Quantum Limited SQUID Amplifiersfor Cavity Experiments

- Axion Dark Matter eXperiment (ADMX)
- Theory of SQUID Amplifiers
- The Microstrip SQUID Amplifier
- ADMX Revisited
- Higher Frequency SQUID Amplifiers
- Parametric Amplifiers

Supported by: DOE BES DOE HEP

Vistas in Axion Physics University of Washington Seattle 24 April 2012

Axion Dark Matter eXperiment

Resonant Conversion of Axions into Photons

Pierre Sikivie (1983)

Primakoff Conversion

*High Electron Mobility Transistor

Need to scan frequency

ADMX at Lawrence Livermore National Laboratory

- Cooled to 1.5K
- 7 tesla magnet
- A given cavity can be tuned over a frequency range of about 2

Amplifier Noise Temperature

 $S_{V}^{0}(f) = A^{2} \cdot 4k_{B}[T_{i} + T_{N}(R)]R$

ADMX at LLNL

Cavity temperature:	$T \approx 1.5 \text{ K}$
HEMT noise temperature:	$T_{\rm N} \approx 1.7 \ {\rm K}$
System noise temperature:	$T_{\rm S} = T + T_{\rm N} \approx 3.2 \ {\rm K}$

Time* to scan the frequency range from $f_1 = 0.24$ to $f_2 = 0.48$ GHz: $\tau(f_1, f_2) \approx 4 \ge 10^{17} (T_s/1 \text{ K})^2 (1/f_1 - 1/f_2) \text{ sec}$ $\approx 270 \text{ years}$

*DFSZ: Dine-Fischler-Srednicki-Zhitnitskii model

Theory of SQUID Amplifiers

The dc SQUID

DC SQUID Noise: Classical Langevin Equation

Current noise spectral density $S_I(f) = 4k_BT/R$

Results for optimized SQUID with $\Phi = (2n + 1)\Phi_0/4$

 $V_{\Phi} \equiv (\partial V / \partial \Phi)_{I} \approx R / L$ $S_{V}(f) \approx 16 k_{B} T R$ $S_{J}(f) \approx 11 k_{B} T / R$ $S_{VJ}(f) \approx 12 k_{B} T$

Claudia Tesche & JC

Noise Sources in the SQUID Amplifier

Equivalent Noise Sources Referred to Input Coil

 i_N is a "virtual" current source e_N is a "real" voltage source $e_N(f) = -j(2\pi f)M_iJ_N(f)$ is *in quadrature* with $J_N(f)$

Calculate T_N from $e_n(t)$ and $i_n(t)$ using standard method

Tesche, Giffard, Martinis, JC

DC SQUID as a Tuned Amplifier

Assume coupling between SQUID and input circuit is weak (neglect influence of input circuit on SQUID and vice versa)

Resonance frequency	$\omega \approx [(L_i + L_s)C_i]^{-1/2}$
Quality factor	$Q \approx \omega (L_i + L_s)/R_i$

Noise Temperature and Gain

On resonance

 $T_N^{\text{res}} = \pi f[S_J(f)S_v(f)]^{1/2}/k_B V_{\Phi} \approx 42f \bullet T/V_{\Phi}$

 $G\approx V_{\Phi}\!/\omega$

Introducing the plasma frequency $f_p = (I_0/2\pi\Phi_0 C)^{1/2}$:

 $G \approx f_p / \pi f$ (cf parametric amplifier)

Optimized $T_{N}^{opt} = \pi f[S_{J}(f)S_{v}(f) - S_{VJ}^{2}(f)]^{1/2}/k_{B}V_{\Phi} \approx 18f \cdot T/V_{\Phi} \approx T_{n}^{res}/2.4$ at frequency $f = 1/2\pi [L_{i}C_{i}(1 + \alpha^{2}S_{VJ}LV_{\Phi}/S_{V})]^{1/2} < f_{res}$ $T_{O}^{opt} \approx hf/k_{B}$

The Microstrip SQUID Amplifier (MSA)

MSA: Principle

Conventional SQUID Amplifier

Microstrip SQUID Amplifier

• Source connected to both ends of coil

• Source connected to one end of the coil and SQUID washer; the other end of the coil is left open

MSA: Practice

Optimized Version: Measurement of T_N

- Hot/cold load method
 - Input connected to variable temperature 50 Ω load
 - Ratio measurement—no absolute calibration required

Darin Kinion, JC

Measurement of T_N and Gain

Darin Kinion, JC

Gain and Noise Temperature

- Quantum limit $T_Q = 30 \text{ mK}$
- Optimum noise temperature $T_N^{opt} = 48 \pm 5 \text{ mK}$
- Occurs slightly below resonance, as predicted
- Typical $T_{\text{HEMT}} \approx 2 \text{ K} \ (\approx 40 \text{ times higher})$

Darin Kinion, JC

MSA Noise Temperature vs. Bath Temperature

• Darin has recently extended the operating frequency to 6 GHz (unpublished)

ADMX Revisited

The Axion Detector: Reduction in Scan Time

- Microstrip SQUID amplifier: $T_N \approx 50 \text{ mK}$
- Original LLNL axion detector: $T_S \approx 3.2 \text{ K}$
- Next generation: Cool system in a dilution refrigerator to (say) 100 mK
- Thus $T_{\rm S} \approx T + T_{\rm N} \approx 150 \text{ mK}$
- Scan time $\propto (T_s/1 \text{ K})^2$:

 τ (0.24 GHz, 0.48 GHz) ≈ 270 years x (0.15/3.2)² ≈ 200 days

- A "cold" HEMT operates at typically 20 K (thermal heating)
- A SQUID operates at the bath temperature down to typically 100 mK

Outlook for the Axion Detector

• During 2009-10, a microstrip SQUID amplifier was operated on the axion detector at 1.5 K to demonstrate proof-of-principle. (LLNL)

- 88,370, 80-sec data sets were acquired, corresponding to 82 days of data.
- Given the success of this test, the Department of Energy has funded a second upgrade.

Higher Frequency SQUID Amplifier

The Microwave SLUG Amplifier Robert McDermott's Group at Wisconsin

Josephson Parametric Amplifier

Josephson Nonlinear Oscillator

• The Josephson junction is a lossless, nonlinear inductance:

$$L_{\rm J} = \Phi_0 / [2\pi (I_0^2 - I^2)^{1/2}] \quad (I_0 > I)$$

• A shunt capacitor C produces a nonlinear oscillator: $f_{osc} = 1/2\pi (L_JC)^{1/2} = (I_0^2 - I^2)^{1/4}/(2\pi C\Phi_0)^{1/2}$

• Applying a flux to the SQUID changes I_0 , providing tuning

Josephson Parametric Amplifier

• $G \approx 30 \text{ dB}$, f = 5 - 6 GHz, within factor of 1.5 of quantum limit

ADMX Readout with Parametric Amplifier

Concluding Remarks

• DC SQUID amplifiers and Josephson parametric amplifiers can be operated at frequencies up to 10 GHz—and potentially higher.

• Both kinds of amplifier can achieve near-quantum limited performance. (In the case of the dc SQUID amplifier this occurs below the peak gain.)

• The dc SQUID amplifier is simple to operate in that it requires only static current and flux biases. It operates at a static voltage, and is therefore a dissipative device.

• The Josephson parametric amplifier requires a very stable microwave generator and a collection of cooled microwave components (circulators, directional couplers,...). It operates in the zero voltage regime. It is currently more readily tunable.

SQUID amplifiers

Marc-Olivier André Jost Gail Robin Giffard[†] Cristoph Heiden[†] Darin Kinion Roger Koch[†] John Martinis Michael Mück Claudia Tesche Dale Van Harlingen

SQUID parametric amplifiers

Michael Hatridge Jed Johnson Irfan Siddiqi Dan Slichter Rajamani Vijayaraghavan

The axion detector group

S.J. Asztalos G. Carosi C. Hagmann D. Kinion K. van Bibber M. Hotz L. Rosenberg

G. Rybba J. Hoskins J. Hwang P. Sikivie D.B. Tanner R.Bradley