Magnets Technology for Axion Helioscopes

Idan Shilon ATLAS Magnet Group **CERN** *and* University of Zaragoza **Supervisors** Herman ten Kate and Alexey Dudarev **With** Stephan Russenschuck

Outline

- 1. Introduction
- 2. Accelerator Magnets
- 3. Detector Magnets
- 4. Other Possibilities
- 5. Tooling
- 6.Towards a IAXO Magnet
- 7. An Initial Concept
- 8. Concluding Remarks

Introduction
Figure of Merit (FOM)

- In order to determine the needs from a next generation helioscope, we define a figure of merit.
- The magnet parameters of an axion helioscope sensitivity are: The magnetic field B , the magnet's length L and the area picked up by optics devices A .
- These parameters appear in the sensitivity to the axion coupling as $f_M = B^2 L^2 A$.
- CAST's magnet parameters have the values:

 $B = 9$ T, $L = 9.26$ m, $A = 2 \times 15 \times 10^{-4}$ m²

• CAST's magnet FOM (MFOM) is $f_M^{CAST} \approx 21 \text{ T}^2 \text{m}^4$.

Introduction
Figure of Merit (FOM)

- IAXO's goal is to improve the sensitivity to the axion-photon coupling constant by at least one order of magnitude (matching DOE criterion).
- Hence, the magnet FOM (MFOM) of IAXO should be increased by a factor of \sim 300, relative to the CAST MFOM.
- When using NbTi superconducting cables, the magnetic field is constrained to $<$ 10 T.
- The magnet's length is taken to be 20 m, in order to allow the magnet to rotate and follow the sun.
- The parameter that can yield the most significant enhancement is the magnet's aperture (cross-section area).

Accelerator Magnets
Scaling Up a Dipole Magnet

- The straightforward option is to scale up an accelerator dipole magnet to have the required aperture.
- Setting an increase by a factor of 100 for the MFOM shows that, when accounting the present magnetic field and length of CAST, the aperture of the dipole should be made of a single 618 mm bore, or a pair of twin 436 mm bores.
- Enlarging the dipole's aperture results in an increase of the stress acting on the coils by a factor of \sim 10. Current existing mechanic systems can support stress of up to \sim 200 MPa.
- The solution: Increasing the quantity of superconductor to distribute the Lorentz forces over a larger area. Going with a 618 mm aperture to 200 MPa will require a coil \sim 4 times wider than the LHC dipole (i.e. a 120 mm wide coil).

Accelerator Magnets

- Putting more layers of cables will increase the overall mass, volume and costs of the magnet.
- A massive and large iron yoke will be needed in order to enclose the magnetic flux, minimize the stray fields and support the system mechanically.
- For a 9T, 618 mm bore magnet, the needed iron yoke is \sim 1.4 m wide. This sets an overall diameter of about 4 m for the magnet system.
- The iron alone will weight \sim 45 tones (current CAST dipole weighs 40 tones).
- Designing a dipole magnet for a next generation helioscope will require additionally the design and manufacture of completely new tooling machines. This adds significantly to the costs of such a project.

**HEP Detector Magnets
Characterization**

- A different approach can be to scale down an existing model of a detector magnet such as ATLAS or AMS.
- These magnets are characterized by a very large volume, compared to accelerator magnets. Hence, detector magnets store an enormous amount of energy.
- The magnet's protection requires the use of AI stabilizer around the superconductor. In the entire cable, the ratio between NbTi to Al is typically around 1:25.
- **Detector Magnets do not require an iron yoke.**
- The aperture which counts in the MFOM is determined by the area covered by x-ray focusing optics.

HEP Detector Magnets
AMS II

HEP Detector Magnets
Toroid Magnet - An Illustration

HEP Detector Magnets
Toroid Magnet - An Illustration

Opera

 $B_{avg} \approx 2.5$ T

HEP Detector Magnets
Toroid Magnet - An Illustration

 $B_{avg} \approx 3.8$ T

2.05

 0.0

 0.0

Opera

- A solenoid magnet is the easiest to design and manufacture. However, the required solenoid will not be transparent to x-ray photons.
- Using a Nb3Sn superconductor.
- Since we essentially combine the detector and accelerator magnets doctrines, the major efforts will focus on the mechanical engineering of such a magnet. The new magnet will have to stretch the limits of the design factors.

Tooling

Tooling

Towards a IAXO Magnet
Towards a Concept

- The first step towards designing an initial concept of IAXO's magnet is to optimize its geometrical lay-out in order to obtain a high figure of merit for the proposed experiment.
- The MFOM is determined by the integral $\int B^2(x,y)dxdy$. Z $B^2(x,y)dxdy$
- The integration is performed over the open area covered by the x-ray optics being used.
- The IAXO group has decided to use 8 x-ray telescopes with a diameter of 600 mm and an inner blind spot of 100 mm.

Towards a IAXO Magnet Geometrical Lay-Out **Optimization** 6

- In order to carry out the integration, the telescopes' center point coordinates need to be determined.
- In the $\hat{\theta}$ direction there are two principal options for the telescopes' positioning, which we shall refer to as the "behind" and the "between" options.
- In practice, these two options represent two different approaches:
	- Field dominated.
	- 2. Area dominated.

Towards a IAXO Magnet Geometrical Lay-Out **Optimization** 6

- The \hat{r} coordinate of the telescopes' center should be minimized in order to enhance the MFOM. *r*ˆ
- The minimal radial position is limited by the following $(\textsf{impractical})$ value $r_{min} = R_{det}/\sin(\theta/2)$.
- When the positioning of the telescopes is fixed, one can perform the integration over a disc with radius R_{det} centered at (R_{cen}, θ) .

Towards a IAXO Magnet Geometrical Lay-Out Optimization 6

Towards a IAXO Magnet

- **In order to make the integration results, or the MFOMs obtained** from them, comparable, one should choose a normalizing method.
- A method which will be useful for our case is to constraint the electromagnetic parameters of each magnet configuration such that all magnet configurations are "on the critical surface".
- For Nb-Ti, the linear approximation of the critical current density is given by $J_c = d(B_{c2} - B)$.
- From the latter, we can find the intersection point of the given load-line with the critical surface to be

$$
J_c = \frac{\kappa d B_{c2}}{1 + \kappa d\gamma}
$$

Towards a IAXO Magnet
Toroid Set of Parameters

Towards a IAXO Magnet
Results - Behind Option

- The results presented here are calculated with $N=8$ and $N=8$ $R_{cen} = 1100$ mm
- The MFOM will be higher when using a thinner coil so that the \textsf{open} aperture is larger $2 \times h_{pancache} + s_{pancache} = R_{spot}$.
- The use of the thinner, two single pancakes cable, increases the MFOM by 12% relative to a thicker, two double pancake cable.
- Then, the "behind" option yields a maximal MFOM of ~990 relative to the current CAST MFOM with radii $R_{in}=920\mathrm{mm}$ and $R_{out} = 1300$ mm.

Towards a IAXO Magnet
Results - Between Option

- The "between" option shows that a maximum exist for R_{in} only, where the MFOM is increasing as R_{out} increasing.
- The maximum is at $R_{in} = 850$ mm.
- Setting $R_{out} = 1850$ mm, the MFOM is ~1140 times better than CAST.
- The between option gives a \sim 15% gain compared to the behind option.
- **Important to remember:** These results are obtained from the *critical* magnetic field.

6 Towards a IAXO Magnet
Results - Graphs

"Behind" "Between"

An Initial Concept Initial and Plausible to Manufacture 7

- The study of the geometrical optimization of the MFOM may lead us to suggest a basic initial design concept that will address all the physics requirements from the magnet while relying on known and familiar engineering solutions.
- This allows to present a magnet design which is expected to be plausible to manufacture.
- The basic initial design concept of the IAXO magnet supports the decoupling of the magnet system from the rest of the systems which are taking part in the experiment.
- This basic design will also allow for open bores in between the magnet's coils, in accordance with the geometrical study, which will simplify the use of physics experimental instrumentation.

An Initial Concept
Side Cross Section

An Initial Concept
Front Cross Section

An Initial Concept
Vessel Bores

- The basic concept presents a coil casing, a cylindrical support for the magnetic forces, a thermal shield and a vacuum vessel.
- The expected mass is \sim 330 tones with stored energy of \sim 350 MJ.
- An important point is the location of the open bores in between each pair of coils: The magnet needs to be separated from these holes by a cryostat and a thermal shield in order to keep it in its individual vacuum and to protect it from thermal radiation.
- In the initial proposed design R_{cen} is increased to 1430 mm, which results in a $\sim 30\%$ decrease in the MFOM.

8 Concluding Remarks
Operational Margin

Courtesy of Stephan Russenschuck

**Concluding Remarks
Initial Concept - Summary**

8 Concluding Remarks
An Open Discussion

