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Nano-eV Axions Beyond the Horizon

“Axion cosmology beyond the horizon”
  DBK,  A.E. Nelson,  arXiv:0809.1206 (2008)
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Axions can eventually dominate the universe
ρCDM ∝ R−3 , ρrad ∝ R−4 a/fa is an angle

ma(tosc) = H(tosc)

When the axion Compton wavelength crosses the horizon, 
axion field begins to oscillate, = Bose condensate of non-
interacting particles = CDM

Axion dark matter?

At temperature                the axion potential starts to 
appear and the axion mass grows.

T ∼ 1 GeV

For temperature                the axion potential is flatT � 1 GeV
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How does the axion dark matter depend on fa?

ρa

ρdm
� θ2

i

�
fa

few × 1011 GeV

�

OBSERVED

DARK MATTER

DENSITY

DARK MATTER

DENSITY IN 

AXIONS

INITIAL MISALIGNMENT ANGLE 
(if small - otherwise ~ sin2θi)

AXION DECAY 
CONSTANT
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Upper bound on fa...

...Assuming initial misalignment angle is O(1)

Axion dark matter today:
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Upper bound on fa...

...Assuming initial misalignment angle is O(1)

Axion dark matter today:

ρa(t0) � ρdm θ2
i

�
fa

few× 1011 GeV

�

• upper bound: 

• axions make good dark matter 
candidate for 

fa � 1012 GeV

fa � 1012 GeV�
ma � 10−5 − 10−6 eV

�

With fa below inflation scale: causally disconnected at T~1 GeV 
regions merge:

θ2
i → �sin2 θi� �

1
2

...always O(1)

observed dark matter density
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ρa(t0) � ρdm θ2
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assumes: PQ symmetry breaks after inflation/reheating
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• initial misalignment angle θi random
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Axions with PQ symmetry breaking before inflation:

• initial misalignment angle θi random
• today our horizon comes from a single causally 

connected patch from before inflation with one 
particular value for θi 
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Axions with PQ symmetry breaking before inflation:

• initial misalignment angle θi random
• today our horizon comes from a single causally 

connected patch from before inflation with one 
particular value for θi 

So the initial misalignment angle can assume any value, 
is a constant across our horizon, and there is no bound 
on fa (but small θi required for large fa! Fine-tuned!)  

[S.Y. Pi]

ρa(t0) � ρdm θ2
i

�
fa

few× 1011 GeV

�

assumes: PQ symmetry breaks after inflation/reheating
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Inflation:

•Epoch of expansion much faster than speed of light

•Causal patch stretched to far outside the horizon

•Followed by reheating epoch & conventional Big Bang 
evolution

•Inhomogeneities eventually reenter horizon
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•Followed by reheating epoch & conventional Big Bang 
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•Inhomogeneities eventually reenter horizon
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Inflation:

horizon horizon

•Epoch of expansion much faster than speed of light

•Causal patch stretched to far outside the horizon

•Followed by reheating epoch & conventional Big Bang 
evolution

•Inhomogeneities eventually reenter horizon
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with an ultralight axion (fa >> 1012 GeV):
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Potential problems with inflationary axion cosmology

with an ultralight axion (fa >> 1012 GeV):

Fine tuning of initial axion misalignment angle

Can be fixed by anthropic principle

Generation of isocurvature fluctuations (as opposed to 
adiabatic) 

Can be fixed with sufficiently low inflation scale
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 Isocurvature axion fluctuations (Turner & Wilczek):

Inflation gives rise to fluctuations in massless fields

�φkφ
∗
k�� =

2π
2

k3

�
Hi

2π

�2

(2π)3δ3(k− k�)
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 Isocurvature axion fluctuations (Turner & Wilczek):

• Inflaton fluctuations give rise to adiabatic 
perturbations for structure formation  

• Fluctuations in the axion field (misalignment angle)  
give rise to isocurvature perturbations 

Inflation gives rise to fluctuations in massless fields

�φkφ
∗
k�� =

2π
2

k3

�
Hi

2π

�2

(2π)3δ3(k− k�)

Isocurvature perturbations: 
  - Fluctuations in energy density of matter & radiation
  - NO fluctuations in total energy (matter + radiation)
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DARK MATTER

RADIATION
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DARK MATTER

RADIATION
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adiabatic

isocurvature (δT = 180o out of phase)

δzγ

δzγ



David B. Kaplan ~ INT ~ April 25, 2012

Initial adiabatic perturbation spectrum agrees well 
with CMB observation

WMAP 5-yr results
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Initial isocurvature perturbation spectrum disagrees 
with CMB observation at small angles

Can tolerate small isocurvature perturbations
Limit: (isocurvature)/(adiabatic) < 0.1

WMAP 5-yr

From Fox et al.

Generation of isocurvature fluctuations 
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Initial isocurvature perturbation spectrum disagrees 
with CMB observation at small angles

Can tolerate small isocurvature perturbations
Limit: (isocurvature)/(adiabatic) < 0.1

WMAP 5-yr

From Fox et al.

Generation of isocurvature fluctuations 

Agrees w
ell 

with
 observatio

n

Ruled out
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Inflation induced fluctuations in axions:

δn
iso
a

na
� HI

πai
=

HI

πfaθi

Hubble const 
during inflation
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Inflation induced fluctuations in axions:

and one gets an upper bound on HI for a given fa. 
E.g: fa = 1016 GeV -> HI < 108 GeV    

If axions are the dark matter:

θi �
�

1012 GeV
fa

�1/2

δn
iso
a

na
� HI

πai
=

HI
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Inflation induced fluctuations in axions:

Small HI implies small tensor perturbations: 

Observation of tensor perturbations in CMB 
would rule out fa > 1012 GeV

and one gets an upper bound on HI for a given fa. 
E.g: fa = 1016 GeV -> HI < 108 GeV    

If axions are the dark matter:

θi �
�

1012 GeV
fa

�1/2

δn
iso
a

na
� HI

πai
=

HI

πfaθi

Hubble const 
during inflation
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Fine tuning of initial axion misalignment angle:
Can be fixed by anthropic principle

Anthropic selection of small initial axion angle (eg, 
of universe not over-dominated by axion dark 
matter)



David B. Kaplan ~ INT ~ April 25, 2012

Easy to abuse anthropic arguments!!

Sensible argument requires:

★ensemble of physical parameters to choose from

★understanding of a priori probability distribution

★effect of evolution of cosmic structure, life...
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Easy to abuse anthropic arguments!!

Sensible argument requires:

★ensemble of physical parameters to choose from

★understanding of a priori probability distribution

★effect of evolution of cosmic structure, life...

Axion case ideal (why is θi small with inflation?)

★different patches with different θi

★initial distribution flat on [0,2π)
★affects evolution of cosmic structure through 

dark matter density Ωdm
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(Tegmark al.)

Need 
(Dark Matter)/Baryon 
ratio >1 for structure

Need enough baryons 
to form fragmented
galactic disks, stars 
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Our 
universe

Dark matter density

(Tegmark et al. PRD 2006)
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Could there be observable consequences 
from these ultra-light pre-inflationary 

axions? 

•  Anthropic arguments for axions rely on a known 
initial probability distribution for the axion 
misalignment angle, and relatively simple cosmology 
to determine “viability”

• Inflation removes upper bound on fa, allows for 
GUT/string axions

•  fa> 1012 GeV allows anthropic solution to dark 
matter coincidence
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Direct detection of ultralight axions 
(fa > 1012 GeV) very challenging!

Do you have any ideas?

Indirect detection through 
cosmology looks more promising 

now.
DBK, A.E. Nelson: arXiv:0809.1206
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horizon today
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≡ r/H0
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Observable consequences? 
Look at the Universe today

Size of pre-inflationary causal patch today

Size of our 
horizon today
(not to scale)
∼ 1/H0

≡ r/H0

too bigΩa

θi = 0θi = 0

axion angle contours

too smallΩa

Our observed 
universe:     
just right!

Ωa

θi ∼

�
1012 GeV

fa

= axion strings
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There are axion strings outside our horizon

Size of pre-inflationary causal patch =  r/H0

θi = 0θi = 0

us
d

Size of our horizon today
=1/H0

Distance to nearest cosmic 
axion string = d

d � r/H0

Axion angle varies 
across our horizon:

δθ ∼ 2π
1/H0

d
=

2π

r
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Axion strings are ≤r horizon lengths away
= classical, superhorizon fluctuation 

...so θi is not exactly constant in our horizon

δΩa

Ωa
� 2

δθi

θi
� 2

(2π/r)
θi

δθi ∼ 2π
1/H0

d
=

2π

r

θi ∼

�
1012 GeV

fa

Fine tuning with large fa means enhanced sensitivity to 
fluctuations.  How do we see them?  How big does r have to 
be?

give
s ri

se

to d
ark

 matte
r

gra
dien

t
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Today’s dark matter distribution is sensitive to 
inhomogeneities in axion angle (axion strings!) at 

the beginning of inflation

• There are 25-60 e-foldings of inflation after 
our horizon leaves the inflationary horizon

• Relic pre-inflationary inhomogeneities and 
curvature today are sensitive to the amount 
of inflation r that precedes horizon 
departure

• What are current bounds on r?
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Inflation must solve the flatness problem:

Curvature before inflation  = O(1)

Size of pre-inflationary causal patch today Size of our 
horizon today

∼ 1/H0≡ r/H0

r ∼ curvature radius
horizon size today

∼ 1�
|Ω− 1|

� 10
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Inflation must solve the the horizon problem:

Assume: pre-inflation 
inhomogeneities = O(1) on scale of  

pre-inflation horizon

CMB multipoles will depend on

(kH0)� ∼
�

H0

rH0

��

= r
−�

Size of pre-inflationary causal patch today Size of our 
horizon today

∼ 1/H0≡ r/H0

So biggest effect of super-horizon 
fluctuations today are in lowest 

multipoles
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Find for CMB           :

•Monopole moment unphysical 

•Dipole moment cannot be distinguished from Doppler shift 
from local (“peculiar”) velocity; and distant matter at rest in rest 
frame of CMB 

•Quadrupole moment puts limit:

δT/T

If you plug in super-horizon adiabatic perturbation 
�

δρ

ρ

�

k

, k � 1
H0

1/r2 � (3× 10−5) r � 200
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Find for CMB           :

•Monopole moment unphysical 

•Dipole moment cannot be distinguished from Doppler shift 
from local (“peculiar”) velocity; and distant matter at rest in rest 
frame of CMB 

•Quadrupole moment puts limit:

δT/T

If you plug in super-horizon adiabatic perturbation 
�

δρ

ρ

�

k

, k � 1
H0

1/r2 � (3× 10−5) r � 200 Grish
chuk-

Zel’dov
itch

1978

Observed quadrupole
Castr

o et 
al. 20

03

More sophisticated: WMAP+CDM   Λ r > 3900
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If you plug in super-horizon isocurvature perturbation
(eg: axions!) get non Sachs-Wolfe contribution: 

Find for CMB           :

•Monopole moment unphysical 

•Dipole moment can be distinguished from Doppler shift from 
local “peculiar” velocity (recall: δTγ 180° out of phase)

δT/T

“Tilted Universe”, M. Turner, 1990

δρrad = −δρa

Intrinsic dipole in CMB ≠ dipole in gravitational 
potential, so no corresponding flow of matter

We will see different dipole in CMB vs redshift of 
distant matter (Type 1 SN)
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Present and future bounds on tilted 
universe

• Tilted universe: gradient on matter density⇒photon 

rest frame ≠ matter rest frame

• CMB dipole gives our proper motion in photon rest 
frame

• SNI surveys give our proper motion in matter rest 
frame (currently rough agreement with CMB, Gordon, 
Land, Slozar, arXiv:0711.4196)
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Gordon, Land, Slozar present and forecast for 
future peculiar velocity relative to matter 
measurements: current

future

CMBSN
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Gordon, Land, Slozar present and forecast for 
future peculiar velocity relative to matter 
measurements: current

future

CMBSN

Currently agree at ≈ 1 σ

σ will be reduced by 
factor of ~ 4 with 
GAIA, LSST
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Cosmic flows in the nearby universe from Type Ia Supernovae

Stephen Turnbull et al., 7 Nov 2011

bulk flow = 150 ± 43 km/sec

Measuring the cosmological bulk flow using the peculiar velocities of supernovae

De Chang Dai et al., 14 April 2011

bulk flow = 188 +119/-103 km/sec

Many more recent papers indicating bulk flow of ~ 100 km/sec 

e.g.:
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Fined tuned axion enhances isocurvature dipole moment

small       enhances dipole 
anisotropy of dark matter  

θi

Detectable if � 10−4

For fa ~ 1017 GeV:   θi � 10−3

δΩa

Ωa
� 2

δθi

θi
� 2

(2π/r)
θi

Now: peculiar velocity measurements agree to 
Future: detect  δv ∼ 1× 10−4

From axion strings:

� δv

=⇒ δv = 10 -4 sensitive to 
r = 107 !

δv ∼ 0.5× 10−3
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Fined tuned axion enhances isocurvature dipole moment

small       enhances dipole 
anisotropy of dark matter  

θi

Detectable if � 10−4

We could detect an axion string 10,000,000 times 
horizon lengths away (6 x 1016 light-years) 

For fa ~ 1017 GeV:   θi � 10−3

δΩa

Ωa
� 2

δθi

θi
� 2

(2π/r)
θi

Now: peculiar velocity measurements agree to 
Future: detect  δv ∼ 1× 10−4

From axion strings:

� δv

=⇒ δv = 10 -4 sensitive to 
r = 107 !

δv ∼ 0.5× 10−3
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Conclusions:

•Ultralight axions (fa ~ GUT scale, ma ~ 10-9 eV) 
remain a viable possibility for the dark matter

• Requires low scale inflation: they can be ruled out by 
observation of tensor perturbations in the CMB

• They may be indirectly detectable in large scale flow 
(Turner’s Tilted Universe scenario) 

if lucky, r ≤ 107

• Black hole super-radiance another possible way to 
detect? (Arvanitaki, Dubovsky, 2010)


