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Helioscope Physic’s

AXion source

Black body photons of the Solar core could be converted into axions due to the
electric fields of the charged particles in the hot plasma

Sun
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! detector

Earth

The interaction of an axion converting to a photon via Primakoff effect in the
presence of magnetic fields is the proposed detection mechanism for solar axions
arriving the Earth
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Helioscope Physic's Principle of detection
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Coherence Condition Description

The axion mass band for which a Primakoff based experiment is sensitive can
be extracted from the coherence condition

Vacuum Gas
The converted photons are The converted photons acquire an
mass less effective mass
E E

m, /keV my mV /keV
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The magnet length sets the Able to extend the axion mass
range of the axion mass sensitivity range of an experiment
coherence that has a fixed magnet length

l& Lawrence Livermore National Laboratory Jaime Ruz. Vistas in Axion Physics. Seattle, April 2012 I@:)‘ European Organization for Nuclear Research

LLNL-PRES-549671



Coherence Condition Description

The electron density in the magnet media transfers an effective mass to the
arising photon from the Primakoff conversion.
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Stepping over different electron densities allows for discrete recoveries of the

coherence condition
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Coherence Condition Description

Helium gas is a nice candidate since the free path of x-ray photons is large
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The arising photons are not exempt of damping, which affects the sensitivity of
the experiment
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Coherence Condition Technical challenges

Contention of helium gas in magnet bores

* Thin plastic foils

— High x-ray transmission |:>

* Beryllium

Tight * Important to keep a constant mass in the system
— Tightness :: >
* Scarce resources of 3 He gas

« Stand cryogenic environment

— Robustness |:>

* Quenching magnets

Strong magnetic fields are achieved by using superconducting materials in
cryogenic environments. Magnets of this kind might quench during operation
provoking sudden rises of temperature and pressure in the system.
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Coherence Condition Technical challenges

Metering stage and monitoring system

* Thermally controlled volumes

— Reproducibility and stability |:>

* Accuracy of the filling @6oppm

* Remove impurities

- Purification system )

* Minimize outgassing contamination

* Evolution of the system

— Monitoring |:> * Leak detection

* Active safety

Lawrence Livermore National Laboratory Jaime Ruz. Vistas in Axion Physics. Seattle, April 2012 I@:)‘ European Organization for Nuclear Research 9

LLNL-PRES-549671




Fluid dynamics Modeling the system

Computational fluid dynamics

* Describes the nature of the Helium gas
— State equation :> » Pairwise attractive inter-particle force

* Non-zero, size, non-sphericity of the molecules
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Fluid dynamics Modeling the system

Computational fluid dynamics

Physical walls

— Geometry of the system |:>

Materials

Thermal conductivity, gas properties

* Temperature sensors
- Boundary conditions |:>-- Pressure sensors

* Mass present in the system

* Hydrostatic
— Gravity and heat transfer :> * Convection

* Buoyancy
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Fluid dynamics Steady conditions

Computational fluid dynamics

e Stable conditions

_ [ * Include all the physics
e Pt | - Fine tune models

* Compatibility with experimental data
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Fluid dynamics Steady conditions

Computational fluid dynamics

* Densit fil
— Determining the effective photon mass |:> CNSILYRISIES

* Input for the analysis
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Fluid dynamics Steady conditions

Computational fluid dynamics

— Stability issues :> * Homogeneity of density for a given section
» Effective magnetic field length as pressure rises
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Fluid dynamics Tracking conditions

Computational fluid dynamics

K Tilting of the magnet modifies hydrostatic and

buoyancy conditions affecting the gas densit
— Tracking issues > 4 pro%lle Y 2 J 4

Wi | * Pressure drifts during tracking
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Fluid dynamics Tracking conditions

Such effect can be corrected by applying an effective density to the whole gas
column

Considering a(0) the factor that
accounts for the density in the center
of the magnet bore relative to the
density at § =()°

|

IO(H) = [1 + a(e)] X pcenter,O
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Fluid dynamics Sensitivity impact

The exposure of helioscopes like CAST to different axion masses has to take into
account the density evolution in the magnet bore. This corrections scale with the
density set. An effective axion mass range is scanned while tracking
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Fluid dynamics
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Future Helioscopes

1 CAST has gained valuable expertise on the helioscope technique

U Future improvement: coos N L) i lines
, (\o,-—mre-\q .
. 2y 7a)
Bl 7~ \‘acaam\
* New low background detectors L% T TR o
» X-ray focusing devices = NN %
ZEe ) xoi 1 !
* New, more powerful magnet Vs ) e
L] N LA ,Q-’ L, ,/
U Entering the QCD modes: o e N
* Very big volumes

* Scarce 3-Helium
* Avoid cold gas to restore coherence

ANTICRYOSTAT = | oo

Stability of the gas
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Towards a new generation of axion Helioscopes

Large parts of the QCD
favored models could be
explored in the coming
decade

Lawrence Livermore National Laboratory Jaime Ruz. Vistas in Axion Physics. Seattle, April 2012 European Organization for Nuclear Research o

LLNL-PRES-549671



Conclusions

O Extending the axion mass sensitivity is possible
o The use of 3,4-Helium has become a standard technique for helioscope experiments
0 Model system

o Obtain the gas density profile in the magnet region
o Crosscheck with experimental data to validate the evolution of the system

O Monitor evolution
o Allows to find systematics in the analysis, such as leaks and strange behavior
O Apply models

o Fight systematic
o Impact to the sensitivity of the experiment

0 Towars a new generation of Axion Helioscopes

ANTICRYOSTAT
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Thank you!
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