{r}\right)^{7/10} \text{ for } f_a < \mathcal{O}(10^{-2}) M_{pl} \\ \theta_a \gamma^2 < 1.8 \times 10^{-15} \left(\frac{10^{-2}}{r}\right)^{3/2} \text{ for } f_a > \mathcal{O}(10^{-2}) M_{pl} \end{aligned}$$

$$f_a > 1.8 \times 10^{26} \text{ GeV } \gamma^{6/5} \left(\frac{r}{10^{-2}}\right)^{6/5} \qquad f < \mathcal{O}(10^{-2}) M_{pl}$$

Inconsistent!

$$f_a > 3.2 \times 10^{32} \text{ GeV } \gamma^2 \left(\frac{r}{10^{-2}}\right)^2$$
 $f > \mathcal{O}(10^{-2})M_{pl}$
for $f_a < M_{pl} = 2.4 \times 10^{18} \text{ GeV}$

$$\begin{array}{ll} \text{Limit!} & r < \frac{8.7 \times 10^{-10}}{\gamma} \end{array}$$

See, e.g., WMAP7 Year Komatsu et al.

See: Hertzberg et al. 2008 Mack 2009, Mack and Steinhardt 2009

$$f_a > 1.8 \times 10^{26} \text{ GeV } \gamma^{6/5} \left(\frac{r}{10^{-2}}\right)^{6/5} \qquad f < \mathcal{O}(10^{-2}) M_{pl}$$

Inconsistent!

$$f_a > 3.2 \times 10^{32} \text{ GeV } \gamma^2 \left(\frac{r}{10^{-2}}\right)^2$$
 $f > \mathcal{O}(10^{-2})M_{pl}$
for $f_a < M_{pl} = 2.4 \times 10^{18} \text{ GeV}$

$$\begin{array}{ll} \text{Limit!} & r < \frac{8.7 \times 10^{-10}}{\gamma} \end{array}$$

See, e.g., WMAP7 Year Komatsu et al.

See: Hertzberg et al. 2008 Mack 2009, Mack and Steinhardt 2009

If detect CMB B-mode Polarization then no misalignment axion scenario.

Credit: Challinor

SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP¹) OBSERVATIONS: COSMOLOGICAL INTERPRETATION

E. KOMATSU², K. M. SMITH³, J. DUNKLEY⁴, C. L. BENNETT⁵, B. GOLD⁵, G. HINSHAW⁶, N. JAROSIK⁷, D. LARSON⁵, M. R. NOLTA⁸, L. PAGE⁷, D. N. SPERGEL^{3,9}, M. HALPERN¹⁰, R. S. HILL¹¹, A. KOGUT⁶, M. LIMON¹², S. S. MEYER¹³, N. ODEGARD¹¹, G. S. TUCKER¹⁴, J. L. WEILAND¹¹, E. WOLLACK⁶, AND E. L. WRIGHT¹⁵

Accepted for Publication in the Astrophysical Journal Supplement Series

Class	Parameter	$W\!M\!AP$ 7-year $\mathrm{ML^b}$	$WMAP+BAO+H_0$ ML	, WMAP 7-year $Mean^c$	$WMAP+BAO+H_0$ Mean
Primary	$100\Omega_b h^2$	2.227	2.253	$2.249^{+0.056}_{-0.057}$	2.255 ± 0.054
	$\Omega_c h^2$	0.1116	0.1122	0.1120 ± 0.0056	0.1126 ± 0.0036
	Ω_{Λ}	0.729	0.728	$0.727^{+0.030}_{-0.029}$	0.725 ± 0.016
	n_s	0.966	0.967	0.967 ± 0.014	0.968 ± 0.012
	au	0.085	0.085	0.088 ± 0.015	0.088 ± 0.014
	$\Delta^2_{\mathcal{R}}(k_0)^{\mathrm{d}}$	2.42×10^{-9}	2.42×10^{-9}	$(2.43 \pm 0.11) \times 10^{-9}$	$(2.430 \pm 0.091) \times 10^{-9}$
Derived	σ_8	0.809	0.810	$0.811^{+0.030}_{-0.031}$	0.816 ± 0.024
	H_0	70.3 km/s/Mpc	70.4 km/s/Mpc	$70.4 \pm 2.5 \text{ km/s/Mpc}$	$70.2 \pm 1.4 \text{ km/s/Mpc}$
	Ω_b	0.0451	0.0455	0.0455 ± 0.0028	0.0458 ± 0.0016
	Ω_c	0.226	0.226	0.228 ± 0.027	0.229 ± 0.015
	$\Omega_m h^2$	0.1338	0.1347	$0.1345^{+0.0056}_{-0.0055}$	0.1352 ± 0.0036
	${z_{ m reion}}^{ m e}$	10.4	10.3	10.6 ± 1.2	10.6 ± 1.2
	$t_0{}^{\mathrm{f}}$	13.79 Gyr	$13.76 \mathrm{Gyr}$	$13.77\pm0.13~\mathrm{Gyr}$	$13.76\pm0.11~\mathrm{Gyr}$

		TABI	LE 1			
SUMMARY O	F THE	COSMOLOGICAL	PARAMETERS	OF	$\Lambda {\rm CDM}$	$\mathrm{MODEL}^{\mathbf{a}}$

^a The parameters listed here are derived using the RECFAST 1.5 and version 4.1 of the WMAP likelihood code. All the other parameters in the other tables are derived using the RECFAST 1.4.2 and version 4.0 of the WMAP likelihood code, unless stated otherwise. The difference is small. See Appendix A for comparison.

^b Larson et al. (2010). "ML" refers to the Maximum Likelihood parameters.

^c Larson et al. (2010). "Mean" refers to the mean of the posterior distribution of each parameter. The quoted errors show the 68% confidence levels (CL).

^d $\Delta_{\mathcal{R}}^2(k) = k^3 P_{\mathcal{R}}(k) / (2\pi^2)$ and $k_0 = 0.002 \text{ Mpc}^{-1}$.

^e "Redshift of reionization," if the universe was reionized instantaneously from the neutral state to the fully ionized state at $z_{\rm reion}$. Note that these values are somewhat different from those in Table 1 of Komatsu et al. (2009a), largely because of the changes in the treatment of reionization history in the Boltzmann code CAMB (Lewis 2008).

^f The present-day age of the universe.