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Axion cold dark matter

When are axions 100% of cold dark matter?

Study axion parameter space imposing

Q,=Qcpv=0.1131+0.0034
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Non-standard cosmology
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Non-standard cosmology

Scalar-tensor gravity

Usual metric tensor g, + scalar field ¢ with action

1

S9 = 167

d'av/=7 [¢° R + 4w($)7" 0,60, — 4V ()]

(Jordan frame)

For example, Brans-Dicke theory has w(¢)=w, V(¢9)=0

The Friedmann equation has extra terms

ST

H? =
3M3E,

(p+ 3MES +V(9))

(Einstein frame)
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Non-standard cosmology

Braneworlds

4-dimensional spacetime embedded
in a higher dimensional spacetime

For example, Randall-Sundrum model Il

Extra term in the Friedmann equation
2
72 — 3 01 Mp,p
3]\4]_-_2)1 967 MY

M5 = Planck’s constant in the bulk
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Non-standard cosmology

Moduli fields
In string theory, moduli fields Calabi-Yau
parametrize the shape and manifold
size of the compactified extra zrP+zy=1

dimensions

J.-F. Colonna, www.lactamme.polytechnique.fr

Moduli fields could dominate the energy of the
universe at certain times, with some moduli fields
decaying into ordinary and dark matter particles

For example, Moroi-Randall and Acharya-Bobkov-Kane-Kumar-Shao
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Non-standard cosmology

Low temperature reheating

A decaying scalar field is a simple model
of reheating at the end of inflation

The reheating temperature
could be as low as 4 MeV

reheating radiation In a
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Low Temperature Reheating cosmology
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Turner 1983, Scherrer,Turner 1983, Dine, Fischler 1983

Thursday, April 26, 12



Kination cosmology
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Axions as dark matter

Hot

Produced thermally in early universe
Important for ma>0.1eV (f2<10°), mostly excluded by astrophysics

Cold

Produced by coherent field oscillations around mimimum of V(6)
(Vacuum realignment)

Produced by decay of topological defects

(Axionic string decays)
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Axion cold dark matter parameter space

fa Peccei-Quinn symmetry breaking scale
N Peccei-Quinn color anomaly
Ni Number of degenerate QCD vacua

Kim-Shifman-Vainshtain-Zakharov
Dine-Fischler-Srednicki-Zhitnistki

H1 Expansion rate at end of inflation

Couplings to quarks, leptons, and photons

0; Initial misalignment angle

Harari-Hagmann-Chang-Sikivie

Davis-Battye-Shellard Axionic string parameters

Assume N = Ni =1 and show results for KSVZ and HHCS string network

Thus 3 free parameters f., 0;, H1 and one constraint Q,=CQcpm
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Cold axion production in cosmology

Vacuum realignment

® |nitial misalignment angle 6

® Coherent axion oscillations start at temperature 77
3H(T)=m(11)

/ < 
Hubble expansion parameter T-dependent axion mass
non-standard expansion histories axions acquire mass through
differ in the function H(T) instanton effects at T < A = Aqcp

® Density at T1is ny(17) = %ma(ﬂ)fzx(@?f(@i»
< 

Anharmonicity correction 1 (6)
axion field equation has anharmonic terms 6 + 3H (T)0 + m?2(T)sinf = 0

® Conservation of comoving axion number gives present density (2,
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Cold axion production in cosmology

Axionic string decays

® Energy density ratio (string decay/misalignment)

Density enhancement

(String stretching rate)2
\ from string decays
B str S’I“N2
@ = pmls C
a \

Uncertainty in axion spectrum

7= g527 In(t1/9)

- 1_/8
7= 3577 0.8

Slow-oscillating strings (Davis-Battye-Shellard)

Fast-oscillating strings (Harari-Hagmann-Chang-Sikivie)

1 2
£= 13 (2—35+\/4c+05 —125+4>

C— 1_1_2 /gstd 4£std
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Standard cosmology
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Axion CDM - Standard cosmology
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Axion CDM - Standard cosmology
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Axion CDM - Standard cosmology

PQ symmetry breaks
after inflation ends

* Average 0; over Hubble volume

* Anharmonicities are important

Turner 1986
Lyth 1992

(07 f(6:)) = (2.96)°
e String decay contribution is
~16% of vacuum realignment

Thursday, April 26, 12

Axion isocuyvature
fluctuations

PLANCK




Axion CDM - Standard cosmology

PQ symmetry breaks
before inflation ends
e Constrained by non-adiabatic
9,=0.001 ’ fluctuations
Ay eSingle value of 6; throughout

Hubble volume

6256 = |02 + (fo)] (6
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Axion CDM - Standard cosmology
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Low Temperature Reheating cosmology

AD o A

- .

— a2 P MD poa

| Pl RD pocat
Inflation _

T | Hoc 12 Reheating Inflation P V(@)
= Hocg372
Radiation

dominated
Dominated by the Hox a2
decay of a frozen Matter
scalar field dominated
Ho g3
A dominated
Hoc A 12

In a

Turner 1983, Scherrer,Turner 1983, Dine, Fischler 1983
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Axion CDM - Low Temp. Reheating cosmology
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Axion CDM - Low Temp. Reheating cosmology

Ty = 15MeV
TRy = 150MeV

m— Standard

i Axion Isocurvature
Fluctuations

Thursday, April 26, 12



Axion CDM - Low Temp. Reheating cosmology

PQ symmetry breaks
after inflation ends
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Axion CDM - Low Temp. Reheating cosmology
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Kination cosmology
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Axion CDM - Kination cosmology
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Axion CDM - Kination cosmology
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Axion CDM - Kination cosmology

PQ symmetry breaks
after inflation ends

® As Tiin decreases, f, must
decrease and m, increase

* String decay contribution is
|5 X vacuum realignment
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Axion CDM - Kination cosmology
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Conclusions

® |f the Peccei-Quinn symmetry breaks after inflation ends,
the axion mass must be|m,=83 peV|in standard cosmology

= much smaller m, in LTR cosmology

e 0.1 peV<my<15 meV
= much larger m, in kination cosmology

® |f the Peccei-Quinn symmetry breaks before inflation ends, an
initial misalignment angle 6; can be chosen for any|m,<15 meV

= larger allowed region and larger 6; in LTR cosmology
= smaller allowed region and smaller 6; in kination cosmology
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