Structure formation in a CDM Universe

Thomas Quinn, University of Washington

Greg Stinson, **Charlotte Christensen**, Alyson Brooks **Ferah Munshi**

Fabio Governato, **Andrew Pontzen**, Chris Brook, James Wadsley

Microwave Background Fluctuations

Image courtesy NASA/WMAP

A well constrained cosmology Supernova Cosmology Project 3 Knop et al. (2003) No Big Bang Spergel et al. (2003) Allen et al. (2002) 2 Supernovae 1 Ω_{Λ} ` СМВ expands forever 0 recollapses eventuary Rat Closed Clusters -1 2 3 0 1

 $\boldsymbol{\Omega}_M$

Contents of the Universe

Can it make one of these?

Structure formation issues

- The substructure problem
- The angular momentum problem
- The cusp problem

Light vs CDM structure

The CDM Substructure Problem

Moore et al 1998

Substructure down to 100 pc

Consequences for direct detection

Warm Dark Matter

cold warm hot

Constant Core Mass

Strigari et al 2008

Light vs Mass

Simulations of Galaxy formation

Origin of Galaxy Spins

 Torques on the collapsing galaxy (Peebles, 1969; Ryden, 1988)

$$\tau(x) = -\frac{GM_{\rm sh}}{4\pi} \int \epsilon(x)x \times \nabla \Phi(x)d\Omega$$
$$\langle |\tau|^2 \rangle = 3\left(\frac{4\pi}{5}G\right)^2 \sum_{m=-2}^2 \sum_{n=-2}^2 mn \langle a_{2m}(x)a_{2n}^*(x)q_{2m}^*(x)q_{2n}(x) \rangle$$

 $\lambda \equiv L E^{1/2}/GM^{5/2} \approx 0.09$ for galaxies

Distribution of Halo Spins

f(λ)

Figure 4. The shaded areas indicate the p(s) of the AMDs for the 14 disc galaxies in our sample, normalized to f_{disc}/f_{but} . For comparison we plot p(s) of equation (11) with $\mu = 1.25$ (normalized to unity), and which represents the median of the AMDs of ACDM haloes. Under the standard assumption that baryons conserve their specific angular momentum the difference between the two distributions reflects the AMD of the baryonic matter that is not incorporated in the disc. Note that it is preferentially the baryonic matter with both the highest and the lowest angular momenta that is absent in the discs.

Too few low-J baryons

Van den Bosch 01 Bullock 01

Core/Cusps in Dwarfs

Moore 1994

Warm DM doesn't help

Moore et al 1999

Dwarf simulated to z=0

Dwarf Light Profile

Rotation Curve

Resolution effects

Low resolution: bad Low resolution star formation: worse

Inner Profile Slopes vs Mass

Governato, Zolotov etal 2012

Constant Core Masses

Angular Momentum

Outflows preferential remove low J baryons

Simulation Results: Resolution and H2

Outstanding Issues

- Profiles of large (Milky Way sized) galaxies still not understood
 - Including satellite galaxies
- Results are dependent on coupling star formation/SNe physics to galactic scales
 - Getting the right answer for the wrong reason?
- Dark matter/baryon is a non-linear dynamical process that needs detailed modeling.