

ADMX Phase II+

Gianpaolo Carosi

Lawrence Livermore National Laboratory USA

ADMX Collaboration

Vistas in Axion Physics

04/24/2012

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

ADMX collaboration

University of Washington

- Leslie Rosenberg^{*spokesman}, Gray Rybka, Michael Hotz, Andrew Wagner, Doug Will,
- Dmitry Lyapustin, Christian Boutan
- University of Florida
- David Tanner, Pierre Sikivie, Neil Sullivan, Jeff Hoskins, Jungseek Hwang,
- Catlin Martin, Ian Stern
- Lawrence Livermore National Laboratory
- Gianpaolo Carosi (PI @ LLNL), Darrell Carter, Chris Hagmann, Darin Kinion, Wolfgang Stoeffl, Karl van Bibber ^{currently @ UC Berkeley, Nuclear Engineering Dept, CA}
- National Radio Astronomy Observatory
- Richard Bradley
- University of California, Berkeley
- John Clarke
- Yale University
- Steve Lamoreaux
- Sheffield University

Edward Daw

ADMX collaboration (at least a good portion of us)

The radiometer eqn.* dictates the strategy

The Axion Dark Matter eXperiment

Stage	Phase 0	Phase I	Phase II
Technology	HEMT; Pumped LHe	Replace w. SQUID	Add Dilution Fridge
T _{phys}	2 K	2 K	100 mK
T _{amp}	2 K	1 K	100 mK
$T_{\rm sys} = T_{\rm phys} + T_{\rm amp}$	4 K	3 K	200 mK
Scan Rate $\propto (T_{ m sys})^{-2}$	1 @ KSVZ	1.75 @ KSVZ	5 @ DFSZ
Sensitivity Reach $g^2 \propto T_{ m sys}$	KSVZ	0.75 x KSVZ	AND ! DFSZ
Physical _{and}			

Phase I & II Upgrade path: Quantum-limited SQUID-based amplification

Physicalance

- SQUIDs have been measured with T_N ~50 mK
- Near quantumlimited noise
- This provides an enormous increase in ADMX sensitivity
- See Prof Clarke's talk earlier

Cooling with <u>SQUID</u> amplifiers greatly increases scan rate

ADMX Phase II: Moved ADMX main magnet and insert to the U. of Washington

ADMX Main Magnet installed at CENPA, U.W.

Site Layout at CENPA: Lots of legacy infrastructure

ADMX Phase II: Large amount of Technical Upgrades!

Helium Liquifier Improved Cryogenics **Piezoelectric Rod Motion** Rod location Tracking Improved Thermometry **Real-Time Analysis Clean assembly Area Better Cavity Modeling** New Paint Job **HFET Bias Monitor**

Dynamic SQUID Gain Monitoring In-Situ Noise Calibration Suite **Tunable SQUIDs** Improved Receiver Chain **Digital Filtering Better Timing Standard Cavity Plating Upgrade** All High Resolution Time Series Data New Magnet Leads

ADMX Phase II: Experimental Insert completely redesigned.

ADMX Phase II construction well underway!

Top Plate has been welded and is being leak tested.

Bucking magnet installed in new reservoir
Physical and Life Sciences

ADMX Phase II: Cryogenics being design by U. of Florida (N. Sullivan)

Have been approved for 50 liters STP He³.

Initially data run with pumped He³ pot to ~ 300 mK while awaiting dilution refrigerator.

Much of the same infrastructure will be used for dilution fridge ~ 100 mK.

Dilution Refrigerator based on Janis 750 model

Motion Control for Tuning Rods (attached to 1k stage).

19600:1 gear reduction

Heat budget: ~ 1 mW continuous running (factor of 100 lower for 10 mHz cadence)

Continued R&D effort to potentially use Piezo-electric rotary drive

Harvey Mudd College Clinic Team designed & constructed prototype

Physical_{and} Life Sciences

ADMX Phase II: New Microwave cavity and tuning rod plating

- Cavity and Tuning rods: Stainless steel plated with high quality copper.
 - Q near that given by cryogenic anomalous skin depth.
 - Expected unloaded Q of ~ 200,000.
- Main cavity to be delivered to U.W. late summer.
- Continued R&D to improve quality factor and form factor.

Physical

Revamped Receiver Chain: Take advantage of digital electronics

ADMX Phase II: Instrument the TM₀₁₀ & TM₀₂₀ modes

ADMX Phase II: Instrument the TM₀₁₀ & TM₀₂₀ modes

Receiver chain now requires 2 parallel sets of 1st stage amplifiers and antennas and modest amount of filtering.

/sical

Amplifiers: Steady stream of SQUID and HFET amps

John Clarke's group at UC Berkeley providing baseline SQUID amplifiers Andrew Wagner coming up to speed to be local (UW) SQUID manufacturer

Richard Bradley at NRAO onboard to provide 2nd stage HFET amps

hysical

Summer 2011 Funding for Phase II arrived!

<u>2011 – 2012</u> Construction of Phase II insert / infrastructure.

2012 – 2013 Commission Phase II detector (pumped LHe³ system ~ temp at 300 mK) Order Dilution Refrigerator (1 year lead time) Short Axion Search while awaiting Dil. Fridge

2013 – 2014 Install Dilution Refrigerator, Commissioning

<u>2015+</u> Definitive Dark Matter Axion search commences!

ADMX Upgrade + ADMX-HF – year one

ADMX – HF: High Frequency (> 2 GHz)

Second ADMX site: Yale University

- PI: Prof. Steve Lamoreaux
- New Superconducting Magnet 5" diameter, 20" long, 9.4 T
- Dilution fridge already in place.

Recently awarded NSF funding... magnet under construction

The radiometer eqn.* dictates the strategy

To get > 10 µeV... Additional higher-frequency R&D required

Goal: Higher frequencies without sacrificing volume

4 cavity array operated

C. Hagmann simulation

D. Kinion Thesis

Multipost systems possible

Multi-cavity array – work at U. of Florida

- frequency
- Efficient use of magnetic volume compared to, e.g., 4 parallel cylinders.
- Tune by moving rods from corner to center in each partition
- Issues with Q, coupling

Segmented Resonator

- Method becomes highly complex above 8 segments
 - Maximum TM₀₁₀ Frequency for full scale cavity: ~2.2 GHz (9µeV)
- Project going through cavity redesign and improvements...

continued R&D effort

The "Hybrid" superconducting cavity concept

What's the point?

 $P \propto g^2 \cdot B^2 V \cdot \min(Q_L, Q_a)$

$$\frac{1}{f} \cdot \frac{df}{dt} \propto g^4 \cdot B^4 V^2 \cdot \min(Q_L, Q_a)$$

For copper cavities, $Q_a \sim 10^6$, whereas $Q_L \sim 50,000$

If you could increase Q_L by a factor of *e.g.* x10 :

P would increase by x10

Physic

- df/dt would increase by x10 (for constant g)
- g would improve by ÷1.8 (for constant scan speed)

Q of the TM₀₁₀ mode for a conventional Cu cavity:

The "Hybrid" superconducting cavity concept

hysical

$$Q_{hybrid} = (1 + L/R) \cdot Q_{cu}$$

For typical ADMX cavity, L/R = 5, enhancement factor = 6

*slides from Karl van Bibber

The "Hybrid" superconducting cavity concept

The science of thin-film superconductors is mature

Supports B₁₁ up to 10 Tesla

*slides from Karl van Bibber

R&D has already begun on NbTiN superconducting coatings

Currently in the process of setting up RF vapor deposition on foils for

Physicalan

Rutherford backscattering of 20 min NbTi deposition on copper foil

Superconducting coatings will be placed on 1" cavity barrels

Current Microstrip SQUID Amplifiers have gain fall off at around a few GHz... need new ideas.

B₀²V for Solenoids Mark D. Bird

Director of Magnet Science & Technology at the National High Magnetic Field Lab, Tallahassee, FL

4.8 m

Utilizing ADMX for a Chameleon search

Timescale: 10 minutes Power in ~ 25 dBm Timescale: 100 milliseconds

Timescale: 10 minutes Sensitivity ~ 10⁻²² W Bandwidth ~ 20 kHz

Physical_{and} Life Sciences

ADMX for a Chameleon search results (published in PRL)

Other light bosons: Hidden Sector Photons

Additional U(1) symmetries that mix kinetically with the photon are ubiquitous in beyond-the-standard model physics Other Names: U Boson, Paraphoton, Z', etc

Utilizing ADMX as a Hidden Sector Photon Receiver

Results of ADMX search for hidden sector photons (published in PRL)

100x more sensitive than previous cavity search! Competitive with indirect searches!

Questions?

View from 40,000 feet: Axion and Axion-Like-Particle Searches

