Longitudinal Spin Results with COMPASS before OAM investigation

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z^q + L_z^g$$

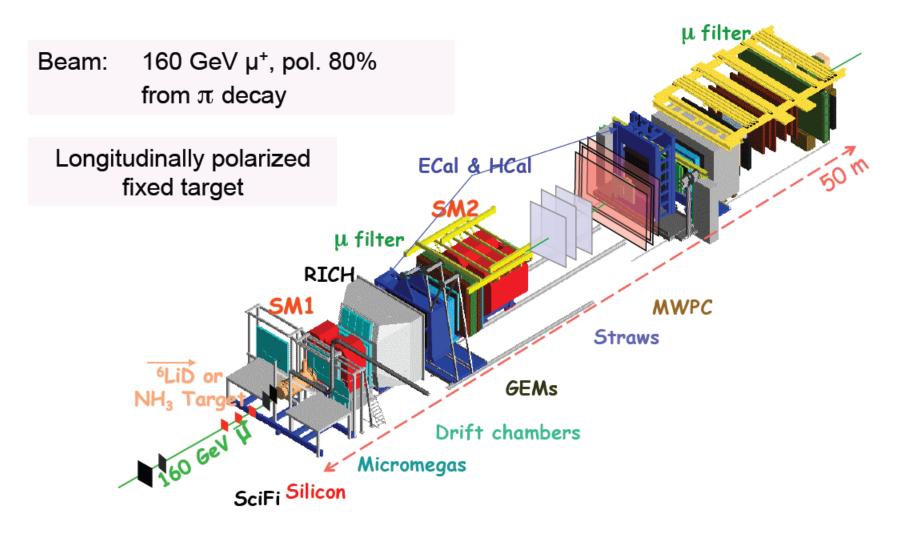
 $\Delta \Sigma = \int_0^1 \Delta u(x) + \Delta \bar{u}(x) + \Delta d(x) + \Delta \bar{d}(x) + \Delta s(x) + \Delta \bar{s}(x) dx$ $\Delta G = \int_0^1 \Delta g(x) dx$

Inclusive asymmetries :

 $g_1^{d,p}$, $\int g_1^N dx$ and $\Delta \Sigma$, $\Delta s + \Delta \overline{s}$, $\int g_1^{NS} dx$ and Bjorken sum rule

Semi-inclusive asymmetries: Flavour separation: Δu , Δd , $\Delta \overline{u}$, $\Delta \overline{d}$, Δs , $\Delta \overline{s}$

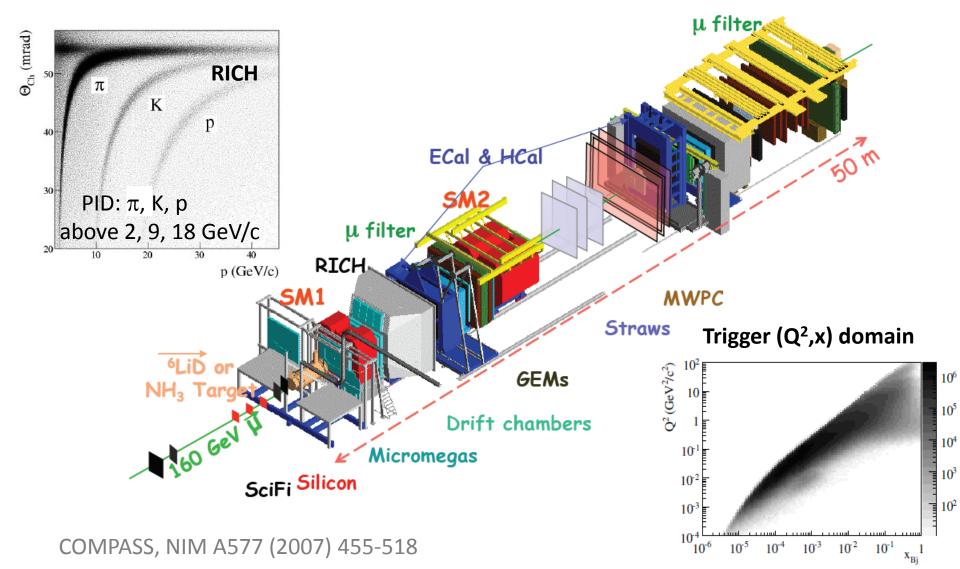
Photon-Gluon Fusion asymmetries: ΔG

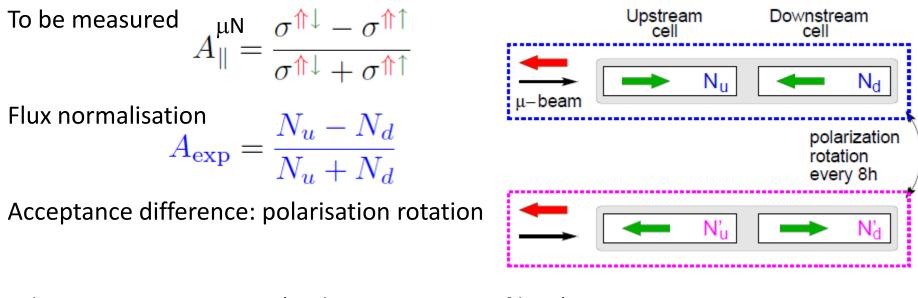

Nicole d'Hose (CEA Saclay) on behalf of the COMPASS collaboration INT Workshop, OAM in QCD, February 6-27, 2012 SPS proton beam: 2.6 10¹³/spill of 9.6s each 48s, 400 GeV/c
 Secondary hadron beams (π, K, ...): 6.10⁸ /spill, 50-200 GeV/c
 Tertiary muon beam (80% pol): 4.6 10⁸ /spill, 100-200 GeV/c

COMPASS

PS

Gran/Sasso


The COMPASS experiment

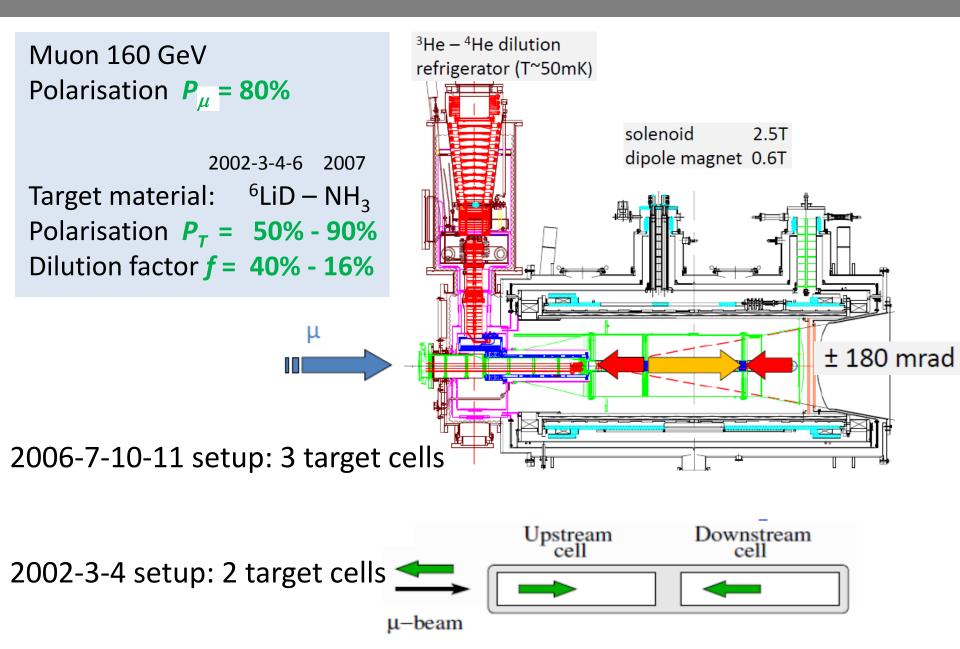

COMPASS, NIM A577 (2007) 455-518

The COMPASS experiment

two stages spectrometer for Large and Small Angles around SM1 and SM2

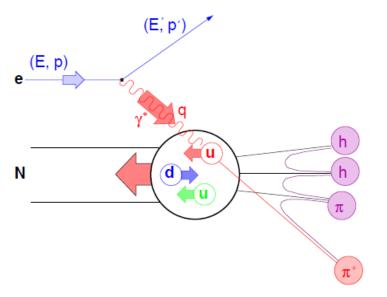
Asymmetry measurement

Take average asymmetry (with minimization of bias)


$$A_{\exp} = \frac{A+A'}{2} = \frac{1}{2} \left(\frac{N_u - N_d}{N_u + N_d} + \frac{N'_d - N'_u}{N'_u + N'_d} \right)$$

Experimental asym. related to lepton-nucleon asym. or to photon-nucleon asym.

$$\begin{split} A_{\mathrm{exp}} &= p_{\mu} \ p_{\mathrm{T}} \ f \ A_{\parallel}^{\mu \mathrm{N}} & p_{\mu}, \ p_{\mathrm{T}} \\ A_{\mathrm{exp}} &= p_{\mu} \ p_{\mathrm{T}} \ f \ \mathbf{D} \ A_{1}^{\gamma^{*} \mathrm{N}} & f \\ \end{split} \begin{tabular}{c}{l}{ beam and target polarisation} \\ f & \text{dilution factor} \\ \end{array} \\ A_{\mathrm{exp}} &= p_{\mu} \ p_{\mathrm{T}} \ f \ \mathbf{D} \ A_{1}^{\gamma^{*} \mathrm{N}} & \mathbf{D} \\ \end{array}$$


weighting each event with $\omega = p_{\mu} f D$ for statistical gain

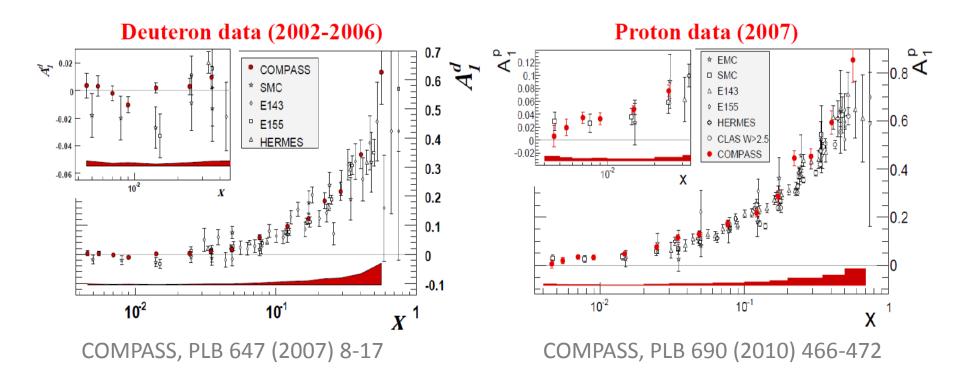
the COMPASS polarized beam and target

Inclusive asymmetries in DIS and spin structure functions

inclusive asymmetries in DIS

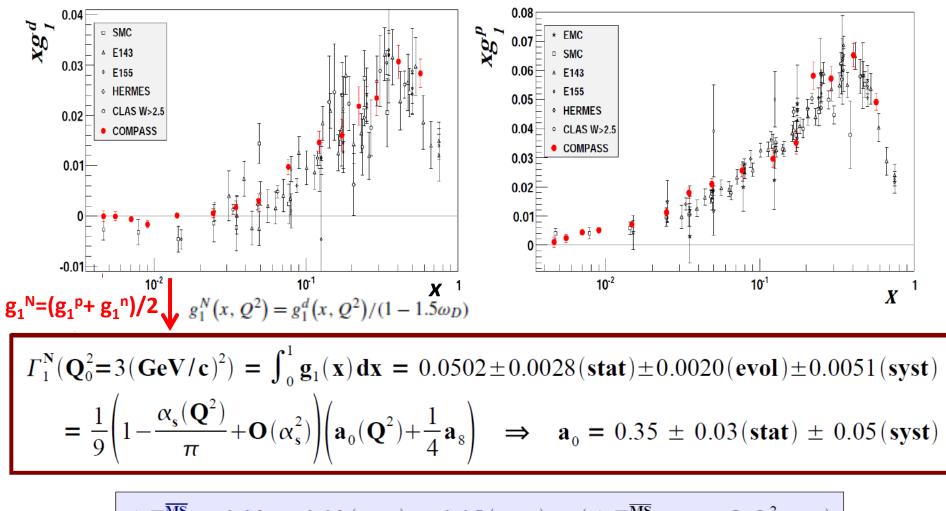
photon-nucleon asymmetry

$$A_{1}^{\gamma^{*N}} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{\sum_{q} e_{q}^{2} (q(x)^{+} - q(x)^{-})}{\sum_{q} e_{q}^{2} (q(x)^{+} + q(x)^{-})} = \frac{g_{1}(x)}{F_{1}(x)}$$


spin structure function

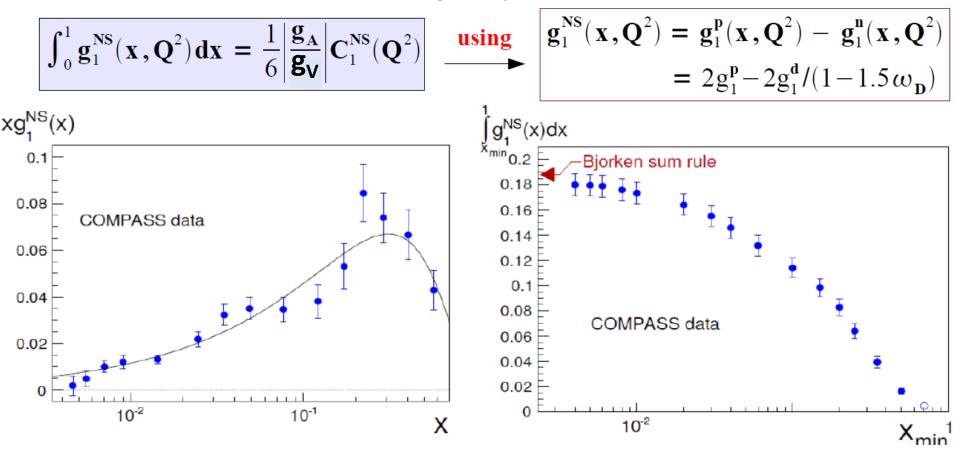
$$g_{1} = \frac{1}{2} \Sigma_{q} \ e_{q}^{2} \ \Delta q(x) = A_{1} \cdot \frac{F_{2}}{2x(1+R)} \approx \frac{A_{\parallel}}{D} \cdot \frac{F_{2}}{2x(1+R)}$$

 F_2 from the SMC parametrization


 $R = \sigma_L / \sigma_T$ from SLAC parametrization

inclusive asymmetries $A_1^{d,p}$: $Q^2 > 1 \text{ GeV}^2$

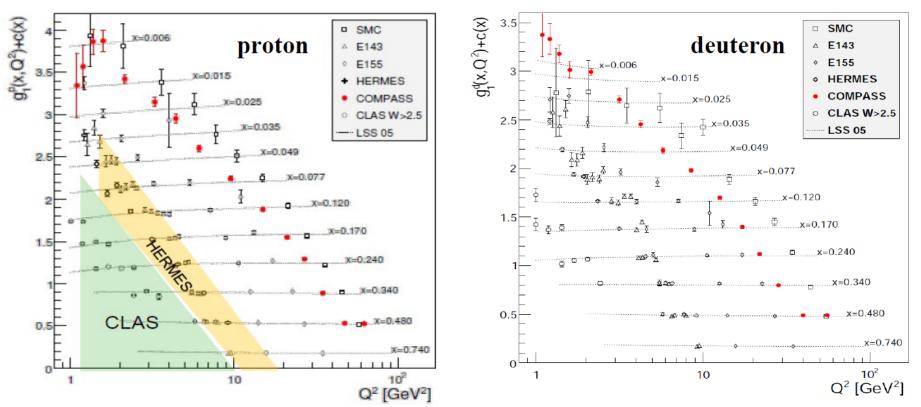
Good agreement between all experimental points Significant improvement of precision in the low x region No negative trend for A_1^{d}


COMPASS results for $g_1^{d,p}$ and first moment of g_1^N

$$\Delta \Sigma^{\overline{\text{MS}}} = 0.33 \pm 0.03 \,(\text{stat}) \pm 0.05 \,(\text{syst}) \qquad (\Delta \Sigma^{\overline{\text{MS}}} = \mathbf{a}_0 \, @\, \mathbf{Q}^2 \to \infty)$$
$$(\Delta \mathbf{s} + \Delta \overline{\mathbf{s}}) = \frac{1}{3} (\Delta \Sigma^{\overline{\text{MS}}} - \mathbf{a}_8) = -0.08 \pm 0.01 \,(\text{stat}) \pm 0.02 \,(\text{syst})$$
$$COMPASS, PLB 647 \,(2007) \,8-17$$

Bjorken sum rule from COMPASS g_1^{p} and g_1^{d}

the non-singlet spin structure



QCD fit of COMPASS data using $\Delta q^{NS} = |g_A / g_V| x^{\alpha} (1 - x)^{\beta}$

 $\frac{\mathbf{g}_{\mathbf{A}}}{\mathbf{g}_{\mathbf{V}}} = 1.28 \pm 0.07(\mathbf{stat}) \pm 0.10(\mathbf{sys})$

(<u>PDG value</u> : $|g_A/g_V| = 1.269 \pm 0.003$) COMPASS, PLB 690 (2010) 466-472

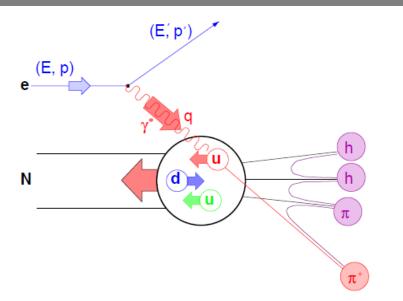
the Q^2 dependence of g_1 for DGLAP evolution

The kinematic range is still limited (compared to the unpolarized F₂)

➔ additional data from colliders are required

pQCD analyses:

 $\Delta u + \Delta u$ and $\Delta d + \Delta d$ well constrained by data (LSS PRD 80 (2009) 054026)

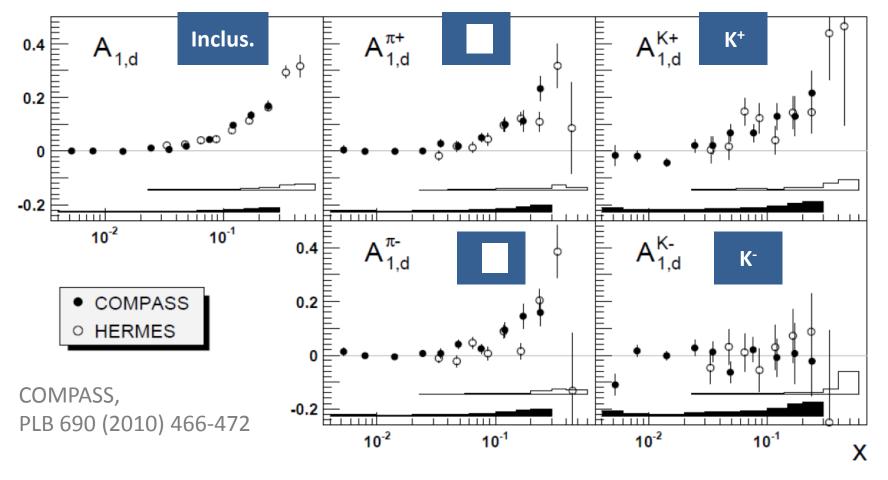

 Δs and Δg need other data in addition to inclusive data

 Δs comes out negative

 $|\Delta g|$ is small (<0.5) still with large incertainties \rightarrow direct measurement needed

Semi-Inclusive asymmetries and flavour separation

Extraction of quark helicity distribution from SIDIS

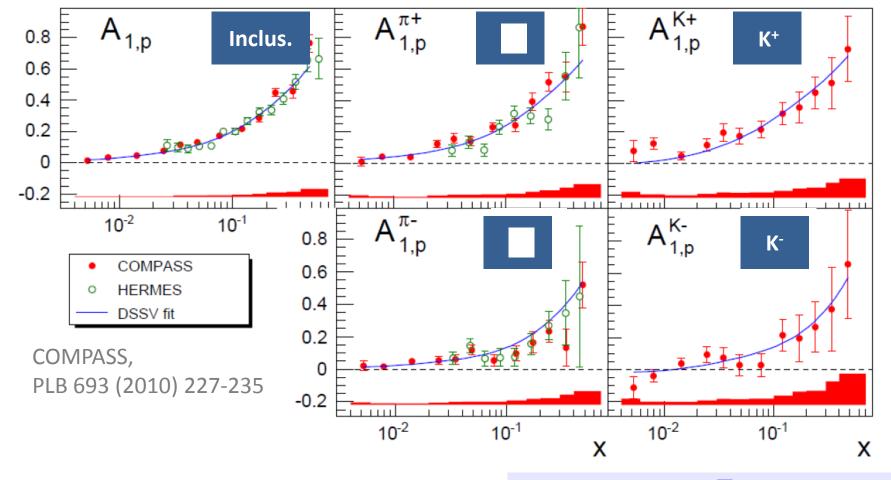

The outgoing hadron tags the quark flavour

Requirement of the fragmentation function FF of a quark q to a hadron h $D_{q}^{h}(z,Q^{2}) \text{ with } z=E_{h}/E_{v*}$

The semi-inclusive asymmetries have the following interpretation (in LO):

Inclusive and semi-inclusive spin asymmetries for deuteron data

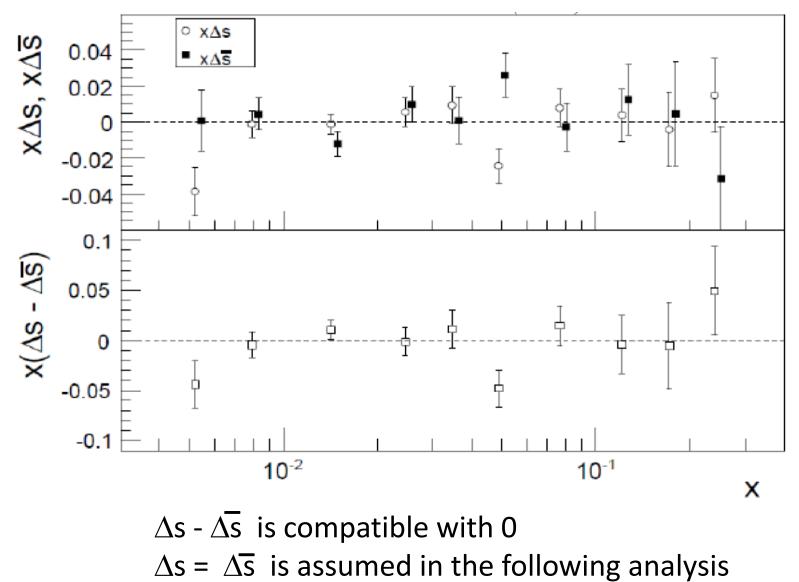
Inclusive & semi-inclusive asymmetries for identified π 's and *K*'s

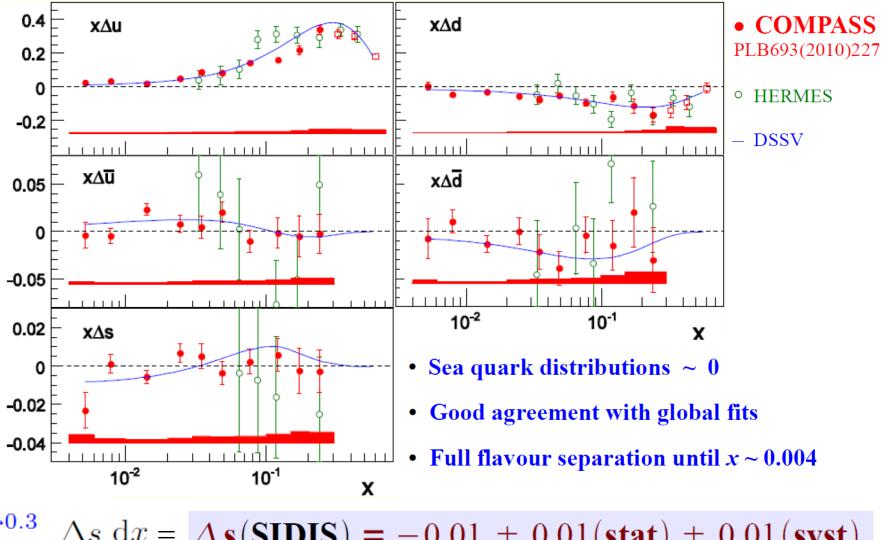


From these asymmetries one can extract

 $\Delta u + \Delta d$, $\Delta \overline{u} + \Delta d$ and $\Delta s = \Delta \overline{s}$

Inclusive and semi-inclusive spin asymmetries for **proton** data


incl. & semi-incl. asymmetries for identified π 's and *K*'s

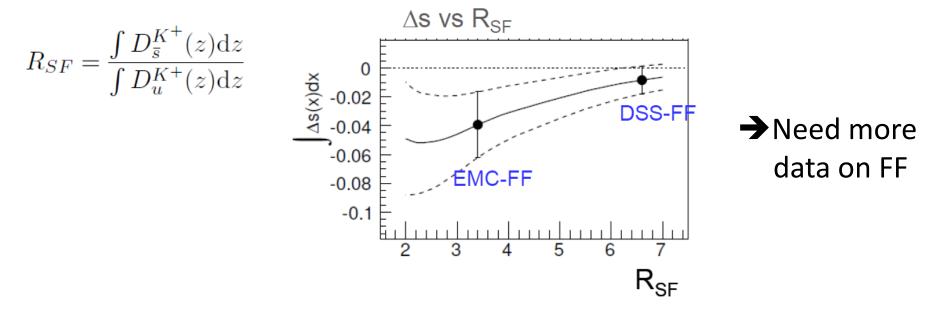

Using $A_{1,p}^{h}$ and $A_{1,d}^{h}$ one can extract separately Δu , Δd , $\Delta \overline{u}$, $\Delta \overline{d}$, Δs and $\Delta \overline{s}$

Comparison of with

COMPASS, PLB 693 (2010) 227-235

Quark helicities from SIDIS (Q²=3 GeV² and x< 0.3)

 $\Delta \mathbf{s}(\mathbf{SIDIS}) = -0.01 \pm 0.01(\mathbf{stat}) \pm 0.01(\mathbf{syst})$ $\Delta s \, \mathrm{d}x = 1$

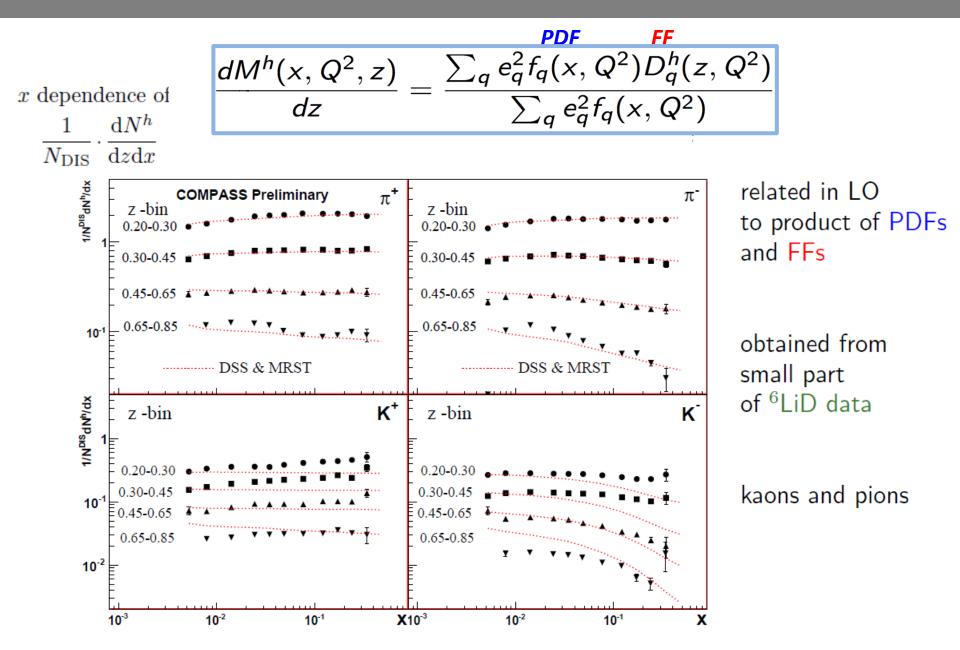

puzzle?

From DIS first moment of g_1 + (neutron and hyperon β decay + SU3):

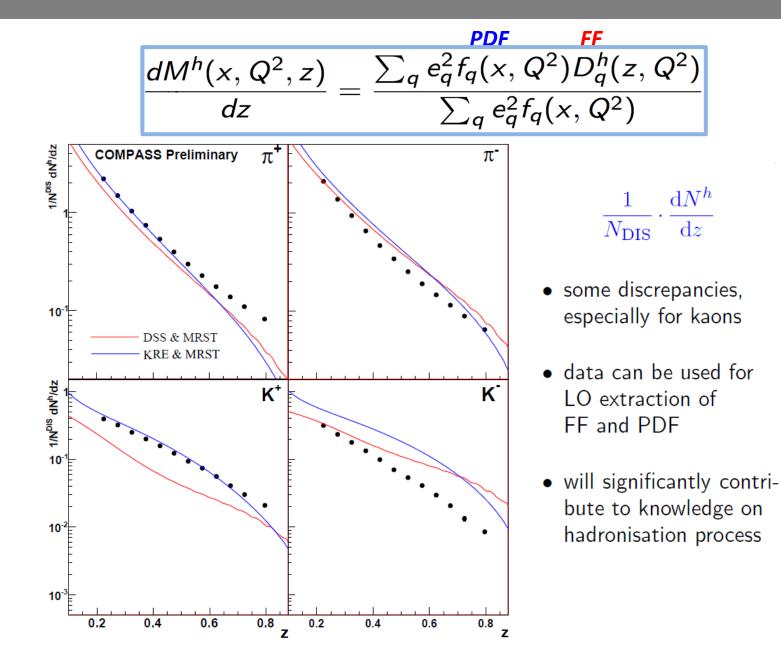
$$(\Delta \mathbf{s} + \Delta \overline{\mathbf{s}}) = \frac{1}{3} (\Delta \Sigma^{\overline{\mathbf{MS}}} - \mathbf{a}_8) = -0.08 \pm 0.01 (\mathbf{stat}) \pm 0.02 (\mathbf{syst})$$

From SIDIS: $\Delta \mathbf{s}(\mathbf{SIDIS}) = -0.01 \pm 0.01(\mathbf{stat}) \pm 0.01(\mathbf{syst})$

The relation between SIDIS asymmetries and Δs depends on R_{SF} the ratio of strange to favoured fragmentation functions FF for kaons

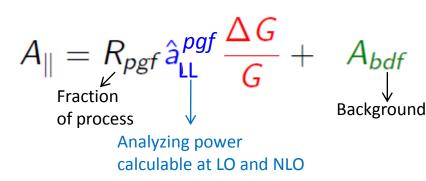

Flavour symmetry breaking

The considerable asymmetry observed for $(ar{u}-ar{d})\,$ is not verified for the polarized case (<u>p</u>∇-<u>n</u>∇)× 0.15 0.05 0 -0.05 COMPASS, full statistics -0.1 HERMES, PRD71(2005) **DNS** parameterization -0.15 10-2 10-1 х


> $\int_{0.004}^{0.3} (\Delta \bar{u} - \Delta \bar{d}) dx = 0.06 \pm 0.04 (\text{stat}) \pm 0.02 (\text{syst})$ sightly positive but compatible with zero

$$\int (\bar{u} - \bar{d}) \mathrm{d}x = -0.118 \pm 0.012$$

First look on multiplicities


Comparison to parametrisations

Gluon Polarization

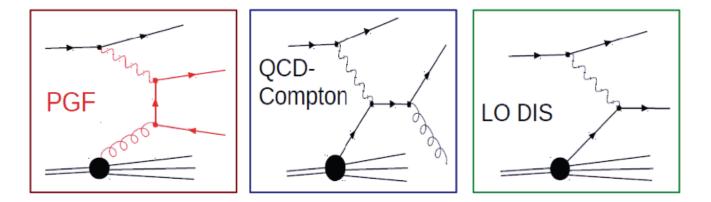
Direct measurement of

÷μ q gluor

photon-gluon fusion (PGF) There are two methods to tag this process:

- **Open Charm production**
 - $\gamma^* g \rightarrow c\overline{c} \implies \underline{reconstruct D^0 mesons}$
 - Hard scale: M_{2}^{2}
 - No intrinsic charm in COMPASS kinematics
 - No physical background
 - Weakly Monte Carlo dependent
 - Low statistics
- High- p_{τ} hadron pairs
 - $\gamma^* g \rightarrow q \overline{q} \implies reconstruct 2 jets or h^+ h^-$
 - Hard scale: Q^2 or Σp_T^2 [$Q^2 > 1$ or $Q^2 < 1$ (GeV/c)²]
 - High statistics
 - Physical background
 - Strongly Monte Carlo dependent
- and single hadron production at high- p_{τ} ?

High p_{T} hadron pairs

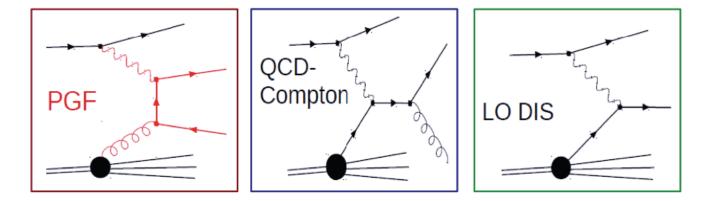

High- p_T asymmetries Q² > 1 GeV²

The values of R= σ^i/σ^{tot} and a^i_{LL} estimated using MC based on LEPTO generator

A₁^{LO} polarized and unpolarized PDF? JETSET parameter tuning for fragmentation ?

$$\mathbf{A}_{\mathbf{LL}}^{2h}(\mathbf{x}) = \left(\frac{\mathbf{A}^{\exp}}{\mathbf{f} \mathbf{P}_{\mu} \mathbf{P}_{\mathrm{T}}}\right) = \frac{\Delta \mathbf{G}}{\mathbf{G}}(\mathbf{x}_{\mathrm{g}}) \left(\mathbf{a}_{\mathbf{LL}}^{\mathbf{PGF}} \frac{\sigma^{\mathbf{PGF}}}{\sigma^{\mathbf{Tot}}}\right) + \mathbf{A}_{1}^{\mathbf{LO}}(\mathbf{x}_{\mathrm{C}}) \left(\mathbf{a}_{\mathbf{LL}}^{\mathbf{C}} \frac{\sigma^{\mathbf{C}}}{\sigma^{\mathbf{Tot}}}\right) + \mathbf{A}_{1}^{\mathbf{LO}}(\mathbf{x}_{\mathrm{Bj}}) \left(\mathbf{D} \frac{\sigma^{\mathbf{LO}}}{\sigma^{\mathbf{Tot}}}\right)$$

high- $p_{\rm T}$ hadron pairs $(p_{\rm T1} / p_{\rm T2} > 0.7 / 0.4 \text{ GeV/c}) \Rightarrow$ enhancement of the PGF contribution


High- p_T asymmetries Q² > 1 GeV²

Inclusive asymmetry

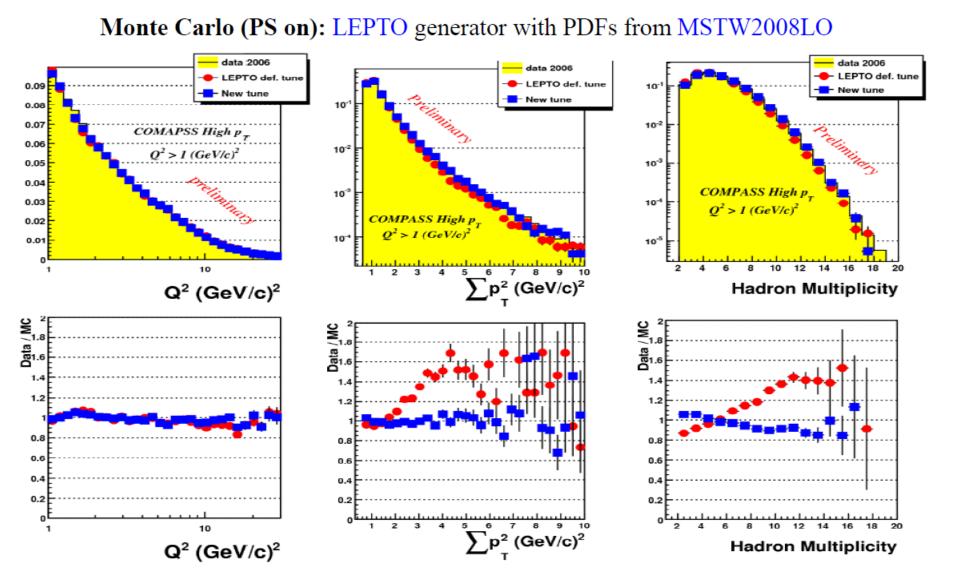
Two samples are considered:

 $\mathbf{A}_{1}^{d}(\mathbf{x}) = \frac{\Delta \mathbf{G}}{\mathbf{G}}(\mathbf{x}_{g}) \left(\mathbf{a}_{LL}^{PGF, inc} \frac{\sigma^{PGF, inc}}{\sigma^{Tot, inc}} \right) + \mathbf{A}_{1}^{LO}(\mathbf{x}_{C}) \left(\mathbf{a}_{LL}^{C, inc} \frac{\sigma^{C, inc}}{\sigma^{Tot, inc}} \right) + \mathbf{A}_{1}^{LO}(\mathbf{x}_{Bj}) \left(\mathbf{D} \frac{\sigma^{LO, inc}}{\sigma^{Tot, inc}} \right)$ $\mathbf{A}_{LL}^{2h}(\mathbf{x}) = \left(\frac{\mathbf{A}^{exp}}{\mathbf{f} \mathbf{P}_{\mu} \mathbf{P}_{T}} \right) = \frac{\Delta \mathbf{G}}{\mathbf{G}}(\mathbf{x}_{g}) \left(\mathbf{a}_{LL}^{PGF} \frac{\sigma^{PGF}}{\sigma^{Tot}} \right) + \mathbf{A}_{1}^{LO}(\mathbf{x}_{C}) \left(\mathbf{a}_{LL}^{C} \frac{\sigma^{C}}{\sigma^{Tot}} \right) + \mathbf{A}_{1}^{LO}(\mathbf{x}_{Bj}) \left(\mathbf{D} \frac{\sigma^{LO}}{\sigma^{Tot, inc}} \right)$

high- p_{T} hadron pairs $(p_{T1} / p_{T2} > 0.7 / 0.4 \text{ GeV/c}) \Rightarrow$ enhancement of the PGF contribution

High- p_T asymmetries Q² > 1 GeV²

The gluon polarization is determined from two asymmetry samples: the high- p_T hadron pairs $\mathbf{A}_{LL}^{2h}(\mathbf{x})$ and the inclusive data $\mathbf{A}_1^{\mathbf{d}}(\mathbf{x})$

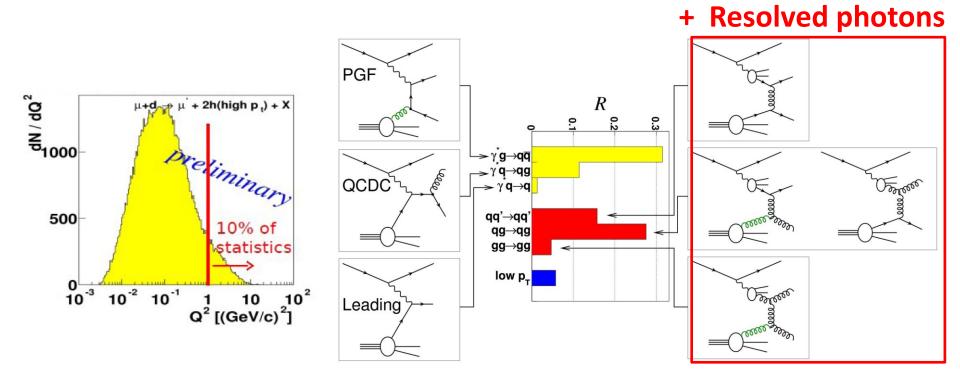

$$\frac{\Delta G}{G}(\mathbf{x}_{g}) = \frac{1}{\beta} \left[\mathbf{A}_{LL}^{2h}(\mathbf{x}) + \mathbf{A}_{corr} \right]$$

The MC based on LEPTO generator is improved, JETSET is tuned, and all the following parameters to evaluate β and A_{corr}

$$R_{PGF}, R_{C}, R_{LO}, R_{PGF}^{inc}, R_{C}^{inc}, R_{LO}^{inc}, a_{LL}^{PGF}, a_{LL}^{C}, a_{LL}^{LO}, a_{LL}^{PGF, inc}, a_{LL}^{C, inc} and a_{LL}^{LO, inc}$$

are parametrized event by event using a Neural Network approach

Data vs MC: comparison of Q² and hadron variables


High- p_T results Q² > 1 GeV²

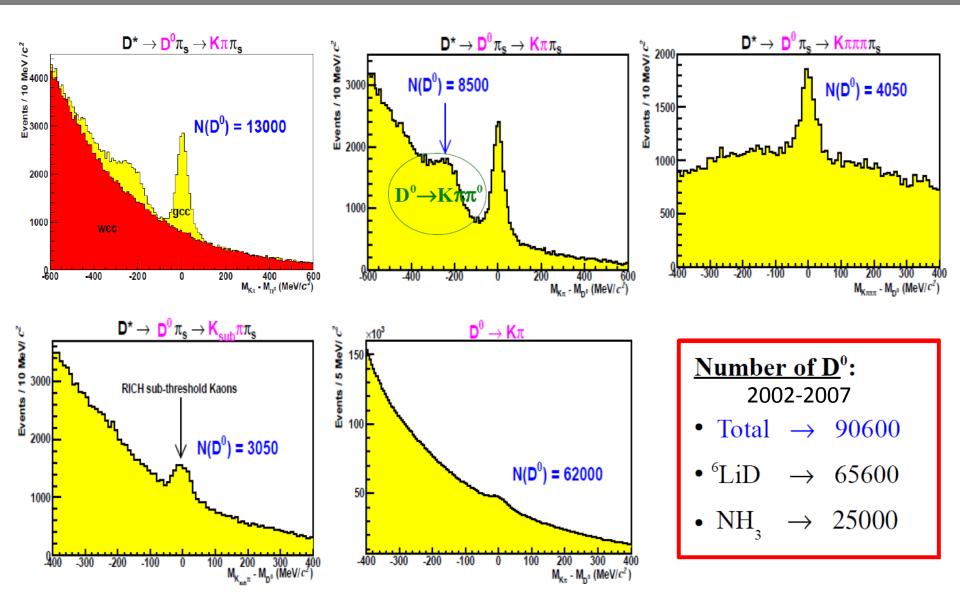
 $\frac{\Delta \mathbf{G}}{\mathbf{G}} = 0.125 \pm 0.060(\text{stat}) \pm 0.063(\text{syst}) \quad @<\mathbf{x}_{g}> = 0.09^{+0.08}_{-0.04}, <\mu^{2}> = 3.4 (\text{GeV/c})^{2}$

Very good statistics to allow 3 bins in x_{g}

 1^{st} point : $0.147 \pm 0.091_{stat} \pm 0.088_{sys}$ (a) $x_g = 0.07^{+0.05}_{-0.03}$ 2^{nd} point : $0.079 \pm 0.096_{stat} \pm 0.082_{sys}$ (a) $x_g = 0.10^{+0.07}_{-0.04}$ 3^{rd} point : $0.185 \pm 0.165_{stat} \pm 0.143_{sys}$ (a) $x_g = 0.17^{+0.10}_{-0.06}$

High- p_T results Q² < 1 GeV²

2002-2004 Preliminary:


 $\Delta G/G = 0.016 \pm 0.058 \text{ (stat)} \pm 0.055 \text{ (syst)}$

2002-2003 Published:

 $\Delta G/G = 0.024 \pm 0.089 \text{ (stat)} \pm 0.057 \text{ (syst)}$ COMPASS, PLB 633 (2006) 25-32

Open Charm production

D⁰ invariant mass spectra

Refined analysis for open charm selection

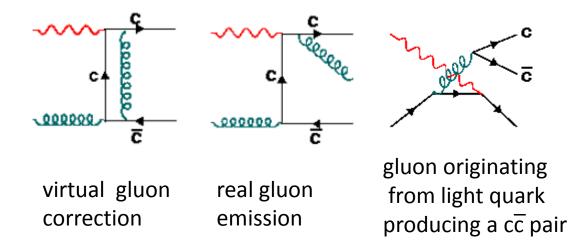
The D⁰ meson is selected using the invariant mass distribution for identified K and π

The selection is performed with the help on a Neural Network which is trained on two data samples (with signal and pure background)

The Neural Network is able to distinguish the signal from the combinatorial background on a event by event basis

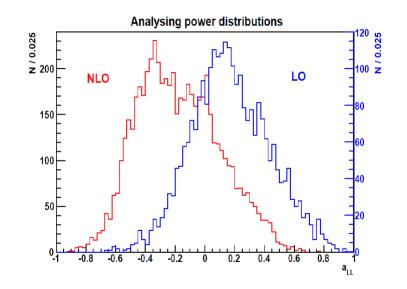
Determination of open charm probability = S/(S+B) event by event

Analysis Power in LO


$$\mathbf{a}_{\text{LL}} = \frac{\Delta \sigma^{\text{PGF}}}{\sigma_{\text{PGF}}}(\mathbf{y}, \mathbf{Q}^2, \mathbf{x}_{\text{g}}, \mathbf{z}_{\text{C}}, \boldsymbol{\phi})$$

a_{LL} depends on the knowledge of the partonic kinematics and cannot be experimentally obtained

 a_{LL} is calculated with a MC using the AROMA generator (in LO QCD) and parametrized using a Neural Network approach on the reconstructed kinematic variables y, x_B , Q^2 , z_{D^0} , p_T


Analysis Power in NLO

a_{LL} is also calculated event by event using theoretical formulas for NLO

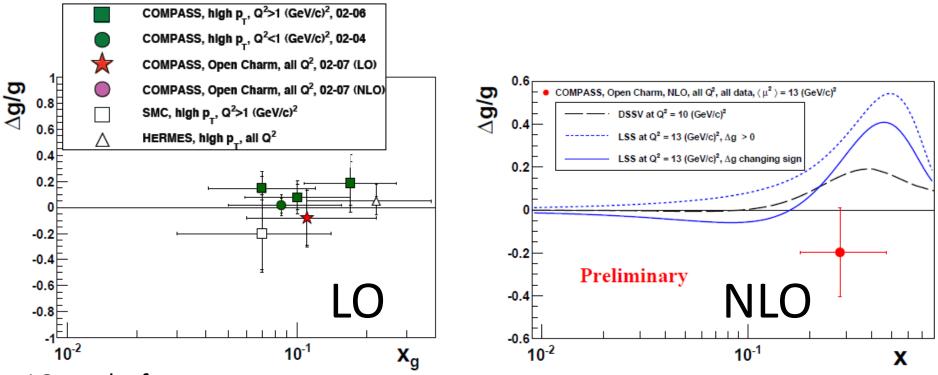
The phase space needed for NLO real gluon emission is generated through parton showers included in the standard LO AROMA generator

Light quark correction using the direct measurement of A₁

/G with open charm in LO and NLO

In LO

$$\frac{\Delta \mathbf{G}}{\mathbf{G}} = -0.08 \pm 0.21(\text{stat}) \pm 0.08(\text{syst}) \quad @<\mathbf{x}_{g}> = 0.11^{+0.11}_{-0.05}, \ <\mu^{2}> = 13 \ (\text{GeV/c})^{2}$$


In NLO

$$\frac{\Delta \mathbf{G}}{\mathbf{G}} = -0.20 \pm 0.21 \pm 0.08 \text{ (syst)} \qquad (a < \mathbf{x}_{g} > = 0.28^{+0.19}_{-0.10}, < \mu^{2} > = 13 \text{ (GeV/c)}^{2}$$

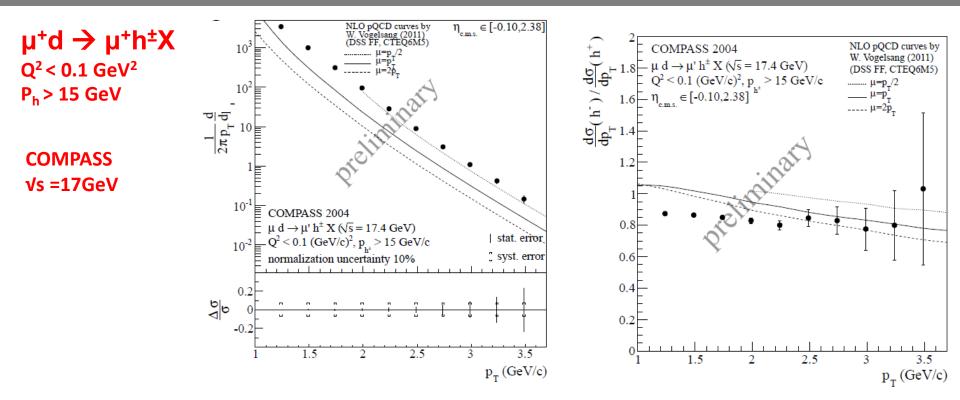
still preliminary

<*x*_g> shifted to higher values

- depends on the order of the QCQ calculation of a_{LL} causing a change in the relative weight of the each event
- due to the real gluon emission at NLO, the energy of the photon-gluon system is higher

Results for /G

LO results from:


- ✓ High pT hadron pairs: COMPASS compared to SMC, HERMES
- ✓ Open charm from COMPASS

NLO result from charm at COMPASS (systematic error still under investigation)

```
\DeltaG/G predicted small,
with a node around x<sub>g</sub> ~ 0.1?
```

and
$$\int \Delta G(x) dx = ?$$

Single hadron production for $Q^2 < 0.1 \text{ GeV}^2$ and high p_T

Calculations exist in NLO for small Q^2 and large p_T However is theory applicable at COMPASS?

- experimental cross section > prediction: preferred scale $\mu = p_T/2$, resummation needed?
- p_T dependence of charge ratio from pQCD not confirmed, pb of fragmentation functions?

Next steps: much more data on tape for ΔG determination

Summary and Outlook

Results from COMPASS:

- ✓ Quark spin contribution to nucleon spin: $\Delta\Sigma$ = 0.33±0.03(stat)±0.05(syst)
- ✓ Flavour separation Δ q from SIDIS data for 0.004 < x < 0.3
- ✓ Update of gluon polarization: ΔG is small

Still to come:

- ✓ Study of fragmentation and strange quark distribution
- ✓ Gluon polarization from single hadrons
- \checkmark More data with longitudinal polarized NH_3 and Eµ=200 GeV in 2011
- ✓ Proton g_1 at low x and flavour separation
- ✓ Future COMPASS-II: DVCS, DVMP for GPD , DY for TMD → OAM ?
 still unpolarized measurements to improve the unpol. PDF and FF