Axions

in theoretical physics

EL VERDADERO ARRANGAGRAS

RUMATO

EL VERDADERO ARRANCAGA

Ann Nelson, Vistas in Axion Physics, April 23, 2012

Over 5000 papers

- why so much fascination with a speculative idea?
- "a perfect storm"
 - potential to solve 2 major problems
 - "model independent" in string theory
 - potential to create several major problems
 - lots of compelling, cool theory
 - some compelling, cool, feasible experiments

Strong CP Problem

• QCD theta term violates P, T, CP

$$\mathcal{L}_{CPV} = \bar{\theta} \frac{\alpha_s}{8\pi} G \tilde{G}$$

- renormalized in Standard Model, short distance sensitive ("divergent")
- Electric dipole moment of neutron ~ $3 \times 10^{-16}\bar{\theta}$ forces fine-tuning to part in ~10⁻⁹ to satisfy experimental bound
 - elegant solution by Peccei and Quinn: $\bar{\theta}$ dynamical, ≈ 0 $\mathcal{L}_{axion} = \frac{a}{f} \frac{\alpha_s}{8\pi} G \tilde{G}$
 - Weinberg, Wilczek: PQ mechanism requires a new light. weakly coupled. *axion*

Axion is pseudo-Nambu-Goldstone boson from spontaneously breaking anomalous Peccei-Quinn symmetry

Theory Origin of Axion

- Could have "accidental" Peccei-Quinn approximate symmetry
 - corrections to axion potential from PQ symmetry breaking highly constrained
- String theory predicts "model independent axion" (in large class of models) with $f_a \sim 10^{16} \text{ GeV}$
 - String theory compatible with any $f_a < 10^{19} \text{ GeV}$
 - string theory axion solves strong CP problem in large class of models

Alternatives to Axions

- No anthropic explanation for size of strong CPV!
- massless up quark incompatible with lattice, chiral sym
- alternative solution to strong CP problem: spontaneously broken P or CP plus some mechanism for weak CP without large strong CP (e.g. Nelson-Barr)
- axion is only solution to strong CP problem compatible with nonminimal flavor or CP violation at weak scale

Axion implies Axion Cold Dark Matter

Preskill, Wise, Wilczek; Abbot, Sikivie; Dine, Fischler

• Cosmological Axion equation of motion

$$\ddot{a} + 3H\dot{a} + m_a^2 a = 0$$

- resembles damped Harmonic Oscillator
- H>m_a \Rightarrow overdamped, a~ constant
- H<m_a ⇒underdamped, a oscillates and loses energy to cosmological "Hubble friction"
- $H < m_a \Rightarrow$ axion is pressureless Cold Dark Matter!

• potentially too much for $f > 10^{12}$ GeV, $m_a < \mu eV$

Axion dark matter continued $\ddot{a} + 3H\dot{a} + m_a^2 a = 0$

- a~ $a_{initial}$ until H(T_i)~ $m_a(T_i)$ at redshift "z_i"
- larger $f_a \Rightarrow$ smaller m_a $(T_i) \Rightarrow$ smaller Z_i (Note: axion mass temperature dependence currently estimated, could be computed on lattice)
- "typical" size of $a_{initial} \sim f_a$
- "typical" initial energy density $a^{2}_{initial}m_{a}^{2} \sim m_{\pi}^{2}f_{\pi}^{2}$
- $\alpha_i \equiv a_{initial}/f_a$ (Note: axion+inflation \Rightarrow "landscape" of initial conditions)
- subsequent energy density: $\alpha_i^2 m_{\pi}^2 f_{\pi}^2 (1/(1+z_i))^3$
- Assuming $\alpha_i \sim 1$, obtain observed dark matter abundance for $f_a \sim few \ 10^{11} \text{ GeV}$

Cosmological constraint on fa

- Axion+ inflation+ f_a >inflation scale \Rightarrow misalignment angle $\alpha_i \approx$ constant in our horizon
- Axion dark matter density $\propto \alpha_i^2$
- Cosmological bound $f_a < 10^{12}$ assumes "typical" $\alpha_i \sim 1$
- Logically possible for any value of α_i (*Pi*; *Turner*; *Linde*), small value usually discounted as improbable
- Fine tuned selection of α_i in probable location of observers?
 (*Tegmark*, *Aguirre*, *Rees*, *Wilczek*)
- axion + high inflation scale⇒cosmological isocurvature fluctuations
- Evidence for high inflation scale from cosmo experiments, if seen, could conceivably eliminate possibility of $f_a > 10^{12}$,

Viable Theories

