Exclusive meson production with COMPASS and COMPASS II

Nicole d'Hose (CEA-Saclay) On behalf of the COMPASS Collaboration

INT Workshop INT-12-49W

Orbital Angular Momentum in QCD

February 6 - 17, 2012

COMPASS-II phase I: test in 2012 and 2 years 2015+16:

with LH₂ target + **With** Recoil Proton Detection

✓ Vector Meson ρ^0 , ρ^+ , ω , Φ production → GPD H

Using the 2007-10 data: transv. polarized NH₃ target without RPD

✓ The Transverse Target Spin Asymm → GPD E and angular momentum of parton

Projections for Phase 1 in COMPASS-II (test in autumn 2012 and 2 years 2015-16)

with recoil proton detection and hydrogen target

→ Transverse Imaging : d σ /dt

Constrains on the GPD H

Transverse imaging at COMPASS d V^{CS}/dt ~ exp(-B|t|)

$$B(x_B) = \frac{1}{2} < r_{\perp}^{-2}(x_B) >$$

distance between the active quark and the center of momentum of spectators

Transverse size of the nucleon

mainly dominated by $H(x, \xi = x, t)$

related to $\frac{1}{2} < b_{\perp}^{-2}(x_B) >$

distance between the active quark and the center of momentum of the nucleon

Impact Parameter Representation

 $q(x, b_{\perp}) \iff H(x, \xi=0, t)$

Transverse imaging at COMPASS d VCS /dt ~ exp(-B|t|)

for valence quark $\alpha' \sim 1 \text{ GeV}^{-2}$ to reproduce FF \cong meson Regge traj. for gluon $\alpha' \sim 0.164 \text{ GeV}^{-2} (J/\Psi \text{ at } Q^2=0) << \alpha' \sim 0.25 \text{ GeV}^{-2}$ $\alpha' \sim 0.02 \text{ GeV}^{-2} (J/\Psi \text{ at } Q^2=2-80 \text{ GeV}^2)$ for soft Pomeron

Transverse imaging at COMPASS d VCS /dt ~ exp(-B|t|)

without any model we can extract $B(x_B)$ $B(x_B) = \frac{1}{2} < r_{\perp}^{-2}(x_B) >$ r_{\perp} is the transverse size of the nucleon Accuracy > 2.5 of $\alpha' = 0.125$ and full ECALS

Transverse imaging at COMPASS d ^{xcl.}/dt ~ exp(-B|t|)

Transverse imaging at COMPASS d^{xcl.}/dt ~ exp(-B|t|)

Constrains on the GPD E

on transversely polarized protons (NH3 target)

1) without recoil detection (2007 & 2010)

the GPD **E** allows nucleon helicity flip so it is related to the angular momentum

Ji sum rule:
$$2J_z^q = \int x (H^q(x,\xi,0) + E^q(x,\xi,0)) dx$$

The GPD E is the 'Holy-Grail' of the GPD quest

Hard Exclusive Vector Meson Production

$\mathbf{A}_{\mathsf{UT}}(\boldsymbol{\rho}^{\mathsf{0}}_{\mathsf{L}}) \propto \sqrt{|\mathsf{-t'}|} \operatorname{Im}(\boldsymbol{\mathcal{E}}^{\star}\boldsymbol{\mathcal{H}}) / |\boldsymbol{\mathcal{H}}|^{2} \times \sin(\phi - \phi_{\mathsf{s}})$

 S_T target spin vector / γ^* direction

 P_{T} target transverse polarization / the μ beam direction

 $\theta\gamma^{*}\,$ mainly smaller than 60mrad at COMPASS

Diehl, Sapeta, EPJC41 (2005) Diehl, JHEP09 (2007)

Hard Exclusive Vector Meson Production

 $\mathbf{A}_{\mathsf{IIT}}(\rho^{0}_{\mathsf{I}}) \propto \sqrt{|\mathsf{-t'}|} \operatorname{Im}(\boldsymbol{\mathcal{E}}^{\star}\boldsymbol{\mathcal{H}}) / |\boldsymbol{\mathcal{H}}|^{2}$

Goloskokov-Kroll: the most complete model (Q²>3GeV² x<0.2) with H and E for quarks and gluons

and with quark transverse degrees of freedom

the asymptotically dominant (longitudinal) amplitude for $\gamma_L^* \mathbf{p} \rightarrow \rho_L \mathbf{p}$ but also the one for transversely polarized photons and vector mesons $\gamma_T^* \mathbf{p} \rightarrow \rho_T \mathbf{p}$

Selection of Exclusive Production: $\mu p \rightarrow \mu' p$

 $1 < Q^2 < 10 \text{ GeV}^2$ 0.1 < y < 0.9 W>4 GeV $E_0 > 15 \text{ GeV}$

without RPD

1- Assuming both hadrons are π 0.5 < M_{$\pi\pi$} < 1.1 GeV To maximize the purity of the sample of ρ° / non resonant $\pi^{*}\pi^{*}$

2- Incoherent production on quasi-free protons in NH₃ polarized target

 $0.05 < p_t^2 < 0.5 \text{ GeV}^2$

Contamination of about a 5% coherent production

3- Exclusivity of the reaction

$$\begin{split} E_{\rm miss} &= \frac{M_X^2 - M_P^2}{2 \cdot M_P} \; = E_{\gamma^*} - E_{\rho^0} + t/(2 \cdot M_P) \\ \text{-2.5 < E}_{\rm miss} < \text{2.5 GeV} \end{split}$$

Diffractive dissociation ~12% Does not change the asymmetry (confirmed by HERA)

Background correction in every bin in: x_{Bj} , Q^2 , p_T^2 , $\Phi - \Phi_s$ and cell state and polar. state

2007 results for the Transverse Target Asymmetry

 $A_{IIT}(\rho^0) \propto \sqrt{|-t'|} Im(\mathcal{E}^*\mathcal{H}) / |\mathcal{H}|^2$

 $A_{UT}(\omega)$ and $A_{UT}(\rho^+)$ should be more promising To be completed with the analysis of 2010 data

What could come in the future?

IF SUFFICIENT MANPOWER

Study of other vector mesons: ρ^0 , ρ^+ , ω , Φ , (J/Ψ)

Study of all the asymmetries, cross-section, L / T , SDME, slope in t

For transversely polarized proton (NH₃ target:2007-10) For unpolarized proton (LH₂ 2012 + ...)

For transversely polarized deuteron (⁶LiD target: 2002-3-4-6)

Hard Exclusive Vector Meson Production

$$\begin{split} \left[\frac{\alpha_{em}}{8\pi^{3}}\frac{y^{2}}{1-\epsilon}\frac{1-x_{B}}{x_{B}}\frac{1}{Q^{2}}\right]^{-1}\frac{d\sigma}{dx_{B}dQ^{2}d\phi d\phi_{s}} \simeq & \frac{1}{2}\left(\sigma_{++}^{++}+\sigma_{++}^{--}\right)+\epsilon\sigma_{00}^{++}-S_{T}\sin\left(\phi-\phi_{s}\right)\operatorname{Im}\left(\sigma_{++}^{+-}+\epsilon\sigma_{00}^{+-}\right)+\ldots\right] \\ & A_{UT}(\phi,\phi_{S}) = \frac{1}{S_{T}}\cdot\frac{d\sigma(\phi,\phi_{S})-d\sigma(\phi,\phi_{S}+\pi)}{d\sigma(\phi,\phi_{S})+d\sigma(\phi,\phi_{S}+\pi)} \\ & A_{UT}^{\sin\left(\phi-\phi_{s}\right)}(\phi,\phi_{S}) \propto \frac{\operatorname{Im}(\sigma_{++}^{+-}+\epsilon\sigma_{00}^{+-})}{\frac{1}{2}(\sigma_{++}^{++}+\sigma_{++}^{--})+\epsilon\sigma_{00}^{++}} \\ & \sigma_{mn}^{ij}(x_{B},Q^{2},t) \propto \Sigma_{spins}(\mathcal{A}_{m}^{i})^{*}\mathcal{A}_{n}^{j} \qquad \sigma_{L} = \sigma_{00}^{+++} \\ & \sigma_{T}^{ij} = \frac{1}{2}(\sigma_{++}^{++}+\sigma_{++}^{--}) \\ & \frac{1}{\Gamma'}\frac{d\sigma_{00}^{++}}{dt} = (1-\xi^{2})|\mathcal{H}_{M}|^{2} - (\xi^{2}+\frac{t}{4M_{p}^{2}})|\mathcal{E}_{M}|^{2} - 2\xi^{2}\operatorname{Re}(\mathcal{E}_{M}^{*}\mathcal{H}_{M}), \\ & \frac{1}{\Gamma'}\frac{d\sigma_{00}^{+-}}{dt} = -\sqrt{1-\xi^{2}}\frac{\sqrt{t_{0}-t}}{M_{p}}\operatorname{Im}(\mathcal{E}_{M}^{*}\mathcal{H}_{M}), \end{split}$$

 $\mu p \rightarrow \mu' p \rho$

quasi-free protons in NH₃ polarized target

 P_{T} = 0.5 \pm 2%

f =0.25 \pm 2% (from 0.27 at Q²=1 to 0.18 at Q² =10) calculated for the material composition and the nuclear dependence of the cross section of this exclusive reaction

-2.5 < $E_{\rm miss}$ < 0 GeV and 1< Q^2 < 1.4

