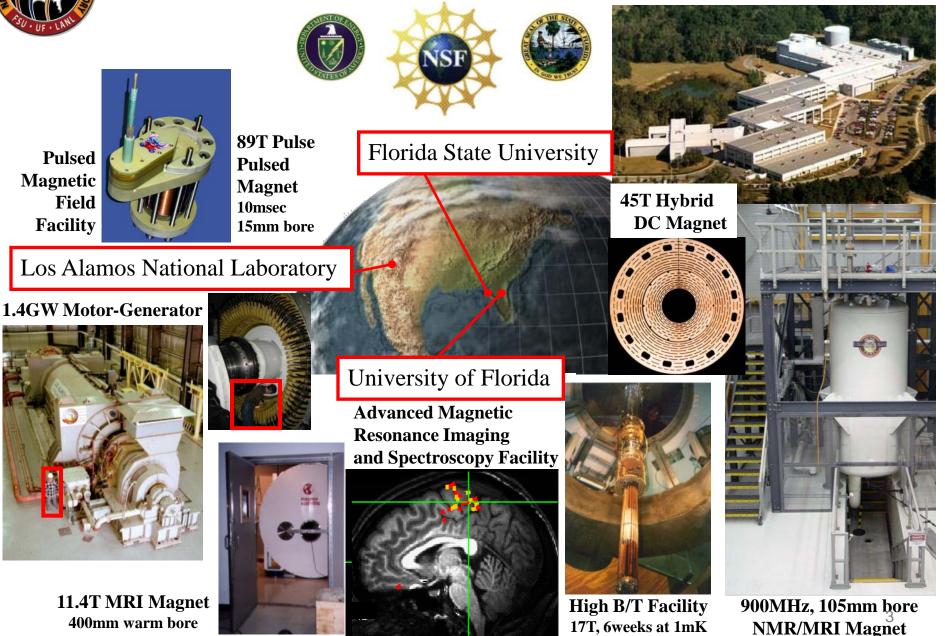


B₀²V for Solenoids Mark D. Bird Director of Magnet Science &

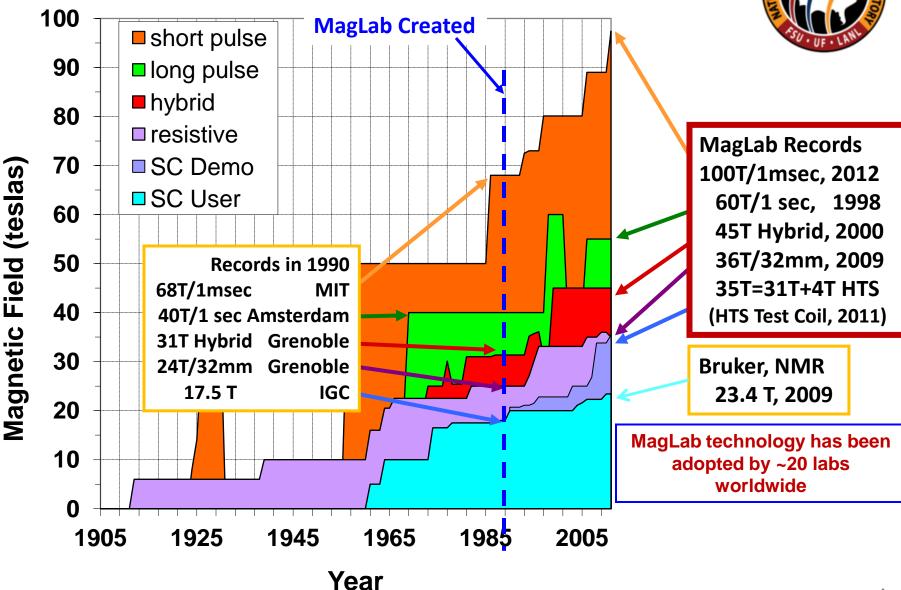
Technology at the National High Magnetic Field Lab, Tallahassee, FL

INTRODUCTION TO MAGLAB

TODAY'S SOLENOIDS

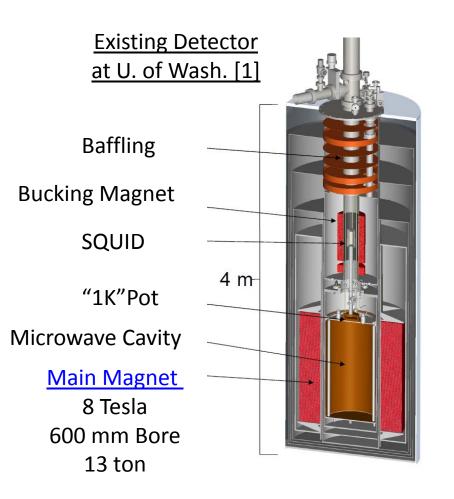

THE POTENTIAL OF HTS

SUMMARY



National High Magnetic Field Laboratory

MagLab User Program Technology Leads the World



Today's Solenoids: ADMX

Axions decay into microwave photons in a strong magnetic field.

MagLab Previous Involvement: Advice on Relocation

Conversion Microwave photons are detected by one of the world's quietest radio receivers.

$$P_a = g_{a\gamma\gamma}^2 V B_0^2 \rho_a C_{lmn} \min(Q_L, Q_a).$$
 [2]

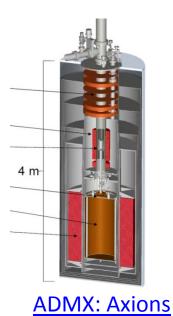
Magnet performance is given by: ∫B²dV

Cavity constrained by Field Homogeneity Size limited by frequency Size limited by cavity technology

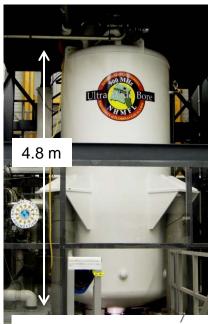
Solenoids Present & Future

CICC = Cable-In-Conduit Conductor SRC = Stabilized Rutherford-Cable Mono = Monolithic Conductor Pers = persistent

B ₀ ² V (T ² m ³)	B ⁴ (kT ⁴)	Magnet	Application/ Technology	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
12000	29	ITER CS	Fusion/Sn CICC	Cadarache	13	2.6	13	6400	>500
5300	0.2	CMS	Detector/Ti SRC	CERN	3.8	6	13	2660	>4581
650	7	Tore Supra	Fusion/Ti Mono Ventilated	Cadarache	9	1.8	3	600	
430	19	Iseult	MRI/Ti SRC	CEA	11.75	1	4	338	
320	29	ITER CSMC	Fusion/Sn CICC	JAEA	13	1.1	2	640	>50 ²
290	3112	60 T out	HF/HTS CICC	MagLab	42	0.4	1.5	1100	
250	12	Magnex	MRI/Mono Pers	Minnesota	10.5	0.88	3	286	7.8
190	8	Magnex	MRI/Mono Pers	Juelich	9.4	0.9	3	190	
70	41	45 T out	HF/Sn CICC	MagLab	14	0.7	1	100	14
12	2	ADMX	Axion/Ti mono/SRC	U Wash	7	0.5	1.1	14	0.4
5	29	900 mod	NMR/Sn mono	MagLab	21.1	0.11	0.6	40	15


¹Materials only per BBC/CERN. ²US inner module \$50M per Minervini Italics indicates a magnet not yet operational ⁶

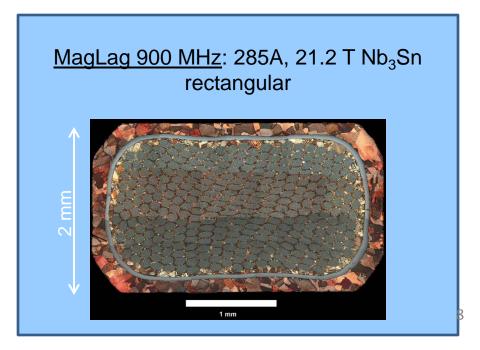
Today's Solenoids: Monolithic Conductors


B ₀ ² V (T ² m ³)	B ⁴ (kT ⁴)	Magnet	Application/ Conductor	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
650	7	Tore Supra	Fusion/NbTi	Cadarache	9	1.8	3	600	
250	12	Magnex	MRI/NbTi Pers	Minnesota	10.5	0.88	3	286	7.8
190	8	Magnex	MRI/NbTi Pers	Juelich	9.4	0.9	3	190	
12	2	ADMX	Axion/NbTi/SRC	U Wash	7	0.5	1.1	14	0.4
5	29	900 mod	NMR/Nb ₃ Sn	MagLab	21.1	0.11	0.6	40	15

Italics indicates a magnet not yet operational.

Juelich: MRI

MagLab 900: NMR

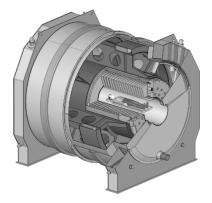

Today's Solenoids: Monolithic Conductors

• Advantages

- Well-developed Technology.
 - General-purpose "research" magnets.
 - NMR, MRI magnets.
 - ADMX.
 - Commercial suppliers [Magnex (Agilent), Bruker, Oxford, Cryomagnetics, Wang, etc.]
- NbTi or Nb₃Sn.
- Persistent Switches Exist.
- High Homogeneity Possible.

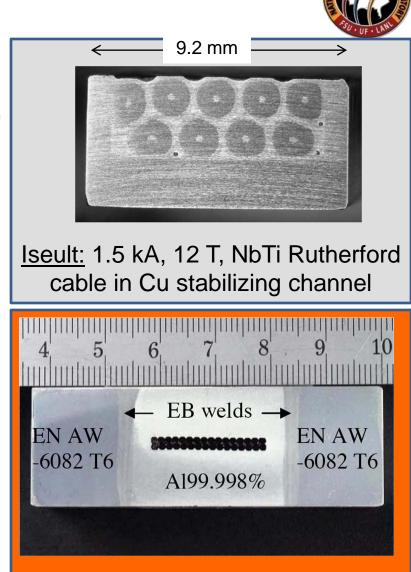
- Dis-advantages
 - Limited to modest currents (<500 A).
 - No Helium, little Cu or Al within coilpack.
 - Relatively unstable.
 - Quench protection difficult for large systems.

Today's Solenoids: Stabilized Rutherford-Cable


B ₀ ² V (T ² m ³)	B ⁴ (kT ⁴)	Magnet	Application/ Conductor	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
5300	0.2	CMS	Detector/NbTi	CERN	3.8	6	13	2660	>4581
430	19	Iseult	MRI/NbTi	CEA	11.75	1	4	338	
12	2	ADMX	Axion/NbTi/SRC	U Wash	7	0.5	1.1	14	0.4

Italics indicates a magnet not yet operational.

Compact Muon Solenoid


¹Materials only per BBC/CERN.

<u>Iseult 11.7 T MRI system</u> (under development)

Stabilized Rutherford Conductor

- Advantages
 - Cable allows higher currents than monolithic.
 - Cu or Al stabilizes & strengthens.
 - Preferred for protection of large magnets (>100 MJ).
 - Used for highest ~∫B²dV magnet completed todate (CMS).
- Uses
 - Detector Magnets (CMS, ATLAS, etc.)
 - Iseult/Inumac 11.75 T MRI
- Disadvantages
 - Persistent Switches not available (possible?)
 - Used for specialty magnets, one-off fabrication. Limited industrial base. National Labs frequently involved.
 - Al-stabilized only suitable for NbTi.
 - To date: NbTi only. Nb₃Sn Rutherford cables being developed for dipoles and quadrupoles. Not aware that externally stabilized ones exist yet.

<u>CMS</u>: 19 kA, 4 T, NbTi Rutherford cable in Al co-extruded & welded stabilizing channel

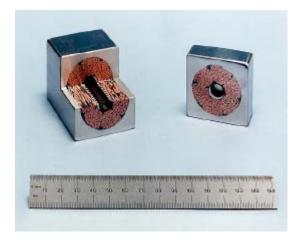

Today's Solenoids: CICC

B ₀ ² V (T ² m ³)	B ⁴ (kT ⁴)	Magnet	Application/ Conductor	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
12,000	29	ITER CS	Fusion/Nb ₃ Sn	Cadarache	13	2.6	13	6400	>500
320	29	ITER CSMC	Fusion/Nb ₃ Sn	JAEA	13	1.1	2	640	>50 ²
70	41	45 T out	HF/Nb ₃ Sn	MagLab	14	0.7	1	100	14

Italics indicates a magnet not yet operational.²US inner module \$50M per Minervini.

MagLab 45 T Hybrid

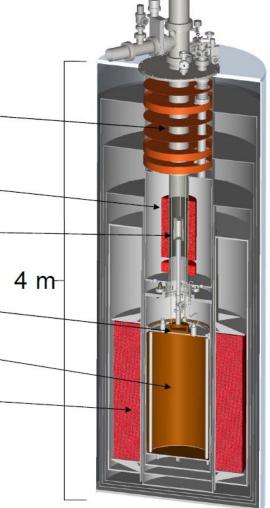
ITER Central Solenoid Model Coil



Cable-In-Conduit Conductors

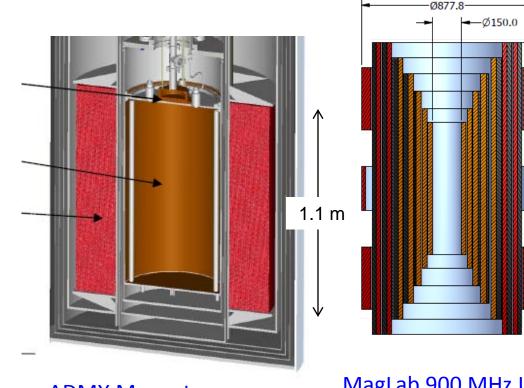
- Advantages
 - Steel conduit provides strength (stress ~jBr).
 - He provides stability (100 W dc possible w/o quench for some designs).
 - Used for highest ~∫B²dV magnet attempted to-date (ITER CS).
 - Used w/ NbTi and Nb₃Sn.
- Uses
 - Magnets with disturbances (fusion, hybrid outserts).
- Disadvantages
 - Steel and helium result in relatively low current-density and large coils.
 - Strain-state in Nb₃Sn CICC not wellunderstood.
 - Limited manufacturing infrastructure, (National Labs).

 $\underline{\text{ITER:}}$ 50 kA, 13 T, Nb₃Sn CICC


<u>45 T</u>: 10 kA, 15 T, Nb₃Sn CICC

Modify ADMX?

Can we add coils to ADMX to increase $\int B^2 dV$?


ADMX Magnet

8 Tesla 600 mm Bore 14 MJ

Modify ADMX?

Can we add coils to ADMX to increase $\int B^2 dV$?

ADMX Magnet

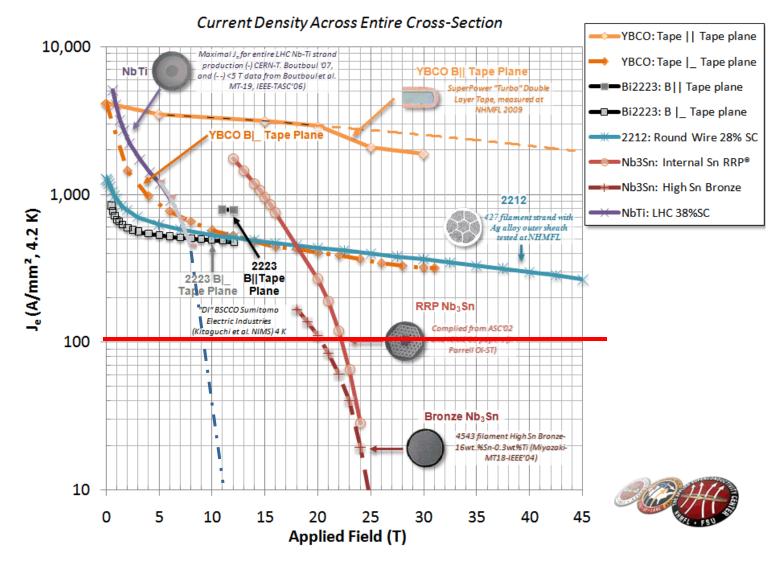
8 Tesla 600 mm Bore 14 MJ MagLab 900 MHz Ultra-Wide Bore NMR Magnet 21.2 Tesla 110 mm Bore 40 MJ

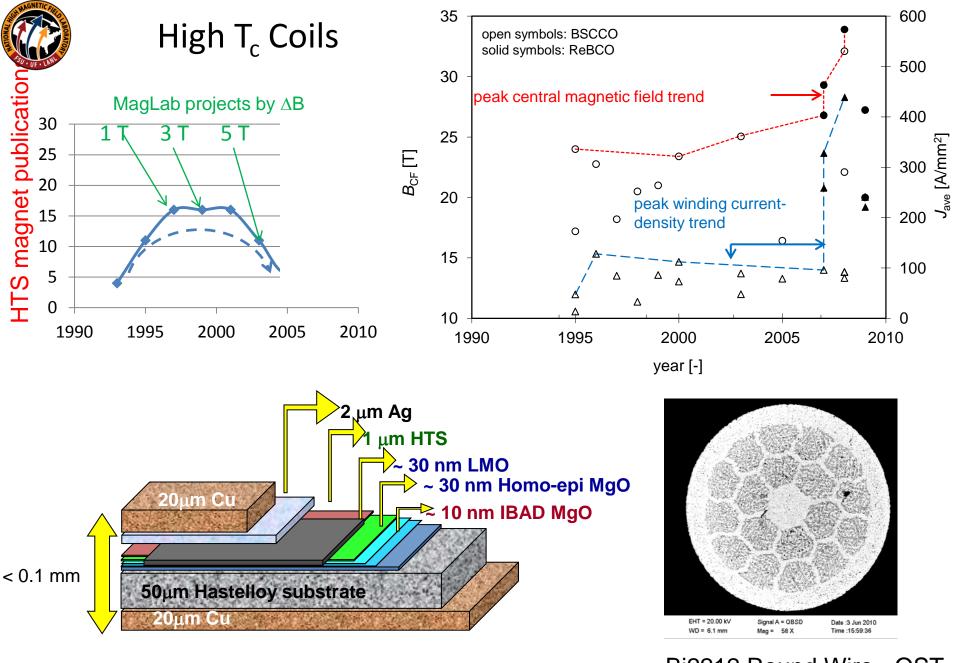
1.5 m

<u>Coil Dimensions & Field</u> from MagLab 21.2 T NMR

ID (m)	В (Т)	L (m)	B ₀ ² V (T ² m ³)	B ⁴ (kT ⁴)
0.64	5.6			
0.56	7.6	1.32	18.8	3
0.47	10.4	1.28	24.5	12
0.40	13.2	1.20	26.3	30
0.33	15.6	1.10	23.5	59
0.26	18	0.95	16.9	105
0.20	20	0.80	9.7	160
0.15	21.1	0.65	5.1	198

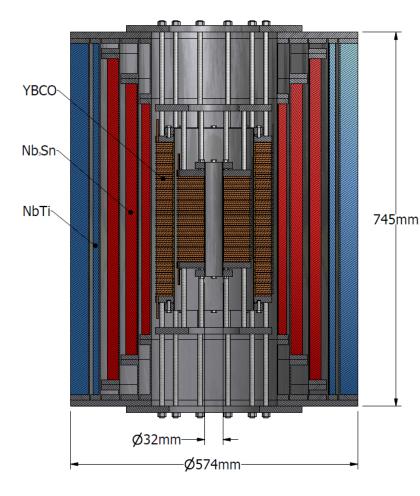
Adding coils might increase performance. Who would do it?


Cavity-Size Constraints


- Cavities longer than a wavelength of the photons are inefficient: 0.3 m length/diameter constraint.
- Present ADMX dimensions: 0.53 m diameter, 1 m length.
- Can cavities be slaved together?
- If not, pursue higher field in the same volume as ADMX.

Future Solenoids: <u>High-Temperature Superconductors</u>

Plot maintained by Peter Lee at: http://magnet.fsu.edu/~lee/plot/plot.htm


2G YBCO Tape - SuperPower

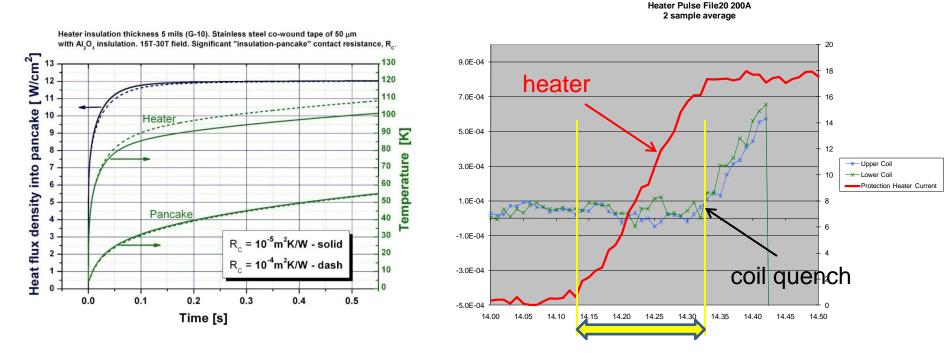
Bi2212 Round Wire - OST

32 TESLA SUPERCONDUCTING MAGNET

	Total field	<u>32 T</u>
	Field inner YBCO coils	17 T
	Field outer LTS coils	15 T
ı	Cold inner bore	32 mm
	Current	172 A
	Inductance	619 H
	Stored Energy	9.15 MJ
	Uniformity	5x10 ⁻⁴ 1 cm DS

Principal Investigator: Denis Markiewicz Co-PI's: David Larbalestier, Steven Julian

V



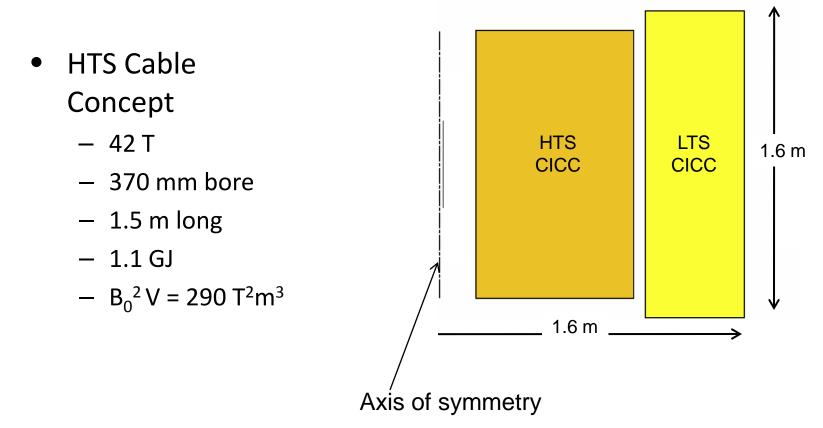
YBCO test coil on support structure

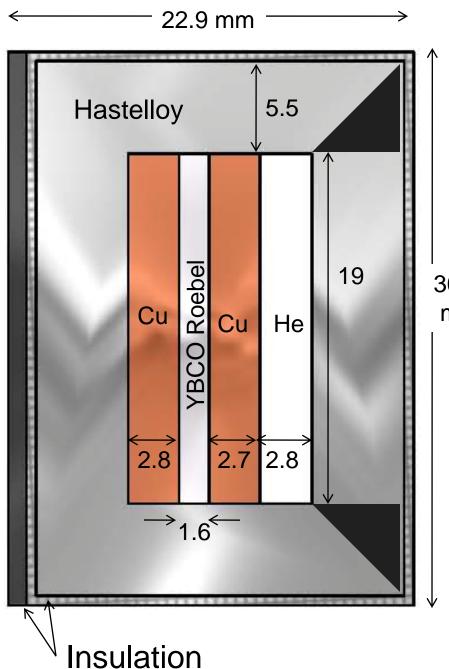
The technology development phase will continue with the fabrication of a series of test coils that will demonstrate conductor and coil performance prior to fabrication of the 32 T magnet YBCO coils.

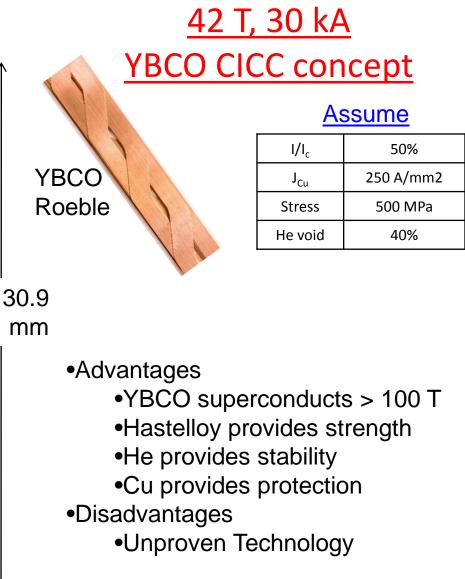
Quench Protection of YBCO Coils

Performance of quench protection heaters is studied by analysis and measurements on test coils.

Proof of principle of heater performance verified by coil measurements.


Full heater performance characterization tests to be made at high field.


Potential HTS Solenoids



B ₀ ² V (T ² m ³)	B ⁴ (kT ⁴)	Magnet	Application/ Technology	Location	Field (T)	Bore (m)		Energy (MJ)	Cost (\$M)
290	3112	60 T out	HF/HTS CICC	MagLab	42	0.4	1.5	1100	

Italics indicates a magnet not yet operational (and, in this case, yet not funded).

Sample shape and field angle? Loop/spiral or U-shape or hairpin?

HTS cable testing @ MagLab

Twisted stack. 4 mm wide ROEBEL ~5- 12 mm

CORC

Option: 12 T split magnet Nominally 16 kA 150 mm cold-bore, 30x70 mm radial access

Existing test setup for 20 T LBRM Nominally 7 kA 141 mm cold-bore cryostat

Under development for LBRM Nominally 16 kA (IRL) Nominally 2 kA (LBL) 168 mm cold-bore cryostat

Estimates of performance and cost of potential approaches to next-generation magnets for rf Axion search

Objective	Approach	Cavity Size D * L (m * m)	B ₀ ² V (T ² m ³)	B ⁴ (kT ⁴)	Cost
Maximize ∫B²dV	Very Large Magnet, 4-15 T, cabled conductor (CICC or SRC).	Ø2 – 10 m * 15 – 20 m	2,000 – 10,000	0.2 - 3000	\$30M - \$1B
Size ~ 1 m	High Field Magnet (20 – 40T): High- Temperature Superconductor	Ø0.5 m * 1.5 m	30 - 300	1000 - 3000	\$10M - \$200M
Persistent	Monolithic conductor, large-bore MRI magnet (<10 T), commercial	Ø0.9 m * 3 m	250	7 - 12	\$5M - \$10M
Min cost Upgrade	Use ADMX, Add inner coils (~13 T)	Ø0.4 m * 1 m	20	15 - 25	<\$1M
Present System	ADMX	Ø0.5 m * 1 m	12	2	0 (\$0.4M)

Seeking Postdoctoral Scholars to Develop Magnet Technology!