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INTRODUCTION TO MAGLAB

TODAY’S SOLENOIDS

THE POTENTIAL OF HTS
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MagLab User Program Technology Leads the World
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Today’s Solenoids: ADMX

Axions decay into microwave photons in a strong magnetic field.

MagLab Previous Involvement: Advice on Relocation

Conversion Microwave photons are detected by
one of the world’s quietest radio receivers.
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[1] Carosi, UCLA Dark Matter, 2/25/2010 [2] Asztalos, et al., PRL, 104 041301 (2010) 5



. CICC = Cable-In-Conduit Conductor
SRC = Stabilized Rutherford-Cable
Solenoids Present & Future C = Stabilized Rutherford-Cal
Pers = persistent

B,2V Magnet Application/ Location Fleld Bore | Len | Energy | Cost
(T?m3) (kT4) Technology (m) (m) (M) (Sm)

12000 ITER CS Fusion/Sn CICC Cadarache 6400 >500
5300 0.2 CMS Detector/Ti SRC CERN 3.8 6 13 2660 >458!
650 7 Tore Fusion/TiMono  Cadarache 9 1.8 3 600
Supra Ventilated
430 19 Iseult MRI/Ti SRC CEA 11.75 1 4 338
320 29 ITER Fusion/Sn CICC JAEA 13 1.1 2 640 >502
CSMC
290 3112 60 T out HF/HTS CICC MaglLab 42 0.4 1.5 1100
250 12 Magnex  MRI/Mono Pers  Minnesota 10.5 0.88 3 286 7.8
190 8 Magnex  MRI/Mono Pers Juelich 9.4 0.9 3 190
70 41 45 T out HF/Sn CICC MagLab 14 0.7 1 100 14
12 2 ADMX Axion/Ti U Wash 7 0.5 1.1 14 0.4
mono/SRC
5 29 900 mod  NMR/Sn mono MagLab 21.1 0.11 0.6 40 15
IMaterials only per BBC/CERN. Italics indicates a magnet

2US inner module $50M per Minervini not yet operational



Today’s Solenoids: Monolithic Conductors

B,2V Magnet | Application/ Location Fleld Bore | Len | Energy | Cost
(T2m3) (kT4) Conductor (m) (m) (MJ) (Sm)
650

Tore Fusion/NbTi Cadarache
Supra
250 12 Magnex  MRI/NbTi Pers Minnesota 10.5 0.88 3 286 7.8
190 8 Magnex  MRI/NbTi Pers Juelich 9.4 0.9 3 190
12 2 ADMX Axion/NbTi/SRC U Wash 7 0.5 1.1 14 0.4
5 29 900 mod NMR/Nb,Sn MaglLab 21.1 0.11

Italics indicates a magnet not yet operational.

0.9 m

ADMX: Axions Juelich: MRI MaglLab 900: NMR




Today’s Solenoids: Monolithic Conductors

Advantages e Dis-advantages
— Well-developed Technology. — Limited to modest currents (<500 A).
* General-purpose “research” magnets. — No Helium, little Cu or Al within coil-
* NMR, MRI magnets. pack.
e ADMX. .
, , _ — Relatively unstable.
 Commercial suppliers [Magnex (Agilent), _ o
Bruker, Oxford, Cryomagnetics, Wang, etc.] — Quench protection difficult for large
— NbTi or Nb;Sn. systems.

— Persistent Switches Exist.

— High Homogeneity Possible.

MaglLag 900 MHz: 285A, 21.2 T Nb;Sn

rectangular




Today’s Solenoids: Stabilized Rutherford-Cable

B,2V Magnet | Application/ Location Fleld Bore | Len | Energy | Cost
(T2m3) (kT4) Conductor (m) (m) (M) (Sm)

5300 Detector/NbTi CERN 2660 >4581
430 19 Iseult MRI/NbTi CEA 11.75 1 4 338
12 2 ADMX Axion/NbTi/SRC U Wash 7 0.5 1.1 14 0.4
Italics indicates a magnet not yet operational. 1Materials only per BBC/CERN.

Iseult 11.7 T MRI system
(under development)

Compact Muon Solenoid




Stabilized Rutherford Conductor
Advantages

— Cable allows higher currents than monolithic.
— Cu or Al stabilizes & strengthens.

— Preferred for protection of large magnets (>100
MJ).

— Used for highest ~[B?dV magnet completed to-
date (CMS).

Uses Iseult; 1.5 kA, 12 T, NbTi Rutherford
— Detector Magnets (CMS, ATLAS, etc.) cable in Cu stabilizing channel

— Iseult/Inumac 11.75 T MR
Disadvantages

— Persistent Switches not available (possible?)

— Used for specialty magnets, one-off
fabrication. Limited industrial base. National
Labs frequently involved.

— Al-stabilized only suitable for NbTi.

— To date: NbTi only. Nb;Sn Rutherford cables
being developed for dipoles and quadrupoles.
Not aware that externally stabilized ones exist
yet.




Today’s Solenoids: CICCl

B,2V Magnet | Application/ Location Fleld Bore | Len | Energy | Cost
(T2m3) (kT4) Conductor (m) (m) (M) (Sm)

12,000 ITER CS Fusion/Nb;Sn Cadarache 6400 >500
320 29 ITER Fusion/Nb;Sn JAEA 13 1.1 2 640 >502
CSMC
70 41 45 T out HF/Nb,Sn Maglab 14 0.7 1 100 14

Italics indicates a magnet not yet operational.2US inner module $50M per Minervini
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Cable-In-Conduit Conductors

 Advantages
— Steel conduit provides strength (stress
~jBr).
— He provides stability (100 W dc possible
w/o quench for some designs).

— Used for highest ~[B?dV magnet
attempted to-date (ITER CS).

— Used w/ NbTi and Nb,Sn.
e Uses

— Magnets with disturbances (fusion,
hybrid outserts).

 Disadvantages
— Steel and helium result in relatively low
current-density and large coils.

— Strain-state in Nb;Sn CICC not well-
understood.

— Limited manufacturing infrastructure,
(National Labs).




Modify ADMX?

ADMX Magnet

8 Tesla
600 mm Bore
14 MJ

Can we add coils to ADMX
to increase [B2dV?

Perhaps

L TR
| 4

MaglLab 900 NMR

21.2 Tesla
110 mm Bore
40 MJ




Modify ADMX?

Can we add coils to ADMX to increase [B2dV?

[ @877.8
—=] [e—@150.0

1.5m
ADMX Magnet MagLab 900 MHz Ultra-
8 Tesla Wide Bore NMR Magnet
600 mm Bore 21.2 Tesla
14 MJ 110 mm Bore

40 MJ

Coil Dimensions & Field
from Maglab 21.2 T NMR

B L | B2v | B*
(M) | (m) | (T?m3) | (KT?)
5.6

0.64

0.56 7.6 1.32 18.8 3

047 104 1.28 | 245 12

040 13.2 1.20| 26.3 30

033 156 1.10 235 59

0.26 18 0.95 16.9 105

0.20 20 0.80 9.7 160

0.15 211 0.65 5.1 198

Adding coils might increase
performance. Who would do it?

14



Cavity-Size Constraints

Cavities longer than a wavelength of the
photons are inefficient: 0.3 m
length/diameter constraint.

Present ADMX dimensions: 0.53 m
diameter, 1 m length.

Can cavities be slaved together?

If not, pursue higher field in the same
volume as ADMX.

15



Future Solenoids:
High-Temperature Superconductors

Current Density Across Entire Cross-Section
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32 TESLA superconpucTinG MacneT LSt HTS User Magnet

Total field 32T
Field inner YBCO coils 17T
Field outer LTS coils 15T

+emm  COld INNer bore 32 mm
Current 172 A
Inductance 619 H
Stored Energy 9.15 MJ
Uniformity 5x104 1 cm DSV

@574mm

Principal Investigator: Denis Markiewicz
Co-PI's: David Larbalestier, Steven Julian

18



YBCO test coil on support structure

The technology development phase will continue with the
fabrication of a series of test coils that will demonstrate conductor
and coil performance prior to fabrication of the 32 T magnet
YBCO caoils.

19
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Quench Protection of YBCO Caoills

Heater insulation thickness 5 mils (G-10). Stainless steel co-wound tape of 50 um
with AL O, inslulation. 15T-30T field. Significant "insulation-pancake” contact resistance, R_
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Performance of quench protection heaters is studied by analysis and
measurements on test coils.

Proof of principle of heater performance verified by coil measurements.

Full heater performance characterization tests to be made at high field.

—*— Upper Coil
—>— Lower Coil

== Protection Heater Current

I coillquench

20




Potential HTS Solenoids

B,2V Magnet | Application/ Location Field | Bore | Len | Energy | Cost
(T2m3) (kT4) Technology (T) (m) (m) (MJ) (Sm)
290

3112 60 T out HF/HTS CicC MagLab 1100

Italics indicates a magnet not yet operational (and, in this case, yet not funded).

|
e HTS Cable

Concept

— 0T HTS LTS | 4
- cicc cicc

.om
— 370 mm bore

— 1.5mlong |
— 1.1GJ

— B,2V =290 T?m?3 J
1.6m

v

Axis of symmetry
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Hastelloy
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42 T, 30 kA
YBCO CICC concept

YBCO Roebel

Insulation

( AR R
\ Assume
\ /1, 50%
Jeu 250 A/mm?2
: Stress 500 MPa
| iR He void 40%
& \\

*Advantages
*YBCO superconducts > 100 T
sHastelloy provides strength
*He provides stability
*Cu provides protection
*Disadvantages
*Unproven Technology




Sample shape

HTS cable testing @ Maglab

and field

?
angle Twisted stack,
Loop/spiral or 4 mm wide

U-shape or

ROEBEL
~5-12 mm

_ hairpin?

CORC

Existing test setup
for 20 T LBRM
Nominally 7 kA
141 mm cold-bore
cryostat

Under development for LBRM
Nominally 16 kA (IRL)
Nominally 2 kA (LBL)

168 mm cold-bore cryostat

e 7

E’& l‘i- .

iy

Option: 12 T split magnet
Nominally 16 kA

150 mm cold-bore,

30x70 mm radial access
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Summary

Estimates of performance and cost of potential
approaches to next-generation magnets for rf Axion search

Objective Approach Cavity Size D B,2V B4 Cost
*L(m *m) (T2m3) | (kT?)

Maximize  Very Large Magnet, 4-15 T, cabled »2-10m* 2,000 0.2- S30M -

[B2dV conductor (CICC or SRC). 15-20m 10,000 3000 S1B
Size~1m High Field Magnet (20 — 40T): High- @0.5m * 30 - 1000 - S10M -
Temperature Superconductor 1.5m 300 3000 S200M
Persistent ~ Monolithic conductor, large-bore @09 m * 250 7-12  S5M-
MRI magnet (<10 T), commercial 3m S10M
Min cost Use ADMX, Add inner coils (~¥13 T) @04 m* 20 15-25 <S1IM
Upgrade 1m
Present ADMX @0.5m * 12 2 0
System 1m (S0.4M)

Seeking Postdoctoral Scholars to Develop Magnet Technology!

24
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