Vacuum Polarization Vistas in Axion Physics April 25, 2012

Carol Scarlett Florida A&M University

Experimental Searches

- **Photon-Axion Coupling Diagrams BNL's E840**
- PVLAS
- BMV
- **Beam Splitting**
- Bifurcation

Photon Coupling to B_{ext}

■ Diagrams: a.) QED vacuum polarization, b.) photon splitting, c.) axion real production and d.) axion virtual production

Index of Refraction

Diagrams alter the index of refraction for photons polarized along direction of B_{ext} **Lagrangian:**

$$
L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} (\partial_{\mu} a \partial^{\mu} a - m_a^2 a^2) + \frac{1}{4} g_a a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\alpha^2}{90 m_e^4} \left[\left(F_{\mu\nu} F^{\mu\nu} \right)^2 + \frac{7}{4} \left(F_{\mu\nu} \tilde{F}^{\mu\nu} \right)^2 \right],
$$
 (1)

Photon-EM Coupling

In the presence of an externally applied Magnetic field:

Vacuum becomes birefringent

Photon-EM Coupling

 A photon propagating through an external field will acquire an ellipticity: $n_{\parallel} = 1 + 7$ A B^2_{ext} sin² θ n_{\perp} = 1 + 4 A B²_{ext} sin² θ π L $\psi = \pi$ —— (n|| - n⊥) = —— 3 A B²_{ext} λ λ

Axion Coupling Term

$$
L_{int} = \frac{1}{4} g_a a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_a a (\vec{B}^e \vec{E}).
$$

Magnetic field geometry and coordinates

Measurable Effects

Measurable Effects

Dichroism:

BFRT [BNL – E840]

■ E840 looked for evidence of axions through measuring both induced ellipticity changes and selected absorption

BNL – E840

- 2 CBA Superconducting magnets each 4.4m long
- Dipole Field of 2.2 T at full Strength
- **Field is Vertical to direction of incoming beam**
- Field extends some 10 m
- Modulated at \sim 16.5mHz with B field given by:

 $B[T] = T_F \times I$ [Amps] $\times 10^{-4}$

where T_F refers to the transfer function

- \blacksquare Homogeneity of > 10⁻⁴
- Laser 90_5 Argon Ion Laser delivered $\lambda = 514.5$ nm with 2 watts
- **Department Contact University Contact Avenue** Contact Dump
- Cavity composed of two mirrors with Diameter = 11.25 cm and Radius of curvature = 19.03 m (this is an optical delay line)
- Output fed to silicon photodiode
- Signal sought at magnet modulation frequency $\omega_{\rm m}$

Superconduction CBA

- **End section for magnet used in E840 Setup**
- **Coil orientation shows that the field is aligned vertically relative to the direction of the** incoming beam projected along the warm bore tube

Optical Delay Line

DED COPTICAL CAVITY CONSISTS OF two mirrors one of which has an entrance hole

- **One mirror deformed so that pattern closes but misses hole, tracing out more ellipses**
- Lissajous pattern forms on the end mirrors similar to seen above

Sensitivity & Signals

Ellipticity after analyzer using Jones Matrices

$$
\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \eta & \sin \eta \\ -\sin \eta & \cos \eta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}
$$

$$
\begin{bmatrix} \cos^2 \theta + \sin^2 \theta e^{-i\theta} & \cos \theta \sin \theta (1 - e^{-i\theta}) \\ \cos \theta \sin \theta (1 - e^{-i\theta}) & \cos^2 \theta e^{-i\theta} + \sin^2 \theta \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_x e^{i\theta_x} \\ A_y e^{i\theta_y} \end{bmatrix}
$$

here ϕ is the phase shift from the cavity due to the magnetic field **This gives a current at the photodiode:**

$$
I_T = I_0[\alpha^2 + \frac{\eta_0^2}{2} + \frac{\eta_0^2}{2}\cos 2\omega_F t + 2\alpha\eta_0\cos\omega_F t
$$

$$
-\psi_0\eta_0\sin 2\theta\{\cos(\omega_F - \omega_M)t + \cos(\omega_F + \omega_M)t\}]
$$

here $\psi = \phi/2$ represents the ellipticity induced by the field

Sensitivity & Signals

 A similar analysis reveals the expected photodiode current for the rotation setup:

$$
I_T = I_0[\alpha^2 + \frac{\eta_0^2}{2} + \frac{\eta_0^2}{2}\cos 2\omega_F t + 2\alpha\eta_0\cos\omega_F t
$$

+ $\varepsilon_0\eta_0\{\cos(\omega_F - \omega_M)t + \cos(\omega_F + \omega_M)t\}]$

here the rotation parameter is ε_0 . Note: there is actually an attenuation given as $ε'$

 \blacksquare In the final analysis, the signal to noise took into account shot noise (as a limit) along with electronic sources (e.g. laser amplitude)

PVLAS

- PVLAS looked for ellipticity and rotation as well
- Enhanced cavity compared to E840
- **P** Magnet rotates in lieu of modulation

PVLAS

- Dipole Field of 2.5 T and 5 T achieved
- **Magnet is positioned vertically and on rotating table**
- **Magnet length is 1 m long**
- Modulated achieved through rotation of magnet $\Omega_{\text{mag}} \approx 0.3 \text{ Hz}$
- Stray field reduced to $< 50 \cdot 10^{-3}$ gauss as part of 2007 upgrades... following which a previously observed signal disappeared
- Laser Source Nd: Yag emitts 800mW at 1064nm
- **Departs Cavity is a Fabry-Perot optical resonator**
- **Cavity mirrors are multilayer, highly reflective dielectrics with a** Radius of curvature = 11 m and are 6.4 m apart
- Some $4.5 \cdot 10^4$ gauss traversals of the magnet are achieved
- **Ellipticity Modulator used (heterodyne technique)**
- Signal sought at magnet modulation frequency $\omega_{\rm m}$

BMV

- **Ultra high finesse cavity** achieving up to $.10⁶$ traversals
- Used 25.4 mm diameter mirrors
- Capable of using both hetero- and homo- dyne techniques
- **Designed to look for** regeneration of photons

Vacuum Experiments

Table 1:

■ Can anymore be gained from cavity experiments?

Mixing of Photon-Axion

- **George Raffelt and Leo Stodolsky : Mixing of photons with lowmass particles , Phys. Rev. D 37 (1988) 1237**
- **Eduardo Guendelman :**

 Photon and axion splitting in an inhomogeneous magnetic field,

Phys. Lett. B 662(2008) 445 ;

Axions and photons in terms of "particles " and "antiparticles"

$$
\psi = \frac{1}{\sqrt{2}}(a + iA_1), \psi^* = \frac{1}{\sqrt{2}}(a - iA_1)
$$

$$
a = \frac{1}{\sqrt{2}}(\psi + \psi^*), A = \frac{1}{i\sqrt{2}}(\psi - \psi^*)
$$

The charge is associated with the following conserved quantity

$$
Q = \int d\vec{k} \{ \psi^{*+}(\vec{k}) \psi^{-}(\vec{k}) - \psi^{*-}(\vec{k}) \psi^{+}(\vec{k}) \}, \quad (9)
$$

Beam Splitting

The unit tangent vector

$$
l_{y} \left\{ \sqrt{1 - \frac{n_0^2}{n^2}} \right\} \quad n > n_0,
$$

$$
- \sqrt{1 - \frac{n^2}{n_0^2}} \quad n < n_0,
$$

□ Beam trajectory:

$$
z(y) = \int_{y_0}^{y} \frac{n_0 dy}{\sqrt{n^2(y) - n_0^2}} + z_0, \quad n > n_0;
$$

$$
z(y) = -\int_{y_0}^{y} \frac{n(y)dy}{\sqrt{n_0^2 - n^2 y}} + z_0, \quad n < n_0;
$$

Beam Splitting

Beam Splitting

Input Parameters

 $\bm{B}^e\ \color{red} \Box \ 10^4\ \textcolor{red}{-10^5}\ \bm{G}$ ${\bm L}_{\!\scriptscriptstyle 0} \, \Box \, 1$ m 10^6 G ($\lambda \approx 10^{-5}$ *m* (**A** photon's wave length) $\Delta \theta \approx 10^{-15}$ rad for $g_a = 10^{-10}$ Gev⁻¹. • $L = 1m : |\Delta \theta \approx 10^{-5} g_a|$ (The splitting angle as function of g_a) ∂ ∂ \Box 10^6 **G** \Box (The magnetic field gradient) **Beam splitting** $\frac{\bm{B}^e}{2} \Box 10^6 \bm{G}$ *y* $\Delta\theta \approx 10^{-10}$ rad •• $L = 10^5 m$ (10⁵ bounces!) $\left. \frac{9}{2}$ and The FWHM drop of $\Box 10^{-6}$ $\Delta\theta \approx 10^{-9}$ rad and The FWHM drop of $\Box\ 10^{-6}\bm{E}_0$ **Beam splitting + Bifurcation**

Splitting in a Cavity

Example 2 Consider a cavity such as the one used in PVLAS/E840 (optical delay line)

Bifurcation

Linear Separation of two beams occurs along red line

At the mirror, the photonaxion state dissolves

■ The reflected light re-enters the cavity and divides again

Simulations

Treat beam using Jones Matrices

Final Introduce splitting matrix

Splitting:
$$
\left[\begin{array}{cc} 1 & 0 \\ \pm \theta_{\text{split}} & 1 \\ X_0 & 1 \end{array}\right] \tag{4}
$$

$$
\begin{bmatrix} 1 & 0 \\ -1 & 1 \\ f & 1 \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{\pm \theta_{\varphi h}}{X_0} & 1 \end{bmatrix} \begin{bmatrix} X_0 \\ \theta_i \end{bmatrix}
$$

Bifurcation vs Linear Spreading

- \blacksquare For a splitting of \sim 10-15 rad
- \blacksquare The position of the rays are weighted by their relative density and summed
- \blacksquare The solid line represents the bifurcated distribution and the dashed line represents a linear sepreading

Future Cavity Searches ?

■ Future cavity searches could search for bifurcation in the form of energy loss

Development of an interferometer to interfere a cavity beam with reference **source**