Axion Cold Dark Matter in Non-Standard Cosmologies

Paolo Gondolo University of Utah

Visinelli, Gondolo, arxiv:0903.4377, Phys. Rev. D 80, 035024 (2009) Visinelli, Gondolo, arxiv:0912.0015, Phys. Rev. D 81, 063508 (2010)

A wider range of masses

Luca Visinelli

Axion cold dark matter

When are axions 100% of cold dark matter?

Study axion parameter space imposing

$\Omega_a = \Omega_{\rm CDM} = 0.1131 + 0.0034$

Standard cosmology

Scalar-tensor gravity

Usual metric tensor $g_{\mu\nu}$ + scalar field ϕ with action

$$S_{g} = \frac{1}{16\pi} \int d^{4}x \sqrt{-\bar{g}} \left[\bar{\phi}^{2} \bar{R} + 4\omega(\bar{\phi}) \bar{g}^{\mu\nu} \partial_{\mu} \bar{\phi} \partial_{\nu} \bar{\phi} - 4\bar{V}(\bar{\phi}) \right]$$
(Jordan frame)

For example, Brans-Dicke theory has $\omega(\phi)=\omega$, $V(\phi)=0$

The Friedmann equation has extra terms

$$H^{2} = \frac{8\pi}{3M_{\rm Pl}^{2}} \left(\rho + \frac{1}{2}M_{\rm Pl}^{2}\dot{\phi}^{2} + V(\phi)\right)$$

(Einstein frame)

Braneworlds

4-dimensional spacetime embedded in a higher dimensional spacetime

For example, Randall-Sundrum model II

Extra term in the Friedmann equation

$$H^2 = \frac{8\pi}{3M_{\rm Pl}^2} \left(\rho + \frac{M_{\rm Pl}^2 \rho^2}{96\pi M_5^6}\right)$$

 M_5 = Planck's constant in the bulk

Moduli fields

In string theory, moduli fields parametrize the shape and size of the compactified extra dimensions

Calabi-Yau manifold $z_1^5+z_2^5=1$

J.-F. Colonna, www.lactamme.polytechnique.fr

Moduli fields could dominate the energy of the universe at certain times, with some moduli fields decaying into ordinary and dark matter particles

For example, Moroi-Randall and Acharya-Bobkov-Kane-Kumar-Shao

Low temperature reheating

A decaying scalar field is a simple model of reheating at the end of inflation

The reheating temperature could be as low as 4 MeV

Low Temperature Reheating cosmology

Turner 1983, Scherrer, Turner 1983, Dine, Fischler 1983

Kination cosmology

Ford 1987

Axions as dark matter

Hot

Produced thermally in early universe Important for $m_a > 0.1 eV$ ($f_a < 10^8$), mostly excluded by astrophysics

Cold

Produced by coherent field oscillations around mimimum of $V(\theta)$ (Vacuum realignment)

Produced by decay of topological defects (Axionic string decays)

Axion cold dark matter parameter space

Assume $N = N_d = 1$ and show results for KSVZ and HHCS string network

Thus 3 free parameters f_a , θ_i , H_I and one constraint $\Omega_a = \Omega_{CDM}$

Cold axion production in cosmology

Vacuum realignment

- Initial misalignment angle θ_i
- Coherent axion oscillations start at temperature T_1

 $3H(T_1)=m(T_1)$

Hubble expansion parameter non-standard expansion histories differ in the function H(T) T-dependent axion mass axions acquire mass through instanton effects at $T < \Lambda \approx \Lambda_{\rm QCD}$

• Density at T_1 is $n_a(T_1) = \frac{1}{2}m_a(T_1)f_a^2\chi\langle\theta_i^2f(\theta_i)\rangle$

Anharmonicity correction $f(\theta)$

axion field equation has anharmonic terms $\ddot{\theta} + 3H(T)\dot{\theta} + m_a^2(T)\sin\theta = 0$

• Conservation of comoving axion number gives present density Ω_a

Cold axion production in cosmology

Axionic string decays

• Energy density ratio (string decay/misalignment)

Slow-oscillating strings (Davis-Battye-Shellard)

 $\bar{r} = \frac{1-\beta}{3\beta-1} \ln(t_1/\delta)$

Fast-oscillating strings (Harari-Hagmann-Chang-Sikivie)

$$T = \frac{1-\beta}{3\beta-1} 0.8$$

$$\xi = \frac{1}{4c^2} \left(2 - 3\beta + \sqrt{(4c+0)\beta^2 - 12\beta + 4} \right)^2$$
 with $a(t) \propto t^{\beta}$
 $c = (1 + 2\sqrt{\xi^{\text{std}}})/(4\xi^{\text{std}})$

Standard cosmology

Low Temperature Reheating cosmology

Turner 1983, Scherrer, Turner 1983, Dine, Fischler 1983

• As $T_{\rm RH}$ decreases, f_a must increase and m_a decrease

[Ge

 m_a [e/

Thursday, April 26, 12

 f_a [GeV]

Kination cosmology

Ford 1987

Conclusions

For axions to be 100% of cold dark matter.....

- If the Peccei-Quinn symmetry breaks after inflation ends, the axion mass must be $m_a=83 \mu eV$ in standard cosmology
 - much smaller m_a in LTR cosmology
 - much larger m_a in kination cosmology

- If the Peccei-Quinn symmetry breaks before inflation ends, an initial misalignment angle θ_i can be chosen for any $m_a < 15 \text{ meV}$
 - larger allowed region and larger θ_i in LTR cosmology
 - smaller allowed region and smaller θ_i in kination cosmology